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Preface 
 
This volume is the proceedings of the 2006 Image and Vision Computing New 
Zealand Conference (IVCNZ), held at Great Barrier Island, New Zealand on 
27-29 November 2006. 
 
 
Foreword and Welcome 
 
On behalf of the organising committee we would like to welcome all 
participants to the 2006 Image and Vision Computing New Zealand 
Conference. 
 
2006 is the 21st year of what has become a truly international conference. 
While most participants still originate from New Zealand and nearby Australia, 
this year we also welcome guests from England, France, The Netherlands, 
Mexico, Taiwan, Hong Kong, Korea, Pakistan, and Japan. This year we 
received 134 submissions, of which 38 were accepted for oral and 52 for 
poster presentations. We would like to acknowledge the considerable efforts of 
the members of the programme committee; they completed nearly 400 reviews 
in a very short time and ensured a high quality selection of papers being 
accepted for the conference programme. 
 
While exhibiting 21st century science, this conference is being held at a 
location without mobile phone coverage or broadband internet access and 
accessible only via a gravel road or by sea. Great Barrier Island, the location 
for this year’s conference, is sparsely populated, and the largely unspoilt 
natural environment is free of many pests that are present on mainland New 
Zealand. Under these conditions, wildlife flourishes and it is a haven for rare 
birds and lizards. 
 
We would like to thank the members of the organising committee for their 
assistance in the smooth running of the conference. They are: Heather 
Armstrong, Robert Carter, Anita Lai, Cecilia Lourdes, Cliff Hawkins, and 
Georgy Gimel’farb. Thanks to Robert Amor for the support provided by the 
University of Auckland Computer Science Department. Special thanks are also 
due to Brendan McCane (IVNZ 2005 organiser) for his help and useful advice. 
 
Finally, we would like to thank all contributing authors and participants for your 
involvement. We hope you will be able to take some time out from the 
conference programme to explore and enjoy your unique surroundings. 
 
 
Patrice Delmas 
John Morris 
Great Barrier Island, November 2006 
 

iii



Conference Chair 
John Morris (Co-Chair) 
Patrice Delmas (Co-Chair) 
 
 
Programme Committee 
Donald Bailey (Massey University, NZ) 
Andrew Bainbridge-Smith (U. of Canterbury, NZ) 
Mohammed Bennamoun (U. of Western Australia) 
Phil Bones (University of Canterbury, NZ) 
Chris Bowman (Industrial Research Ltd, NZ)  
Roger Browne (Massey University, NZ) 
Chaur-Chin Chen (National Hsing Hua University, 
 Taiwan) 
Chi-Fa Chen (I-Shou University, Taiwan) 
Chia-Yen Chen (University of Auckland, NZ) 
Chen, Sei-Wang (National Taiwan Normal 
 University) 
Hocine Cherifi (University of Bourgogne, France)  
Michael Cree (University of Waikato, NZ) 
Michel Couprie (EISEE, France) 
Patrice Delmas (CITR, NZ)  
Bing Du (Massey University, NZ) 
Ulrichn Eckhardt (U. of Hamburg, Germany)  
Chiou-Shann Fuh (National Taiwan University)  
André  Gagalowicz (INRIA, France)  
Georgy Gimel'farb (University of Auckland, NZ)   
Hideaki Goto (Tohoku University, Japan) 
Peter Gough (University of Canterbury, NZ) 
Richard Green (University of Canterbury, NZ) 
Michael Hayes (University of Canterbury, NZ) 
Volker Hilsenstein (CSIRO Mathematical and 
 Information Sciences, Australia) 
Eunjung Holden (University of Western Australia)  
Fay Huang (CSIE Institute, Taiwan) 
Atsushi Imiya (University of Chiba, Japan) 
Herbert Jahn (Deutsches Zentrum fuer Luft- und 
 Raumfahrt, Germany) 
Jason James (University of Auckland, NZ) 
Yongkyu Kim (South Korea)  
Scott King (Texas A&M University-Corpus Christi, 
 USA) 
Reinhard Klette (CITR, NZ)  
Richard Lane (Applied Research Associates NZ 
 Ltd, NZ)  
Philippe Leclercq (France Telecom R&D, France) 
Wen-Nung Lie (NCCU, Taiwan)  
Frank Luthon (CS Lab. LIUPPA, France) 
Anthony Maeder (e-Health Research Centre / 
 CSIRO, Australia) 
Jorge Marquez (Universitad Nacional Autonoma 
 de Mexico) 
Brendan McCane (University of Otago, NZ) 
Stephen McNeill (Landcare Research, NZ)   
Rick Millane (University of Canterbury, NZ) 
John Morris (CITR, NZ) 
Heather North (Landcare Research, NZ) 

David Pairman (Landcare Research, NZ) 
David Penman (IRL, NZ) 
Edwige Pissaloux (LRP/CEA, France) 
Amal Punchihewa (Massey University, NZ) 
Ralf Reulke (Deutsches Zentrum für Luft-und 
 Raumfahrt, Germany) 
Bodo Rosenhahn (Max-Planck-Centre, 
 Germany) 
Johann Schoonees (IRL, NZ)  
David Squire (Monash University, Australia) 
Antonio Torralba (MIT, USA) 
Robert Valkenburg (IRL, NZ)   
Tiangong Wei (CITR NZ) 
Peter Whigham (University of Otago, NZ)   
Alexander Woodward (CITR NZ)  
Burkhard Wuensche (University of Auckland,
 NZ)    
Mengjie Zhang (Victoria University of 
Wellington, NZ)   
 
 
Organising Committee 
Scientific: Georgy Gimel’farb 
Editing: Jason James 
Financial: Anita Lai 
Admin: Cecilia Lourdes, Heather Armstrong 
Technical: Cliff Hawkins, Robert Carter 
 
 
Sponsors 
Communication and Information 
Technology Research (CITR) 
Control Vision 
Hoare Research Software Ltd (HRS) 
Savant Information Systems 
 
 

Cover Image Credits 
Front Cover 
Kaitoke Beach, Great Barrier Island, New 
Zealand. 
Photograph courtesy of Celine Duwig. 
 
Title Page 
Reconstruction of corrupted images using 
principal component analysis. 
Reference: Joint Outliers and Principal 
Component Analysis Georgy Gimel’farb, 
Alexander Shorin, and Patrice Delmas 
 

iv



Back Cover 
Top row 
3D head and interactively styled hair models. 
Reference: Interactive Styling of Virtual Hair Rui 
Zhang and Burkhard Wünsche 
 
Middle Row (from left to right) 
Kauri Dams on the Kaiaraara Track, Great Barrier 
Island. 
Bridge on the Kaitoke Hot Springs Track, Great 
Barrier Island. 
Photographs courtesy of Patrice Delmas. 
 
Bottom Row 
Stumpy the gnome and a range image generated 
by the University of Waikato Range Imager. 
Reference: The Waikato Range Imager M. J. Cree, 
A. A. Dorrington, R. M. Conroy, A. D. Payne, and 
D. A. Carnegie 

v



 

vi



Table of Contents 
 
Monday 27th November 
Keynote Speaker: 
9:00 – 9:40 
 
 
Posters: 
9:40 – 11:00      Signal / Image Processing 

Parameter Analysis for Mixture of Gaussians Model .....................................................1 
Qi Zang and Reinhard Klette 

 
Performance Evaluation of Accurate Ellipse Fitting .......................................................7 
Kenichi Kanatani 

 
Rectifying Images for Stereo Vision .............................................................................13 
Y. Lin, A. Woodward, D. An, J. Morris, P. Delmas, and G. Gimel’farb 

 
An Image Data Hiding Scheme being Perfectly Imperceptible to Histogram  
Attacks..........................................................................................................................19 
Hung-Min Sun, Yao-Hsin Chen, and King-Hang Wang 

 
Chromatic Variance Prediction.....................................................................................25 
Robert N. Grant and Richard D. Green 

 
Near optimal non-uniform interpolation for image super-resolution from multiple  
Images..........................................................................................................................31 
A. Gilman and D.G. Bailey 

 
Storing and Accessing Large Images using Summed Area Tables.............................37 
Volker Hilsenstein 

 
A comparison of noise in CCD and CMOS image sensors..........................................43 
K. Irie, A. E. McKinnon, K. Unsworth, and I. M. Woodhead 

 
Pros and Cons of the Nonlinear LUX Color Transform for Wireless Transmission  
with Motion JPEG2000.................................................................................................49 
T. Totozafiny, F. Luthon, and O. Patrouix 

 
Moment-based Local Descriptor using Scale Invariant Keypoints...............................55 
Jae-Sun Han, Gwang-Gook Lee, and Whoi-Yul Kim 

 
A Hybrid Approach to Man-Made Structure Extraction from Natural Scenes ..............61 
Hang Zhou, David Suter, and Konrad Schindler 

 
Accelerating calibrated stereo correspondence through concurrent processing .........67 
Nathan Adams and Richard Green 

 
Local Texture Patches for Active Appearance Models ................................................73 
N. Faggian, A. P. Paplinski, and J. Sherrah 

 
 
 
Oral:         
11:00 – 13:00     Signal / Image Processing  

Modified Kalman Filtering for Image Super-Resolution ...............................................79 
C. Newland, D. Gray, and D. Gibbins 

vii



 
Affine Normalized Contour Invariants using Independent Component Analysis  
and Dyadic Wavelet Transform....................................................................................85 
Asad Ali and S. A. M. Gilani 
 
VQ-Based Data Hiding in Images by Minimum Spanning Tree ...................................91 
Hung-Min Sun, King-Hang Wang, Hou-Wen Wang,and  Chia-Yen Chen 
 
Morphology-based Stable Salient Regions Detector ...................................................97 
E. Ranguelova and E. J. Pauwels 
 
A study of 3rd and 4th order Tikhonov smoothing term influence on the  
convergence of active contours..................................................................................103 
Moqing Zhang and Patrice Delmas 
 
Iterative Target Calibration Using Conformal Geometric Algebra..............................109 
Robert J. Valkenburg, Nawar S. Alwesh, Yilan Zhao, and Reinhard Klette 

 
Oral:         
13:40 – 15:20     Security 

Fingerprint Matching using Enhanced Shape Context...............................................115 
Paul W.H. Kwan, Junbin Gao, and Yi Guo 
 
Towards real time difference imaging in the far blue (390-440 nm)...........................121 
G. M. Miskelly, and J. H. Wagner 
 
Watermarking on 3D Model........................................................................................127 
Chia-Yen Chen and Chi-Fa Chen 
 
License Plate Detection and Classification using a Space Displacement Neural 
Network ......................................................................................................................133 
M. Johnson, A. Barczak, and S. Russell 
 
Multiscale Contrast Patterns for Image Tamper Detection ........................................137 
M. K. Bashar, N. Ohnishi, H. Kudo, T. Matsumoto, and Y. Takeuchi 

 
Posters: 
15:20 – 16:40     Visualisation and Graphics 

Interactive Styling of Virtual Hair ................................................................................143 
Rui Zhang and Burkhard Wünsche 
 
Classification of 3D LIDAR Point Clouds for Urban Modelling...................................149 
E. H. Lim and D. Suter 
 
Real-Time Interaction Techniques for Meshless Deformation Based on Shape 
Matching .....................................................................................................................155 
Alex Henriques and Burkhard Wünsche 
 
Terrain Reconstruction using LADAR and Optical Sensor Data from an  
Unmanned Air Vehicle................................................................................................161 
D. Gibbins, L. Swierkowski, P. Roberts, and A. Finn 
 
Image processing of cryo-electron micrographs of helical crystals - 3D  
architecture of a novel bacterial appendage ..............................................................167 
J. Li, S. Manning, S. Turner, M. Kikkawa, and A. K. Mitra 

 
Public Interactive Display Using Front-projection and Infrared-pass Filter Camera ..173 
Cheng-Tse Chu, Dandi Duan, and Richard Green 

 

viii



Simulation of multi-polarisation SAR imagery ............................................................179 
S. J. McNeill, D. Pairman, H. C. North, S. E. Belliss 

 
Extracting Surface Curvature from Noisy Scan Data.................................................185 
J. Rugis 

 
Occlusion Removal in Image for 3D Urban Modelling ...............................................191 
E. H. Lim and D. Suter 
 
Modelling Interactions with a Computer Representation of the Upper  
Gastrointestinal System .............................................................................................197 
Gastélum Alfonso and Márquez Jorge 
 
Acquiring Visual Hulls by Voxels................................................................................203 
Yu-xuan HONG and Richard Green 
 
Simulation of Medical Imaging Modalities - A Tool for Numerical Evaluation of  
Image Processing Algorithms.....................................................................................209 
F. Uhlemann 
 
Analysis of Differential Interference Contrast Microscopy Images of the Retina .......215 
D. H. Wojtas, B. Wu, P. Wenig, P. K. Ahnelt, P. J. Bones, and R. P. Millane 
 
ROBPCA-SIFT: a feature point extraction method for the consistent with  
epipolar geometry in endoscopic images...................................................................221 
J. S. Oh, H. C. Kim, J. M. Koo, J. S. Yu, T. H. Kang, J. D. Lee, and M. G. Kim 
 
Towards nuclear phenotype recognition in single channel fluorescence  
microscopy images.....................................................................................................227 
I. Sintorn, L. Bischof, R. Lagerstrom, M. Buckley, and A. Hoffman 

 
Oral:         
16:40 – 18:00     3D 

The Waikato Range Imager .......................................................................................233 
M. J. Cree, A. A. Dorrington, R. M. Conroy, A. D. Payne, and D. A. Carnegie 
 
Digital Speckle Photogrammetry................................................................................239 
Yizhe Lin, John Morris, Quentin Govignon, and Simon Bickerton 
 
Interactive Hand-held 3D Scanning ...........................................................................245 
R. J. Valkenburg, D. W. Penman, J. A. Schoonees, N. S. Alwesh, and G. T. Palmer 
 
3D Visualisation Techniques for Multi-Layer Display™ Technology..........................251 
Vijay Prema, Gary Roberts, and Burkhard Wünsche 
 
SRICP: An Algorithm for Matching Semi-Rigid Three-Dimensional Surfaces ...........257 
Ajmal Mian, Mohammed Bennamoun, and Robyn Owens 

 
 
Tuesday 28th November 
Keynote Speaker: 
9:00 – 9:40 
 
Posters: 
9:40 – 11:00      Applications 

Objective Colour Measurement of Tomatoes and Limes...........................................263 
H. M. W. Bunnik, D. G. Bailey, and A. J. Mawson 
 

ix



Athlete Performance Video Overlay...........................................................................269 
S. Sarjeant and R. Green 
 
Image Processing of Meat Images for Visible/Near Infrared Spectroscopy  
Reference...................................................................................................................275 
Lee Streeter, G. Robert Burling-Claridge, and Michael J. Cree 
 
Quality Assessment of Retinal Images ......................................................................281 
Y. Kwon, A. Bainbridge-Smith, and A. B. Morris 

 
Results of a multiple-baseline interferometric synthetic aperture sonar in shallow  
Water ..........................................................................................................................287 
M. P. Hayes 
 
Monocular tracking of swimmers from a stationary viewpoint....................................293 
C. P. Huynh and R. Green 
 
Accounting for User Familiarity in User Interfaces.....................................................299 
C. A. D’H Gough, R. Green, and M. Billinghurst 
 
Image Denoising Using a New Line-Field ..................................................................305 
Ngoc-Thuy Le and Kah-Bin Lim 
 
Augmenting Sports Grounds with Advertisement Replacement ................................311 
D. K. Barrow and R. Green 
 
A Hybrid Approach for Tracking Eye Pupils ...............................................................319 
M. Schoo and R. Green 

 
Oral:         
11:00 – 13:00     Bio-Medical Imaging 

Ultrasound Image Segmentation With Multilayer Perceptron-Based Level Sets.......325 
M. Mora, C. Tauber, and H. Batatia 
 
An Automated System for Microscopy Imaging andAnalysis of Histology Slides  
with an Application in Sheep Meat Morphometry.......................................................331 
V. Hilsenstein, P. Jackway, and P. Allingham 
 
Morphological Averaging of Anatomical Shapes Using Three-Dimensional  
Distance Transforms ..................................................................................................337 
Márquez Jorge, Patrice Delmas, Isabelle Bloch, and Francis Schmitt 
 
Image Analysis and Modelling of Disorder in the Myosin Lattice of Vertebrate  
Muscle ........................................................................................................................343 
C. H. Yoon, N. D. Blakeley, A. Goyal, and R. P. Millane 
 
Vision based Human Activity Detection for Eldercare and Security...........................349 
Nigel Pereira, Liyanage C. De Silva, and Amal Punchihewa 
 
Automatic Recognition of Light-Microscope Pollen Images.......................................355 
G. P. Allen, R. M. Hodgson, S. R. Marsland, G. Arnold, R. C. Flemmer, J. Flenley,  
and D. W. Fountain 

 
 
 
 
 
 

x



Wednesday 29th November 
Keynote Speaker: 
9:00 – 9:40 
 
Posters: 
9:40 – 11:00      Recognition and Detection 

Tracking Articulated Objects using Improved Particle Filters.....................................361 
Martin Tosas and Li Bai 
 
Detection and Removal of Global and Local Noise in Realtime Video Streams........367 
A. Clark and R. Green 
 
Matching Moving Objects by Parts with a Maximum Likelihood Criterion..................373 
Eric Dahai Cheng and Massimo Piccardi 
 
Semi-supervised Silhouette Detection for Thermal Imaging......................................379 
Surya Prakash and Antonio Robles-Kelly 
 
A simple and efficient eye detection method in color images ....................................385 
D. Sidibe, P. Montesinos, and S. Janaqi 
 
Access Control with Session Based Face Tracking...................................................391 
Amadeus Rainbow and Richard Green 
 
A New Rapid Feature Extraction Method for Computer Vision based on Moments ..395 
A. L. C. Barczak and M. J. Johnson 
 
A Robust Efficient Motion Segmentation Algorithm ...................................................401 
Hongzhi Gao and Richard Green 
 
Camera Egomotion Tracking using Markers..............................................................407 
Brendon Kelly and Richard Green 
 
Fast and Adaptive Block-based Motion Estimation for Video Coding........................413 
G. Sorwar and M. Murshed 
 
A Simple Model-Free Approach to Posture Recognition ...........................................419 
R. Raghavan, K. C. Aw, S. Xie 
 
Genetic Programming for Object Detection ...............................................................425 
Mengjie Zhang, Urvesh Bhowan,and  Bunna Ny 
 
Object Indexing and Recognition ...............................................................................431 
F. Souami and S. Aouat  

 
 
 
Oral:         
11:00 – 13:00     Motion / Image Processing 

Detection of Cirrus Streak Utilizing Cloud Shape and Movement..............................437 
H. Ikeda, R. Saegusa, and S. Hashimoto 
 
Region-based MRF Model for Moving Object Segmentation.....................................443 
S. K. Hwang and W. Y. Kim 
 
Structured Combination of Particle Filter and Kernel Mean Shift Tracking................449 
A. Naeem, S. Mills, and T. Pridmore 
 

xi



Image Segmentation Using an Active Contour Model ...............................................455 
Byeong Rae Lee, YongKyu Kim, and Hyunchul Kang 
 
Joint Outliers and Principal Component Analysis ......................................................461 
Georgy Gimel’farb, Alexander Shorin, and Patrice Delmas 
 
Integrated Test Pattern Generator and Measurement Algorithm for Colour 
Compression Artefacts in Ubiquitous Colour Spaces ................................................467 
G. A. D. Punchihewa, D. G. Bailey, and R. M. Hodgson 

 
Oral:         
13:40 – 15:20     Stereo 

3D Reconstruction from an Uncalibrated Long Image Sequence..............................473 
T. Osawa, I. Miyagawa, K. Wakabayashi, K. Arakawa, and T. Yasuno 
 
Stereo Vision: Concurrent Matching vs Optimisation.................................................479 
Georgy Gimel’farb, John Morris, Patrice Delmas, and Jiang Liu 
 
Image Intensifier Characterisation .............................................................................487 
A. D. Payne, A. A. Dorrington, M. J. Cree, and D. A. Carnegie 
 
Noise Models for Symmetric Dynamic Programming Stereo.....................................493 
Zhen Zhou, Georgy Gimel’farb, and John Morris 
 

Oral:         
15:20 – 17:00     Applications 

Tracking iris surface deformation using Elastic Graph Matching ...............................499 
Sammy S. S. Phang, Wageeh Boles, and Michael J. Collins 

 
Perceptually Correct Image Space Soft Shadows .....................................................505 
R. Rountree, R. Rayudu and D. Brebner 
 
Hardware implementation of the Maximum Subarray Algorithm for Centroid  
Estimation...................................................................................................................511 
S. J. Weddell and B. N. Langford 
 
A study on GPU implementation of March’s regularization method for optical flow 
computation................................................................................................................517 
Yoshiki Mizukami and Katsumi Tadamura 
 
 Determination of Average Wind Velocity using Generalised SCIDAR.......................523 
J. L. Mohr, R. A. Johnston, C. C. Worley, and P. L. Cottrell 
 

 
 

xii



Parameter Analysis for Mixture of Gaussians Model
Qi Zang and Reinhard Klette

Department of Computer Science, Tamaki Campus, The University of Auckland
Auckland, New Zealand

Email: qzan001@ec.auckland.ac.nz

Abstract
Background subtraction is one of the main techniques to extract moving objects from background scenes. A
mixture of Gaussians is a common model for background subtraction. There are several parameters involved in
such a model. Obviously, the assignment of initial values to these parameters affects the accuracy of background
subtraction. In this paper, we analyze in detail the impact of different initial parameter values based on our model
implementation. Both indoor and outdoor video sequences have been tested. This parameter value analysis
provides suggestions how to choose suitable initial parameter values, assign reasonable thresholds which ensure
better results, while using a mixture of Gaussians model in video surveillance applications.

Keywords: mixture of Gaussians model, parameter analysis, video surveillance

1 Introduction

The mixture of Gaussians model (MOGS) became in-
creasingly popular in image sequence analysis due to
its robustness and stability [3][4]:

1. MOGS characterize static scenes.
A common example is the paper [9] by Stauffer
and Grimson which models each background
pixel’s distribution using a mixture of Gaussians
model; this model allowed (for example) to
monitor continuously a university campus. It
learns patterns of activities at a given site, then
monitors and classifies activities based on these
learned patterns. The system provides statistical
descriptions of typical activity patterns despite of
rainy, snowy, or sunny weather.

2. MOGS characterize object colors or object
trajectories.
For examples of applications of mixture of
Gaussians model for modelling object colors or
tracking of a moving object, see papers [6, 7] by
Raja et al. Gaussians mixture models were used
to estimate probability densities of the color of
human skin, clothing, and background. These
models were used to detect, track, and segment
people, faces, or hands [8].

Further mixture of Gaussians model applications are to
model noise distributions or shaded areas [2]. Paper
[2] presents a method for detecting moving object shad-
ows against a static background scene using a Gaussian
shadow model. The chosen shadow model is parame-
terized with several features including the orientation,
mean and center position of a shadow region. Using

a mixture of Gaussians model to characterize moving
objects also allows to deal with partial occlusions (but
often in a time-consuming way).

In this paper we use a mixture of Gaussians model for
modelling static background scenes. We present our
results of implementing a mixture of Gaussians model
based on both indoor and outdoor video sequences. A
detailed analysis of assigning different values to the pa-
rameters in a mixture of Gaussians model is presented.
These experimental results provide some guidelines for
the selection of different parameter values.

2 Related work

An important property of Gaussian distributions is that
they still remain Gaussian distributions after any linear
transformation. This property is one of the reasons
that the Gaussian models are very commonly used for
solving estimation problems [1]. Gaussian models are
widely used in adaptive systems. Especially in video
surveillance applications, normally a Gaussian distri-
bution is assumed in order to make the system adaptive
to uncontrolled changes like in illumination, outdoor
weather, color changes, and so on.

A Gaussian mixture is a pdf (i.e., point distribution
function) consisting of a weighted sum of Gaussian
densities [1]. The Gaussian mixture model belongs
to a class of density models which combine several
functions as additive components.

Let Xt be the variable which represents the current
pixel in frame It, K is the number of distributions, and
t represents time (i.e., the frame index), ωi,t is an esti-
mate of the weight of the ith Gaussian in the mixture at
time t, η is a Gaussian probability density function, μi,t

1



is the mean value of the ith Gaussian in the mixture at
time t, Σi,t is the covariance matrix of the ith Gaussian
in the mixture at time t. These functions are combined
together to provide a combined density function, which
can be employed, for example, to model colors of a
dynamic scene or object. Probabilities are computed
for each color pixel while a model is constructed.

A Gaussian mixture model can be formulated in gen-
eral as follows:

P (Xt) =
K

∑

i=1

ωi,tη(Xt;μi,t,Σi,t) (1)

where, obviously,

K
∑

i=1

ωi,t = 1 (2)

The mean of such a mixture equals

μt =
K

∑

i=1

ωi,tμi,t (3)

that is, the weighted sum of the means of the compo-
nent densities.

For example, papers [5, 6, 7] are all based on using the
Gaussian mixture model. In [7], a number of Gaussian
functions are taken as an approximation of a multi-
model distribution in color space, and conditional prob-
abilities are computed for all color pixels, probabil-
ity densities are estimated from the background colors,
and peoples’ clothing, heads, hands, and so forth. Two
assumptions are made, one is that a person of interest
in an image will form a spatially contiguous region in
the image plane. Another is that the set of colors for
either the person or the background are relatively dis-
tinct, the pixels belonging to the person may be treated
as a statistical distribution in the image plane.

An adaptive technique based on the Gaussian mixture
model is discussed in [9] for the tracker module of a
video surveillance system. This technique is to model
each background pixel as a mixture of Gaussians. The
Gaussians are evaluated using a simple heuristics to hy-
pothesize which are most likely to be part of the “back-
ground process”. Each pixel is modelled by a mixture
of K Gaussians as stated in Equation (1), where K is
the number of distributions. Normally, K equals 3, 4
or 5 in practice. Every new pixel value Xt is checked
against the existing K Gaussian distributions until a
match is found. Based on the matching results, the
background is updated as follows:

Xt matches component i if Xt is within 2.5 standard
deviation of this distribution (multiple matches are pos-
sible); in case of such a match, the parameters of the ith
component are updated as follows:

ωi,t = (1 − α)ωi,t−1 + α (4)

μi,t = (1 − ρ)μi,t−1 + ρXt (5)

σ2
i,t = (1 − ρ)σ2

i,t−1 (6)

+ρ(Xt − μi,t)T(Xt − μi,t)

where ρ = αP(Xt|μi,t−1,Σi,t−1). α is the predefined
learning parameter, σ2

i,t is the variance of the ith Gaus-
sian in the mixture at time t, μt is the mean of the pixel
at time t, Xt is (as above) the recent pixel at time t.

The parameters for all the unmatched distributions re-
main unchanged, what means that

μi,t = μi,t−1 and (7)

σ2
i,t = σ2

i,t−1 (8)

But the corresponding weights ωi,t need to be adjusted
using the formula:

ωi,t = (1 − α)ωi,t−1 (9)

If Xt matches none of the K distributions, then the
least probable distribution (i.e., the distribution with
the lowest weight) is replaced by a distribution where
the current value acts as its mean value, the variance
is chosen to be “high” and the a-priori weight is “low”
[9].

The background estimation problem is solved by
specifying the Gaussian distributions, which have
the most supporting evidence and the least variance.
Because the moving object has larger variance than a
background pixel, so in order to represent background
processes, first the Gaussians are ordered by the value
of ωi,t/‖Σi,t‖ in decreasing order. The background
distribution stays on top with the lowest variance by
applying a threshold T , where

B = argminb

(

∑b
i=1 ωi,t

∑K
i=1 ωi,t

> T

)

(10)

(Note that the denominator is supposed to be equal to 1
in case of proper normalization.) All pixels Xt which
do not match any of these components will be marked
as foreground.

3 Analysis of parameter values

Threshold T is to define the fraction between back-
ground distribution and foreground distribution. This
value is based on the background scene and the number
of components in the Gaussian mixture model. We can
obtain it from a testing procedure before starting the
real application system. A small value of T (say, T =
0.1) will lead to a situation, in which not all background
distribution is covered; a large T value (say, T = 0.9)
will lead to a situation in which the foreground distri-
bution is “merging” with the background distribution.
The T value we used in our program equals 0.79. We
will analyze other parameter values in the following.
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3.1 Number of components

K denotes the number of components in a Gaussian
mixture model. For simple indoor scenes, a small value
ofK is sufficient, perhapsK = 2; for outdoor complex
scenes, a larger K is needed, usually 3, 4, or 5.

Figure 1 presents our indoor testing results without re-
moving noise. The values we assigned to K are from
1 to 5. Figure 1 illustrates our general experience that
adding more components in a Gaussian mixture model
does not help in improving the quality of the extracted
foreground region. On the contrary, the quality of the
extracted foreground region even decreased forK > 1.
This is because although more components can model
more distributions, indoor simple scenes are often not
characterized by complex changes, and updating com-
ponents of the model causes more noise. Figure 1 illus-
trates that K = 1 or K = 2 appears here to be the best
choice.

Figure 1: Top left: an original image of a captured
sequence. Top right: result for K = 1. Middle left:
K = 2. Middle right: K = 3. Bottom left: K = 4.
Bottom right: K = 5.

In complex outdoor scenes, assigningK = 1 orK = 2
is typically insufficient. For example, we also tested
on a winter traffic sequence (uncommon to Auckland)
which involves bad weather, snow, and wind. In order
to control the movement of snow, waving leaves, and so
forth, we defined pixels with values within 4 times stan-
dard deviation to be background. K is set to 3. Figure
2 illustrates that, although most small movement of tree
leaves and snow are controlled, foreground regions of
walking people are missing. The extracted foreground
regions are not clear, because vehicles are not running
as fast as they normally would on a highway without

Figure 2: Top left: an original image of the sequence.
Top right: result for K = 3. Bottom left: K = 4.
Bottom right: K = 5.

snow. We increased the value of K to 4 and 5. The
quality of the extracted regions improved.

3.2 Learning rate α

There are two learning rates defined in [9]: one is the
predefined learning rate α, the other is the calculated
learning rate ρ. ρ is used as a second filter in [9]. As
we already summarized in [10], using ρ as a second
learning rate is not helpful. We tried using ρ with a
very small value, say, less than 10−5. The increase
in computation time is costly. In general, assume that
the computation time of using one learning rate α is
m seconds; then the computation time of using two
learning rates α and ρ was greater than 2m seconds.

Figure 3: Top left: an original image of the sequence.
Top right: result for α = 0.1. Bottom left: α = 0.01.
Bottom right: α = 0.5.

In conclusion, we used one learning rate α only. How
to assign a reasonable value to α will depend on the
given background scenery. A slowly changing back-
ground scene needs a small learning rate, a fast chang-
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ing background scene needs a larger learning rate. The
value α can be obtained from a testing sequence. Here
we present an example of using different α values for
indoor testing data, see Figure 3. The results in Figure
3 are background estimation before removing noise.
Figure 3 illustrates that using value α = 0.1 is the best
choice for the illustrated cases.

3.3 Assigning initial values

There is an initialization procedure when starting
the surveillance system. Assigning different initial
values in this procedure will affect the extraction of
foreground regions. There are two values that need
initial consideration: mean and standard deviation. We
will discuss them separately.

Regarding the mean value, from our testing sequences
we conclude that assigning either a very large value or
a very small value can be considered to be of bene-
fit. Figure 4 shows test results without removing noise.
Increasing the mean value from zero to 50 does not
impact the extraction of the walking person (as fore-
ground region) very much, and this was experienced
for various scenes. In the shown example, the result
improved for value 100, but this is not standard for
complex backgrounds, and results often were less satis-
factory for mean around 100, compared to means below
50. (There are possibilities that the foreground region
will be misclassified as the background region.) Large
mean values, such as 355 or -999, also proved to be
more robust.

Figure 4: Top left: an original image of the sequence.
Top right: result for mean = 0. Middle left: mean
= 50. Middle right: mean = 100. Bottom left: mean
= 355. Bottom right: mean = −999.

Figure 5: Top left : an original image of the sequence.
Top right: result for standard deviation = 0. Bottom
left: standard deviation = 100. Bottom right: standard
deviation = 350.

In the initialization procedure, we assign in general
a very large value to the standard deviation based
on our experiments. Figure 5 shows testing results
again for the standard sequence used in this paper
(without removing noise): for standard deviation
equals zero (as an extreme value), many background
pixels are misclassified as foreground region even for
this simple background. Standard deviation values
between 100 and 350 are recommended. In general,
using a small value of the standard deviation causes
that background pixels are too often classified as
foreground distribution.

There are other options to assign a value to the stan-
dard deviation. The least probable distribution will be
replaced if the current pixel does not match with any
of the existing distributions. The mean value will be
replaced using the current pixel value. The standard
deviation value needs to be large. Figure 6 shows test
results without removing noise. If assigning the stan-
dard deviation value to 2, then almost the whole scene
is classified as being foreground. This is because pix-
els with lower values of the standard deviation will be
easily classified into the foreground distribution. The
middle row of Figure 6 are results of assigning stan-
dard deviation values to 12 and 42, respectively. The
extracted foreground regions improve in these cases. If
assigning standard deviation values between 112 and
212, then part of the foreground region pixels are mis-
classified as background. This is because the newly
appearing pixels will be misclassified in the distribution
which has a high variance, taking too long to update the
variance value to its real value. Distributions with high
weighting values tend to be classified as background.

4 Conclusions

The Gaussian mixture models are a type of density
models which are composed of a number of
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Figure 6: Top left: an original image of the sequence.
Top right: result for standard deviation = 2. Middle
left: standard deviation = 12. Middle right: standard
deviation = 42. Bottom left: standard deviation = 112.
Bottom right: standard deviation = 212.

components (functions). These functions can be
used to model the colors of objects or backgrounds
in a scene. This allows color-based object tracking
and background segmentation. Adaptive Gaussian
distributions are applicable for modelling changes,
especially when related to fast moving objects such as
vehicles on a highway.

The usage of Gaussian distributions has to be based on
the application context. It can provide analysis results
for long duration scenes (e.g., a surveillance system
that monitors a car park or a campus day and night).
It is also quite suitable for complex scenes or multi-
colored objects. For outdoor scenes, different weather
is taken into account. The Gaussian mixture model
allows us to adapt to weather changes, such as from
rain to snow, from cloudy to sunny, and so forth. Small
movements in scenes like waving trees can also be han-
dled. For simple indoor scenes or objects which ap-
pear to be monocolored, a small number of components
in a Gaussian mixture model is suggested, say one or
two components. For outdoor complex scenes, a larger
number of components in a Gaussian mixture model
is suggested, say starting with 3, but not extending 5
(very much). The maximum number is important if
care has to be taken about computation time and system
efficiency. In general, more components do have the
potential for further improvement.

Of course, how to assign suitable values to parameters
during an initialization period will also depend on spe-
cific applications. Values of parameters and other suit-

able initial values can be obtained during a pre-testing
procedure. The higher the number of components of
a mixture model, the better the results for a complex
scene, but the computation time increases. Assigning
a very small value to the learning rate will avoid that
a slowly moving and large object melts into the back-
ground, but will affect the system’s adaptation. One
needs to balance out all these conditions according to
different applications and environments.

References

[1] Y. Bar-Shalom and X. R. Li. Estimation and
Tracking: Principles, Techniques, and Soft-
ware. Artech House, Boston, 1993.

[2] C. J. Chang, W. F. Hu, J. W. Hsieh, and
Y. S. Chen. Shadow elimination for effective
moving object detection with Gaussian models.
In Proc. Int. Conf. Pattern Recognition, 2: 540–
543, 2002.

[3] S. S. Cheung and C. Kamath: Robust tech-
niques for background subtraction in urban
traffic video. In Proc. Electronic Imaging: Vi-
sual Comm. Image Proc., 881–892, 2004.

[4] D. S. Lee: Effective Gaussian mixture learning
for video background subtraction. IEEE Trans.
Pattern Analysis Machine Intelligence, 27(5):
827–832, 2005.

[5] S. J. McKenna, Y. Raja, and S. Gong. Object
tracking using adaptive color mixture models.
In Proc. Asian Conf. Computer Vision, 615–
622, 1998.

[6] Y. Raja, S. J. McKenna, and S. Gong. Tracking
color objects using adaptive mixture models. In
Proc. Image Vision Computing, 17: 225–231,
1999.

[7] Y. Raja, S. J. McKenna, and S. Gong. Track-
ing and segmenting people in varying lighting
conditions using color. In Proc. IEEE Int. Conf.
Automatic Face Gesture Recognition, 228–233,
1998.

[8] K. She, G. Bebis, H. Gu, and R. Miller: Vehicle
tracking using on-line fusion of color and shape
features. In Proc. IEEE Int. Conf. Intelligent
Transportation Systems, 16: 731–736, 2004.

[9] C. Stauffer and W. E. L. Grimson. Adap-
tive background mixture models for real-time
tracking. In Proc. Computer Vision and Pattern
Recognition, 2: 246–252, 1999.

[10] Q. Zang and R. Klette. Evaluation of an
adaptive composite Gaussian model in video
surveillance. In Proc. Image Vision Computing
New Zealand, 243–248, 2002.

5



 

6



Performance Evaluation of Accurate Ellipse Fitting
Kenichi Kanatani

Department of Computer Science, Okayama University, Okayama, 700-8530 Japan.
Email: kanatani@suri.it.okayama-u.ac.jp

Abstract
This paper studies numerical schemes for fitting an ellipse to points in an image. First, the problem
is posed as maximum likelihood, and the relationship to the KCR lower bound is stated. Then, the
algorithms of FNS, HEIV, renormalization, and Gauss-Newton iterations are described. Using simulated
and real image data, their convergence properties are compared, and their dependence on the shape of
the arc to which an ellipse is to be fitted is revealed.
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1 Introduction

Circular objects in the scene are generally pro-
jected onto ellipses on the image plane, and their
3-D positions can be computed from their images
[6]. For this reason, fitting ellipses to a point se-
quence is one of the first steps of various vision ap-
plications. In this paper, we concentrate on numer-
ical aspects, assuming that outliers have already
been removed, e.g., by the procedure described in
[10].

Various algebraic fitting methods were proposed in
the past [1, 13, 15, 16], but Kanatani [8] pointed
out that ellipse fitting can be regarded as statisti-
cal estimation and that maximum likelihood (ML)
produces an optimal solution. Since then, many
numerical schemes have been proposed, e.g., FNS
[4], the HEIV [14], and Gauss-Newton iterations
[11]. These methods attain a theoretical accuracy
bound (KCR lower bound [3, 8]) up to high order
terms in noise. Kanatani’s renormalization [7, 8,
12] also computes a solution nearly equivalent to
them [9].

All these methods are iterative, and the
convergence properties are different from method
to method. The purpose of this paper is
to experimentally compare their convergence
behavior.

2 Ellipse Fitting

An ellipse is represented by

Ax2+2Bxy+Cy2+2f0(Dx+Ey)+Ff2
0 = 0, (1)

where f0 is an arbitrary scaling constant1. If we
define

1In our experiments, we set f0 = 600. This is to make
the coefficients have approximately the same magnitude for
numerical stability. Theoretically, we can set f0 = 1.

u = (A,B, C,D, E, F )>, (2)
ξ = (x2, 2xy, y2, 2f0x, 2f0y, f2

0 )>, (3)

Eq. (1) is written as

(u, ξ) = 0. (4)

Throughout this paper, we denote the inner prod-
uct of vectors a and b by (a, b). Since the mag-
nitude of the vector u is indeterminate, we adopt
normalization ‖u‖ = 1.

Eq. (1) describes not necessarily an ellipse but also
a parabola, a hyperbola, and their degeneracies
(e.g., two lines) [6]. Even if the points (xα, yα) are
sampled from an ellipse, the fitted equation may
define a hyperbola or other curves in the presence
of large noise, and a technique for preventing this
has been proposed [13]. Here, however, we do
not impose any constraints, assuming that noise
is sufficiently small.

3 KCR Lower Bound

We write the data ξα in the form ξα = ξ̄α + ∆ξα,
where ξ̄α is the true value and ∆ξα the noise term.
We define the covariance matrix of ξα by

V [ξα] = E[∆ξα∆ξ>α ], (5)

where E[ · ] denotes expectation over the noise dis-
tribution. If random noise of mean 0 and standard
deviation σ is independently added to each coor-
dinate of the points in the image, we can see from
Eq. (3) that the covariance matrix V [ξα] has the
form 4σ2V0[ξα] except for O(σ4), where V0[ξα] is




x̄2
α x̄αȳα 0 f0x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα f0ȳα f0x̄α 0
0 x̄αȳα ȳ2

α 0 f0ȳα 0
f0x̄α f0ȳα 0 f2

0 0 0
0 f0x̄α f0ȳα 0 f2

0 0
0 0 0 0 0 0




. (6)

7



Here, (x̄α, ȳα) is the true position of point (xα, yα).
In actual computations, (x̄α, ȳα) is approximated2

by the data position (xα, yα).

We define the covariance matrix V [û] of an esti-
mate û by

V [û] = E[(P uû)(P uû)>], (7)

where P u is the projection matrix

P u = I − uu>, (8)

which projects û onto the hyperplane orthogonal
to u (I denotes the unit matrix). Since the pa-
rameter vector u is normalized to unit norm, its
domain is the unit sphere S5 in R6. We focus on
the asymptotic limit of small noise and evaluate
the error after projecting û onto the tangent space
to S5 at u [8].

Kanatani [8, 9] proved that if ξα is regarded as an
independent Gaussian random variable of mean ξ̄α

and covariance matrix V [ξα], the following inequal-
ity holds for an arbitrary unbiased estimator û of
u:

V [û] Â 4σ2
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
5

. (9)

Here, Â means that the left-hand side minus the
right is positive semidefinite, and ( · )−r means pseu-
doinverse of rank r.

Chernov and Lesort [3] called the right-hand side
of Eq. (9) the KCR (Kanatani-Cramer-Rao) lower
bound and showed that it holds except for terms
of O(σ4) even if û is not unbiased; it is sufficient
that û is “consistent” in the sense that û → u as
σ → 0.

4 Maximum Likelihood (ML)

Maximum likelihood (ML) under Gaussian noise
assumption is to minimize the sum of squared Ma-
halanobis distances

J =
1
2

N∑
α=1

(ξα − ξ̄α, V0[ξα]−2 (ξα − ξ̄α)), (10)

subject to the constraints (u, ξ̄α) = 0, α = 1, ...,
N . Eliminating the constraints by introducing La-
grange multiplies, we can write Eq. (10) as follows
[8, 9]:

J =
1
2

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (11)

It can be shown that the covariance matrix V [û]
of the resulting estimator û agrees with the KCR
lower bound except for terms of O(σ4) [8, 9].

2We have confirmed that this does not cause any notice-
able changes in the final results.

Eq. (11) is minimized by solving

∇uJ =
N∑

α=1

(u, ξα)ξα

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]u
(u, V0[ξα]u)2

= (M −L)u = 0, (12)

where the 6× 6 matrices M and N are defined by

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, (13)

L =
N∑

α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (14)

FNS

The FNS (fundamental numerical scheme) of Cho-
jnacki et al. [4] solves Eq. (12) by the following
iterations:

1. Initialize u.
2. Compute the matrices M and L in Eqs. (13)

and (14).
3. Solve the eigenvalue problem

(M −L)u′ = λu′, (15)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If u′ ≈ u except for sign, return u′ and stop.
Else, let u ← u′ and go back to Step 2.

Later, Chojnacki et al. [5] pointed out that conver-
gence performance improves if we choose in Step 3
not the eigenvalue closest to 0 but the smallest one.
We call the above procedure the original FNS and
the one using the smallest eigenvalue the modified
FNS .

Whichever eigenvalue is chosen for λ, we have λ =
0 after convergence. In fact, convergence means

(M −L)u = λu (16)

for some u. Computing the inner product with u
on both sides, we have

(u,Mu)− (u, Lu) = λ. (17)

On the other hand, Eqs. (13) and (14) imply that
(u,Mu) = (u, Lu) identically, meaning λ = 0.

HEIV

Let

ξα =
(

zα

f2
0

)
, u =

(
v
F

)
, (18)

V0[ξα] =
(

V0[zα] 0
0> 0

)
. (19)
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Define 5× 5 matrices M̃ and L̃ by

M̃ =
N∑

α=1

z̃αz̃>α
(v, V0[zα]v)

, (20)

L̃ =
N∑

α=1

(v, z̃α)2V0[zα]
(v, V0[zα]v)2

, (21)

where we put

z̃α = zα − z̄, (22)

z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (23)

Then, Eq. (12) splits into the following two equa-
tions [5]:

M̃v = L̃v, (v, z̄) + f2
0 F = 0. (24)

If we determine a 5-D unit vector v that satisfies
the first equation, the value of F is determined
from the second, and we obtain u in the form

u = N [
(

v
F

)
], (25)

where N [ · ] denotes normalization to unit norm.
The HEIV (heteroscedastic errors-in-variables)
method of Leedan and Meer [14] computes the
vector v by the following iterations:

1. Initialize v.
2. Compute the matrices M̃ and L̃ in Eqs. (20)

and (21).
3. Solve the generalized eigenvalue problem

M̃v′ = λL̃v′, (26)

and compute the unit eigenvector v′ for the
eigenvalue λ closest to 1.

4. If v′ ≈ v except for sign, return v′ and stop.
Else, let v ← v′ and go back to Step 2.

However, Leedan and Meer [14] pointed out that
choosing in Step 3 not the eigenvalue closest to 1
but the smallest one improves the convergence per-
formance. We call the above procedure the original
HEIV and the one using the smallest eigenvalue
the modified HEIV .

Whichever eigenvalue is chosen for λ, we have λ =
1 after convergence. In fact, convergence means

M̃v = λL̃v (27)

for some v. Computing the inner product with v
on both sides, we have

(v, M̃v) = λ(v, L̃v). (28)

On the other hand, Eqs. (20) and (21) imply that
(v,M̃v) = (v, L̃v) identically, meaning λ = 1.

Renormalization

The renormalization of Kanatani [8] is to approx-
imate the matrix L in Eq. (14) in the form

L ≈ cN , N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (29)

The constant c is determined so that M − cN
has eigenvalue 0. This is done by the following
iterations [8]:

1. Initialize u and let c = 0.
2. Compute the matrices M and N in Eqs. (13)

and (29).
3. Solve the eigenvalue problem

(M − cN)u′ = λu′, (30)

and compute the unit eigenvector u′ for the
eigenvalue λ closest to 0.

4. If λ ≈ 0, return u′ and stop. Else, let

c ← c +
λ

(u′, Nu′)
, u ← u′ (31)

and go back to Step 2.

Gauss-Newton Iterations (GN)

Kanatani and Sugaya [11] proposed to minimize
Eq. (11) directly by Gauss-Newton iterations.
Differentiating Eq. (12) and introducing Gauss-
Newton approximation (i.e., ignoring terms that
contain (u, ξα)), we see that the Hessian is simply
the matrix M in Eq. (13). In order to enforce the
normalization constraint ‖u‖ = 1 in a differential
form, we enforce M to have eigenvalue 0 by the
projection matrix Pu of Eq. (8) and compute
pseudoinverse. The procedure goes as follows:

1. Initialize u.
2. Compute

u′ = N [u− (PuMPu)−5 (M −L)u]. (32)

3. If u′ ≈ u, return u′ and stop. Else, let u ←
u′ and go back to Step 2.

5 Initialization

For initialization of the iterations, we test the fol-
lowing three:

Random Choice

We generate six independent Gaussian random
numbers of mean 0 and standard deviation 1 and
normalize the vector consisting of them into unit
norm.
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Least Squares (LS)

Approximating the denominators in Eq. (11) by a
constant, we minimize

JLS =
1
2

N∑
α=1

(u, ξα)2 =
1
2
(u, MLSu), (33)

where we define

MLS =
N∑

α=1

ξαξ>α . (34)

Eq. (33) is minimized by the unit eigenvalue u of
MLS for the smallest eigenvalue.

Taubin’s Method

Replacing the denominators in Eq. (11) by their
average, we minimize the following function3 [16]:

JTB =
1
2

∑N
α=1(u, ξα)2∑N

α=1(u, V0[ξα]u)
=

1
2

(u, MLSu)
(u, NTBu)

.

(35)
The matrix NTB has the form

NTB =
N∑

α=1

V0[ξα]. (36)

Eq. (35) is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu (37)

for the smallest eigenvalue. Since NTB is not pos-
itive definite, we decompose ξα, u, and V0[ξα] in
the form of Eqs. (19) and define 8 × 8 matrices
M̃LS and ÑTB by

M̃LS =
N∑

α=1

z̃αz̃>α , ÑTB =
N∑

α=1

V0[zα], (38)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (39)

Then, Eq. (37) splits into two equations

M̃LSv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (40)

We compute the unit eigenvector v of the first
equation for the smallest eigenvalue λ. The second
equation gives F33, and u is given by Eq. (25).

3Taubin [16] did not take the covariance matrix into
account. This is a modification of his method.

(a) (b)

Figure 1: 20 points on elliptic arcs. (a) Short arch.
(b) Long arc

6 Numerical Examples

Fig. 1 shows two examples of 20 equidistant points
(x̄α, ȳα) on an ellipse. We added Gaussian noise of
mean 0 and standard deviation σ to the x and y co-
ordinates of each point independently and fitted an
ellipse by FNS, HEIV, renormalization, and GN.
For each σ, we plotted the average number of it-
erations over 1000 independent trials. We stopped
when the new value u′ differs from the previous
value4 u by ‖u′ − u‖ < 10−6.

Doing numerical experiments, we have found that
the convergence performance significantly differs
depending on whether we use points on a short
elliptic arc or on a long elliptic arc.

Fitting to a Short Arc

Figure 2 plots the number of iterations for the
short arc in Fig. 1(a). When the iterations did not
converge after 100 iterations, we stopped and set
the iteration count to 100. We can see that the
modified FNS/HEIV always converge faster than
the original FNS/HEIV. This is most apparent
for random initialization, for which the original
FNS/HEIV did not converge for 16% and 49%,
respectively, of the trials.

This can be explained as follows. If the computed
u′ is close to the true value u, the matrix L in
Eq. (14) and the matrix L̃ in Eq. (21) are both
close to O. Initially, however, they may be very
different from O. Eqs. (15) and (26) are written,
respectively, as

(M −L− λI)u′ = 0, (M̃ − λL̃)v′ = 0. (41)

The matrices L and L̃ are both positive definite.
In order that their effects be canceled, we need to
choose λ to be negative in the first equation and
smaller than 1 in the second.

As predicted from this explanation, the difference
between the original FNS/HEIV and the modified
FNS/HEIV shrinks as we use better initial values,
as seen from Fig. 2.

Another finding is that although FNS, HEIV and
GN converges faster as we use better initial val-
ues, the behavior of renormalization is almost un-
changed. This is because we start solving Eq. (30)

4Since u and −u represent the same ellipse, we com-
puted the smaller of the two values ‖u′ ± u‖.
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Figure 2: Average number of iterations for ellipse fitting to the points in Fig. 1(a) vs. noise level.
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Figure 3: Root-mean-squares error of ellipse fitting to
the points in Fig. 1(a) vs. noise level.

with c = 0, canceling the effect of N whatever it
is, and the resulting u′ is close to the LS solution.

In contrast, FNS and HEIV may produce a solution
very different from the true value when initially the
matrices L and L̃ are very different from O. Nat-
urally, GN converges faster if started from better
initial values.

Overall, the most efficient method is the modi-
fied HEIV for whichever initialization. However,
there is no difference between (original or modified)
FNS/HEIV if initialized by Taubin’s method.

Fig. 3 plots for each σ the root-mean-squares of
‖Puû‖ over 1000 independent trials. We com-
pared LS, Taubin’s method, and the four iterative
methods starting from the Taubin solution. We
confirmed that for each method the final solution
does not depend on the initial value as long as the
iterations converge. The dotted line indicates the
KCR lower bound implied by Eq. (9).

From Fig. 3, we can see that Taubin’s method is
considerably better5 than LS. The four iterative
methods indeed improve the Taubin solution, but
the improvement is rather small. All the solutions
nearly agree with the KCR lower bound when noise
is small; as noise increases, they gradually deviate
from it. Since FNS, HEIV, and GN minimize the
same function, the resulting solution is virtually
the same. The accuracy of renormalization is also
very close to them.

5The mechanism of the superiority of Taubin’s method
over LS is analyzed in detail in [9].

Fitting to a Long Arc

Fig. 4 shows the number of iterations for the
long arc in Fig. 1(b). In this case, all methods
converged within 10 iterations when initialized
by LS or Taubin’s method, so the vertical axis is
restricted over that range.

The most unexpected, as compared with Fig. 2,
is the fact that the modified FNS is worse than
the original FNS . For random initialization, the
modified FNS did not converge after 100 iterations
for all 1000 trials, while the original FNS failed to
converge only for 24% of the trials.

This is related to the singularity of ellipse fitting
[2]: Some of the terms on the right-hand side of
Eq. (11) diverge to ±∞. This happens when a
data point exists near the center of the current
candidate fit, which is more likely to occur when
the data points are distributed over a long arc.

As we can see from Fig. 4, renormalization is the
most stable for whichever initialization. As we
noted earlier, this is because the iterations start
from c = 0; Eq. (30) yields a value u′ close to
the LS solution, which is already fairly accurate
for a long arc. GN is also stable, because the
solution continuously changes in the course of the
iterations, while FNS and HEIV may compute os-
cillating eigenvectors.

Figure 5 compares the accuracy of all the methods
in the same way as Fig. 3. As expected, the LS so-
lution, which is usually prone to statistical bias, is
as accurate as Taubin’s method, because bias is less
likely to arise for a long arc. Also, the improvement
by the (original or modified) FNS/HEIV, renor-
malization, and GN is very small. All yields prac-
tically the same solution very close to the KCR
lower bound.

7 Conclusions

We have studied the convergence behavior of typi-
cal iterative numerical schemes for maximal like-
lihood (ML) of ellipse fitting. After posing the
problem in relation to the KCR lower bound, we
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Figure 4: Average number of iterations for ellipse fitting to the points in Fig. 1(b) vs. noise level.
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Figure 5: Root-mean-squares error of ellipse fitting to
the points in Fig. 1(b) vs. noise level.

described the algorithms of FNS, HEIV, renormal-
ization, and Gauss-Newton iterations (GN). Using
simulated image data, we compared their conver-
gence performance.

For a short arc, the modified FNS/HEIV have
better convergence properties than the original
FNS/HEIV. The convergence of renormalization
is little affected by the choice of the initial value.
Overall, the modified HEIV is the most efficient.

For a long arc, however, the modified FNS is worse
than the original FNS if randomly initialized, and
the renormalization is the most efficient. If the
iterations converge, however, the fitting accuracy
is far higher than for a short arc whichever method
is used.
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Abstract
Two image rectification methods for stereo vision are presented – the first using a calibration result and
the second a new approach relying on point correspondences. Both methods use a linear transformation
and retain camera optical centres. These methods are proposed for rectifying weakly aligned or
convergent camera setups, as found in many laboratory settings. Rectified results can be directly used
in disparity map generation or 3D reconstruction. Experimental results show that both methods are
suitable for rectifying images for input into stereo vision algorithms.

Keywords : Image rectification, stereo vision, epipolar geometry, fundamental matrix, essential matrix,
camera calibration

1 Introduction

This work presents two image rectification meth-
ods – the first using a calibration result and the
second a new approach relying on point correspon-
dences. Both methods use a linear transformation
and retain the optical centres, so rectified results
can be directly used in disparity map generation
or 3D reconstruction. The aim is to rectify weakly
aligned or convergent cameras as opposed to arbi-
trary camera configurations.

Both methods assume camera intrinsic parameters
are known and incorporate lens distortion correc-
tion by using calibration results or an indepen-
dent distortion measurement. Image resampling
errors are reduced by performing distortion cor-
rection and rectification concurrently.

Many stereo vision algorithms assume cameras
generate an image pair which satisfies a standard
stereo geometry. Namely, for a given point in
one image, its corresponding point lies on the
same scanline in the second image. This property
greatly speeds up the stereo correspondence
process as it reduces the search space to one
dimension. Image rectification transforms and
resamples an image pair so they have this desired
rectilinear property.

Section 2 presents related work. Sections 3 and
4 describe the two proposed rectification methods,
followed by experimental results and conclusion in
Sections 5 and 6.

2 Related work

The careful mechanical alignment of two identical
cameras to standard stereo geometry is difficult

and time consuming. Aligning two high-resolution
cameras requires painstaking care, even when
they are attached to precisely adjustable bases
and mounted on a precise translation rail. There
are also cases where rectification is necessary,
e.g. images taken by weakly aligned cameras,
structure from motion, aerial photography, and
other applications where precise alignment is not
possible.

Various techniques exist for image rectification.
Some require camera calibration, such as the
algorithm of Ayache et al. [1], which uses
knowledge of camera projection matrices. In
contrast, some rely solely on point correspon-
dences, e.g. the methods of Hartley [6], and
Loop and Zhang [3]. Methods relying on point
correspondences do not retain the baseline length
and scenes can only be reconstructed up to 3D
projectivity, where angles and relative lengths
are not preserved [7]. The method of Oram [4],
which aims to rectify arbitrary epipolar geometry,
uses nonlinear rectification which could introduce
image distortion.

3 Rectification using camera calibra-
tion results

In standard stereo geometry, two identical cam-
eras should be aligned so that both image planes
are coplanar and their x-axes are parallel to the
baseline.

To satisfy this requirement, an intuitive method is
to rotate both cameras around their optical centres
to a common orientation. Using calibration results,
one can compute the baseline and a new common
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orientation from the poses, or relative poses, of the
two cameras.

This is similar to Ayache et al.’s method [1]. How-
ever, their method used the 3 × 4 camera pro-
jection matrix. We use the calibrated extrinsic
and intrinsic camera parameters, which simplifies
calculations and decouples lens distortion from the
projection matrix.

3.1 Obtaining a common orientation

Let the calibrated rotation matrices and transla-
tion vectors of two cameras be R1, R2, t1, and t2

respectively, defined in a world coordinate system.
Their optical centres, c1 and c2, are then defined
as

c1 = −t1R
T
1

c2 = −t2R
T
2

(1)

The baseline vector b is

b = c2 − c1 (2)

The optical axis (z-axis) of camera one, z1, is
the world coordinate representation of the axis
(0, 0, 1)T in the camera coordinate frame:

z1 = RT
1





0
0
1



 (3)

which is exactly the third row of R1. In the same
manner, the x-axis and y-axis of camera one are
respectively the first and second row of R1.

z 

 
 

       Baseline 
 

z2 

c2 

 
c1 

1 
 
 

π 
n2 

 
n1 

 
 
 

Figure 1: Finding a new common orientation

Let the plane π be the plane perpendicular to the
baseline. The optical axes, z1 and z2 are projected
onto π as shown in Figure 1. The directions of n1,
n2 are given by

n1 = (b × z1) × b

n2 = (b × z2) × b
(4)

It is clear that both n1 and n2 will be perpen-
dicular to the baseline. n1 or n2 may be used

as the new common optical axis, znew. But for
a better range of common view, the half vector
between n1 and n2 is chosen. After n1, n2 have
been normalised, znew is simply their average (and
must also be normalised):

znew =
(n1 + n2)

|n1 + n2|
(5)

Since both camera’s x-axes should run along the
baseline, the x-axis of the new orientation xnew is
the same as the baseline b. Assuming camera one
is on the left side of camera two, then:

xnew =
b

|b|
(6)

 
 
 
 
 

Baseline O O 
 
 

Rectified 
Pose 

Figure 2: Shifting into the view frustum

The new y-axis, ynew, is the cross product of xnew

and znew

ynew = xnew × znew (7)

After normalising the xnew, ynew and znew vectors,
the matrix representation of the new orientation
Rnew is

Rnew = (xnew ynew znew)T (8)

The rotation matrices M1, M2 that rotate the
cameras to their new orientations are given by

M1 = RnewRT
1

M2 = RnewRT
2

(9)

3.2 Rotation of images

According to Hartley [8], when rotating two cam-
eras around their optical centres, their images will
be transformed by the rotation homographies H1,
H2:

H1 = K1M1K
−1
1

H2 = K2M2K
−1
2

(10)

where K1, K2 are the intrinsic matrices of cameras
one and two.
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The geometric meaning of Equation 10 is that K−1

transforms a point in the 2D image to a 3D nor-
malised camera coordinate, that is then rotated by
M, followed by K projecting the point back onto
the image plane.

In some cases, especially in a convergent camera
setup, the rotation angle around the y-axis may be
large, causing the rotated image plane to be out
of the original view frustum, as shown in Figure 2.
To obtain a larger view, one may shift the centre
of the image plane into the frustum. This shift will
not violate the pinhole camera model, but it must
be added back to any disparities calculated from
the rectified images.

3.3 Concurrent correction of lens distor-
tion

Once the transformation matrix H has been cal-
culated, an image point p in the original image is
transformed to p′ in the new image by

p′ = Hp (11)

Image resampling uses bilinear interpolation and
backwards mapping. For the backwards mapping,
the value at pixel p′ in the new image is obtained
from point p in the original image (see Figure 3).
p can be calculated by

p = H−1p′ (12)

Distortion correction is integrated at this stage –
the pixel value is read from the distorted coordi-
nate of p, instead of the value at p.

   Original Lookup undistorted 

Figure 3: Backward mapping for image resampling

4 Rectification using point corre-
spondences

Uncalibrated image rectification commonly uses
the fundamental matrix. Usually a pair of
transformations are found which are compatible
with the fundamental matrix and send the epipoles
to infinity [6]. However, these transformations
make no effort to retain the baseline and there
will be an undesirable projective reconstruction
ambiguity in the result.

Assuming the intrinsic camera parameters are
known or can be determined, it is possible to back
project image points into a normalised camera

coordinate frame. A linear rectification is then
to find rotations around two optical centres that
make the images conform to the desired standard
stereo geometry.

Hence, the problem becomes finding the Euler ro-
tation angles, Rx, Ry, Rz, of camera one and two
that minimise the total vertical displacement error
of corresponding points.

4.1 Finding a rectification homography

Estimation proceeds by first preparing a set of ro-
tation angles, {R1x, R1y, R1z, R2x, R2y, R2z}, and
initially setting them to zero (or values to be dis-
cussed in Section 4.2).

Two rotation matrices, R1 and R2, are constructed
from the set of rotation angles. Then all corre-
sponding points are transformed using one of the
rotation matrices, R, and the intrinsic matrix K:

p′ = KRK−1p (13)

Homogenous coordinates are then transformed into
Euclidean coordinates:

p′x = p′x/p′z

p′y = p′y/p′z
(14)

The error being minimised is the vertical displace-
ment of corresponding points:

e = p′1y − p′2y (15)

The pair of rotation matrices that minimise the
sum of squared errors for i points is

(R1,R2) = argmin
(R1,R2)

∑

i

e2
i (16)

Minimisation can be done by steepest descent
or other iterative estimation methods. Here, the
Levenberg-Marquardt method (LM) was used.
After minimisation, a rotation around the x-axis
can be applied to both images in order to have a
larger common field of view.

Experiments showed that if the cameras had been
weakly aligned, setting all initial values to zero
usually lead to satisfactory results. However, with
images taken by convergent cameras or hand held
cameras, a good initial guess of the rotation angles
is required to avoid the solution being trapped in
a local minima. With known intrinsic parameters
and an accurate fundamental matrix, the essential
matrix E and subsequently the relative orientation
of two cameras can be estimated.
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4.2 Estimating the relative pose from the
essential matrix

The essential matrix, E, is a specialisation of the
fundamental matrix and encodes the baseline (up
to a scale factor) and relative orientation of two
cameras [6]. It is given as

E = [b]
×
R (17)

where [b]
×

is the skew-symmetric matrix of the
baseline vector, b, and R is the relative orienta-
tion.

The essential matrix can be calculated from the
fundamental matrix, F, together with the intrinsic
parameter matrices, K1 and K2, of two cameras:

E = KT
2 FK1 (18)

To decompose the essential matrix to a skew-
symmetric matrix and an orthonormal rotation
matrix, Horn [2] described an approach in which
the baseline, b, is calculated as

bb
T =

1

2
Trace(EET )I − EET (19)

where I is the 3×3 identity matrix, and the relative
rotation, R, as

(b · b)R = Cofactors(E)
T
− [b]xE (20)

where Cofactors(E) is the matrix of cofactors of
E. Once the direction of the baseline and the
relative orientation are found, rotations to a com-
mon orientation can be calculated as described in
Section 4.1. The rotation angles calculated from
the fundamental matrix can serve as good initial
values for the Levenberg-Marquardt minimisation.

5 Experimental Results

5.1 Rectification from calibration
In this section, two camera models were tested.
The models and their setup are listed in Table 1.

Model Image Size Focus Speed f stop Format Mounting 
Canon A80  1600 x 1200 19 mm 1/30s 5.6 JPG Hand held 
Canon EOS 10D  3056 x 2048 51 mm 1/125s 4.0 RAW On Rail 
 Table 1: Cameras used in the experiment

Figure 4 shows a pair of images taken by the same
Canon A80 camera. The camera was hand-held
and images were taken with a convergent angle of
about 12 degrees. They show a non-coplanar cali-
bration cube with 63 patches for feature extraction.

 
Figure 4: Original images of calibration cube,
taken by the Canon A80

The Tsai camera calibration algorithm [9] was used
and rectification matrices were calculated from the
calibration results, as discussed in Section 3. The
image pair was resampled and all feature points
remeasured from the resultant images. Statistics
of vertical displacement errors for 63 pairs of cor-
responding points are shown in Table 2.

Canon A80 1600 x 1200  Average(pix) Stdev Max(pix) 
Original image pair -2.56 6.25 15.01 
Rectified 0.03 0.25 0.59 
Rectified & distortion corrected 0.01 0.10 0.30 
 

Table 2: Vertical displacements of corresponding
pairs: Canon A80

Canon EOS 10D 3056 x 2048 Average(pix) Stdev Max(pix) 
Original image pair -2.70 3.58 8.03 
Rectified 0.34 0.34 0.99 
Rectified & distortion corrected 0.01 0.12 0.36 
 Table 3: Vertical displacements of corresponding

pairs: Canon EOS 10D

The second pair of images was taken by two Canon
EOS 10D cameras mounted on a translational rail.
The baseline length was about 32 cm. The same
calibration routine and rectification method was
used and Table 3 shows the results.

After rectification, the y-axis displacement error
decreased to less than one pixel. Distortion cor-
rection further decreased the error in both image
sets. The gain is more significant in the higher
resolution image set, the maximum error is down
to about 0.4 pixels and the standard deviation to
about 0.1 pixels. Noting the high resolution of
the images, these results are reasonable for use in
stereo correspondence searching.

5.2 Rectification from point correspon-
dences

The two sets of images from the first experiment
(Section 5.1) were again used. However, calibra-
tion results were discarded and the intrinsic ma-
trices were constructed from camera specifications
and effective focal length (omitting the scale fac-
tor):
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K =





f/w 0 Cx

0 f/h Cy

0 0 1



 (21)

where w and h are the width and height of a sensor
grid in the camera specification, f the focal length,
and (Cx, Cy) the image centre.

Canon A80 1600 x 1200 Average(pix) Stdev Max(pix) 
Original image pair -2.56 6.52 15.01 
Rectified 0.00 0.07 0.15 
Rectified & distortion corrected 0.00 0.07 0.15 
 Table 4: Rectification result (vertical displace-

ments) of LM minimisation: Canon A80

Canon EOS 10D 3056 x 2048 Average(pix) Stdev Max(pix) 
Original image pair -2.70 3.58 8.30 
Rectified 0.00 0.18 0.46 
Rectified & distortion corrected 0.00 0.15 0.37 
 

Table 5: Rectification result (vertical displace-
ments) of LM minimisation: Canon EOS 10D

All initial values were set to zero before LM min-
imisation since the needed rectifying rotation an-
gles were small. Tables 4 and 5 show the y-axis
displacement errors before and after rectification.

Although results were comparative to the first
method, it is notable that the rotation angles
obtained by the minimisation did not guarantee
two cameras rotated to a common orientation.

The fundamental matrix decomposition approach
faces further challenges – the result of the decom-
position greatly depends on the accuracy of the
fundamental matrix, something not always easily
achievable.

6 Conclusion
Two image rectification methods were presented
and tested for rectifying images taken by
convergent or weakly aligned cameras. The first
method used calibration results and rotated
the images around their optical centres to a
common orientation. The second method is a new
approach based on point correspondences with
an assumption that intrinsic camera parameters
are obtainable. Both methods retain the baseline
and the rectifying transformations are linear.
This allows the rectified results to be used
directly for 3D reconstruction without projectivity
adjustment1.

Lens distortion correction was incorporated
into the rectification process. Experiments
showed both methods to be efficient in rectifying

1Parallelism remains but angles and lengths do not in

projectivity reconstructions.

images taken by weakly aligned and convergent
camera setups. After rectification and distortion
correction, the maximum y-axis displacement
error was less than 0.4 pixels in the resampled
images. This can be considered reasonable for
scanline searching in the stereo correspondence
process.

The work documented here has been successfully
used in Woodward et al. [10].
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Abstract 
Data hiding schemes using least-significant-bit (LSB) substitution can be steganalyzed with histogram of the 
pixels. This is because LSB substitution causes a Pairs-of-Value (PoV) effect to the histogram. Some works have 
been proposed before to improve the situation. However, all of those cannot avoid changing the histogram, in 
which, can still be suffered from other statistical attack in histogram. In this paper, we propose a novel approach 
in image data hiding without affecting the histogram. Experimental results show our method has fairly good data 
hiding capacity and low noise level.   

 

Keywords: Image data hiding, steganalysis, histogram analysis, LSB substitution, Pairs-of-Values. 

1 Introduction 
The aim of image data hiding is to hide information 
imperceptibly into a host image, so that the presence 
of hidden data cannot be identified. Generally, a good 
steganography technique should have good visual and 
statistical imperceptibility. The algorithm to detect 
whether an image is loaded with secret data is called 
steganalysis. A successful steganalysis algorithm 
should have a low false-positive rate and false-
negative rate.  

LSB substitution is known as the simplest scheme in 
steganography. This algorithm replaces the LSB of 
the host image with the secret data stream. To avoid 
data extraction by adversary, the data stream should 
be encrypted in advance.  

Such a simple approach leaves a large space for the 
adversary to perform steganalysis. Fridrich and 
Goljan [3] have surveyed several methods in 
analysing LSB substitution. One of those is known as 
histogram analysis [1][2]. This method plots a 
histogram with the pixels in the testing image. As 
shown in Figure 1, if an image is embedded by LSB 
substitution, the histogram of the image will be 
changed in a “pair-wise” way. These pair-wise blocks 
are also known as Pairs of Values (PoV) [2]. This 
effect can be identified by applying the χ2 -test [4] 
and the adversary can justify whether the testing 
image is embedded with LSB substitution.  

LSB matching [5] have a subtle difference from LSB 
substitution by the following: If the embedded data 

have the same value as the LSB of a particular pixel, 
the pixel will be left unchanged. Otherwise, the pixel 
will be randomly added or subtracted by 1. The pair-
wise effect of PoVs will become less significant in 
this algorithm. However, as we will show in the later 
section, the histogram will still be affected by this 
algorithm. That also means histogram analysis still 
works on this algorithm. 

 
Figure 1. Histogram of an image before and after 

being loaded by LSB substitution algorithm. (adopted 
from [2]) 

Our research is motivated to designing an image data 
hiding scheme without changing the histogram of the 
hosting image. This kind of data hiding scheme will 
be perfectly imperceptible to histogram analysis 
attack. We also aware that the distortion introduced 
by the scheme must be well controlled. Otherwise, it 
will be visually detectable by a human.   

The paper is organized as follows. In section 2 we 
will propose our scheme. To evaluate our contribution, 
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we will describe how the experiments were conducted 
and present the experimental results in section 3. It is 
followed by the analysis of the experimental results in 
section 4. In section 5, we will raise some discussions 
about the scheme. The paper is concluded in section 6. 

2 The Proposed Scheme 
In this section, we describe our proposed scheme 
which includes two phases: (1) Rearrangement (2) 
Swapping. 

2.1 Rearrangement 
Let G be the host image with m × m pixels and 256 
gray levels. We label the pixels from top to down, 
from left to right. These pixels are further divided into 
256 groups, denoted by V0, V1,…, V255,  according to 
their value. Every two groups V2i and V2i+1 are paired 
up where i is from 0 to 127. The size of each group 
will be recorded. For example, the value of the 13th 
and 34th pixels are n and the 7th, 14th, 18th, 24th, 48th 
are n+1, we will have Vn = {13, 34} and Vn+1 = {7, 14, 
18, 24, 48} and the size of Vn is 2 and the size of Vn+1 
is 5, as shown the left most blocks in Figure 2. 

Now, for every pair of groups Vn and Vn+1, we merge 
and sort the pixels within the two groups. Thus we 
have the sequence T = {7, 13, 14, 18, 24, 34, 48} as 
an example. The pixels in the sequence T will be 
reassigned to Vn and Vn+1 in alternating order without 
changing the size of the groups. As an example shown 
in Figure 2: the 1st element 7 is assigned to Vn, the 2nd 
element 13 is assigned to Vn+1, and so on.  

 
Figure 2. An example demonstrates the 

Rearrangement phase 

2.2 Swapping 
After the rearrangement phase, each pair of groups Vn 
and Vn+1 has the following property: suppose the 
smaller size of the pair of the groups is k, there are k 
exclusive pairs of pixels that one with smaller label is 
in Vn and the one with larger label is in Vn+1. As in the 
example, k is 2 accordingly and we have 2 exclusive 
pairs {7, 13} and {14, 18} that 7 and 14 are in Vn  
where 13 and 18 are in Vn+1. 

We make use of this property to embed the secret. We 
first identify all the exclusive pairs from all the pairs 

of groups. If we wish to be embedded the secret bit 0, 
we do nothing about the exclusive pair. If secret bit 1 
is going to embed, we swap the position of the 
elements in the exclusive pair. An example is 
demonstrated in Figure 3.  

After embedding all the secret bits, we have a new set 
of groups {V’0, V’1,…, V’255}. Now, all the pixels are 
updated according to which group are they belongs to. 
This completes the embedding process. 

 
Figure 3. An example demonstrates the Swapping 

phase 

2.3 Data Extraction 
Upon receiving the stego-image, the receiver extracts 
the secret bits stream by building group {V’0, V’1,…, 
V’255} and sorts the pixels in ascending order 
according to their label in each group V’i. Then, these 
groups are paired up. Exclusive pairs are identified by 
cutting the groups horizontally. As shown in the right 
hand side of Figure 3, we have the exclusive pairs {13, 
7} and {14, 18}. We then figure out that the 
information hidden is 1 and 0, respectively. This can 
be figured out by the reverse order of {13, 7} and the 
proper order of {14, 18}. 

3 Experimental Results 
To evaluate our scheme, several experiments are 
designed. The result will be compared with LSB 
substitution and LSB matching. The first test is on the 
distortion and the data hiding capacity. The second 
test is on the vulnerability of histogram analysis. The 
third test is a visual test proposed in [2]. 

3.1 Distortion and Capacity Test 
In this test, the images Lenna (Figure 4a), F16, and 
Pepper (Figure 7a, 7b) which have the size of 512 × 
512 and 256 gray levels, will be used as the host 
image for the three algorithms with the same random 
sequence. Since the capacity of our algorithm is upper 
bounded by 0.5 bits/pixel, the other two algorithm 
will embed the same amount of data for comparisons. 
The images outputted by the three algorithms will be 
measured through the distortion they have brought in. 
The distortion is measured by the value PSNR, as 
follows: 
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The result of this test will be tabled in Table 1. A 
large PSNR means small distortion that the output 
image makes. Also, the stego-images of Lena, 
produced by the three algorithms, will be shown in 
Figure 4. 

3.2 Histogram Test 
In this test, we plot the histogram of the outputted 
images and calculate the divergence [6] between each 
output image and the hosting image. Divergence is a 
natural distance measure from a “true” probability 
distribution P to an arbitrary probability distribution 
Q. It is calculated as follows: 

Divergence= ∑
=

255

0 )(
)(log)(

x xq
xpxp                                    (3) 

Where, p(x) and q(x) are the probability of a pixels 
having a grey level x of the output image and hosting 

image respectively. Since, p(x) and q(x) might be 0 
for some value x, we add a negligible terms to every 
p(x) and q(x) to avoid division by 0 error and log0 
error.  

The result of this test will be tabled in Table 1. A 
larger value of divergence means the histogram being 
distorted more severe. Also, the histograms of the 
stego-images and the hosting image are plotted in 
Figure 5. 

3.3 Visual Test 
As suggested in [2], if we draw the LSB of an image 
without embedding secret, it will looks like Figure 6a. 
If it is embedded with LSB substitution, it would be 
completely noisy. This test, however, may not be able 
to handle noisy images or highly textured images 
from stego-images. Also it is hard to automatize and 
their reliability is highly questionable. Nevertheless, 
this visual test will still be performed to justify if our 
scheme is easily being detected. 

The image Pepper will be used for this test. The 
results of this test are given in Figure 6. 

    
Figure 4. From left to right, (a) unaltered Lena, (b) LSB substitution, (c) LSB matching, (d) our scheme 

 
Figure 5. Histogram plot of hosting image and stego-images  
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Figure 6. LSB draw of, from left to right, (a) hosting image, (b) LSB substitution, (c) LSB matching, and (d) our 

scheme. 

  
Figure 7. From left to right, (a) F16 and (b) Pepper 

Table 1. Experimental Result of the Distortion and 
Capacity Test, and Histogram Test 

Lena 
PSNR 

(dB) 

Divergence 

(bit) 

Capacity 

(bit/Pixel) 

Our scheme 51.152 0 0.4838 

54.314 0.000924 0.4838 LSB 
substitution 51.161 0.001826 1 

54.314 0.000597 0.4838 LSB 
matching 51.161 0.001121 1 

F16 
PSNR 

(dB) 

Divergence 

(bit) 

Capacity 

(bit/Pixel) 

Our scheme 51.187 0 0.4760 

54.371 0.003915 0. 4760 LSB 
substitution 51.143 0.012294 1 

54.371 0.003496 0. 4760 LSB 
matching 51.143 0.009648 1 

Pepper 
PSNR 

(dB) 

Divergence 

(bit) 

Capacity 

(bit/Pixel) 

Our scheme 51.354 0 0.4593 

54.538 0.018789 0. 4593 LSB 
substitution 51.151 0.091965 1 

54.538 0.019131 0. 4593 LSB 
matching 51.151 0.095241 1 

4 Analysis 
As we can see from the Table 1, our hiding capacity 
and PSNR are relatively low, compared to the existing 
schemes.  And, the hiding capacity of our algorithm 
depends on the histogram of the hosting image. In the 
worst case, for example, V2i = 0 for all i, the hiding 
capacity is 0 bit/pixel. In the best case, for example, 
all Vi are the same, the hiding capacity would be 0.5 
bit/pixel. Fortunately, the hiding capacity from the 
experiment shows that we have average hiding 
capacity of 0.473 bit/pixel. So, for a 512 × 512 
hosting images, we can hide 121 Kb in average. 

We generally believe image with PSNR value higher 
than 32db is imperceptible to human eyes that it is 
loaded with secret information. Experimental results 
show our scheme works far beyond this threshold. 

From Figure 5, we learn that LSB substitution and 
LSB matching yield different histogram profiles from 
the hosting image. The histogram produced by our 
scheme perfectly collides with the one of hosting 
image. This property makes our scheme perfectly 
secure against histogram analysis attack. The 
divergence given in Table 1 concurs with Figure 5.  

The visual tests shown in Figure 6 justify our scheme 
is secure against simple visual test. It might be 
evidence that our scheme is much more secure than 
the other two schemes. 

5 Discussion 
Although our scheme is secure against histogram 
analysis, it does not mean it is secure enough to be 
imperceptible by any other algorithm. Readers may 
find out that every pair of groups produced by our 
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scheme behaves as follows: If the size of the groups,  
for example, Vn and Vn+1 are not equal, let say Vn is 
smaller, then, all the unpaired labels in Vn+1 are larger 
than the element in Vn. In the example we illustrated 
in section 3, the unpaired labels in Vn+1 {24, 34, 48} 
larger than all the labels in Vn {13, 14}. If there are 
many pairs of groups behave in this way, the 
adversary has a high confidence that our scheme has 
applied in this stego-image. 

To avoid this simple detection, instead of label the 
pixel in Top-bottom-left-right order, we should 
randomly permute them with a private key, which is 
shared by the sender and receiver only.  

Since this is a new scheme, there is no existing 
steganalysis regarding to this scheme. To the best of 
our knowledge, the most efficient steganalysis for 
LSB substitution and LSB matching are of Dual 
Statistics methods [3][5]. It is much easier to prove a 
scheme is vulnerable to some attack than to prove it is 
secure against it. In the future, we try to prove that our 
scheme is also secure against this stream of attacking 
methods by looking it from a statistics point of view. 

6 Conclusion 
In this paper we have proposed an image data hiding 
scheme for gray level image that is perfectly 
imperceptible by histogram analysis. By scarifying 
data hiding capacity and distortion level, our scheme 
achieves a better security level than LSB substitution 
and LSB matching in histogram analysis and visual 
test. 
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Abstract
In the area of vision-based local environment mapping, inconsistent lighting can interfere with a robust
system. The HLS colour model can be useful when working with varying illumination as it tries to
separate illumination levels from hue. This means that using hue information can result in an image
invariant to illumination. This can be valuable when trying to determine object boundaries, object
identification and image correspondence. The problem is that noise is greater at lower illumination
levels. While removing the illumination effects on the image, separating out hue means that the noise
effects of non-optimal illumination remain. This paper looks at how the known illumination information
of pixels can be used to accurately predict and reduce noise in the hue obtained in video from a colour
digital camera.

Keywords: Hue noise, computer vision, illumination invariance

1 Introduction

With vision-based local environment mapping
consistency in the environment is highly desirable.
This includes consistent lighting conditions
which means that most research is conducted
under as controlled an environment as possible.
Unfortunately this is not a luxury that can be
afforded in real world applications which means
that many projects can not achieve widespread
public use. The problem is that illumination in
general usage is unpredictable, causing tasks such
as colour tracking for object recognition to be
problematic because the intrinsic characteristics
of digital cameras causes the value of hue to vary
with illumination. There have been projects in
the past that have tried to track the colour of an
object as it changes with varying levels of success
[1][2][3] shown in figure 1. While these methods
can work, they often need to be reinitialised if
tracking is lost and are computationally inefficient
leaving less for the primary vision application.

This research takes the approach of an illumination
invariant filter on video data, acquiring video
frames and converting them into a normalised
illumination format consisting of the raw colours
of the scene. Conversion to the HLS colour
model shown in figure 2 is the starting point
to this transformation as the hue component of
this colour model is essentially the colour of an
object with the illumination intensity information
stripped out. White balancing is also necessary to
remove light source colouring effects on objects.

Figure 1: Frames from a dynamic colour tracker.

This would be an ideal illumination invariant
input for a computer vision system as with
accurate white balancing hue values of objects
should stay consistent under any light source.
Unfortunately this is not the case. When lighting
decreases, understandably noise increases. This
means any darker areas of a frame of video result
in noisier hue information than lighter areas. To
counter this noise, first a reliable predictor of it
needs to be found. This research is investigating
whether or not the other two components of the
HLS colour model (luminance and saturation) are
accurate predictors of hue variance with changing
levels of illumination.

2 Related Work

There is much research into robot environment
mapping [4][5][6] but most completely ignore how
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Figure 2: The HLS colour model.

their system would function under low lighting
conditions. Because noise increases in areas of low
illumination, reliably identifying colour regions
or previous points of interest drops significantly.
Some research is focused on operating in unlit
environments using alternative sensing such as
ultrasound, radar, laser scanning or infra-red [7].

Research into shadow detection and and removal
attempts to locate shadows so that they can
be isolated from the objects they belong to.
Yao and Zhang [8] present a shadow detection
algorithm which uses sample images of shadow
and non-shadow to create a histogram using the
luminance and chroma information. It then uses
the histogram to predict the shadow regions in
the image. This method assumes the uniformity
of shadows and lighting conditions and is shown
in figure 3. Wang et al [9] removes shadows from
object detection of cars with a combination of
static background subtraction and foreground to
background comparisons to differentiate shadow
pixels from object pixels.

Salvador et al [10] use an invariant colour model
to separate luminance from chrominance informa-
tion. They can then segment the object from the
background by restricting the scene to a uniformly
coloured background and object. This meant that
the background and object could be identified us-
ing the invariant chrominance and luminance could
be used to identify shadowed and non-shadowed
areas. The use of an invariant colour model to
segment objects is useful because it allows for light
intensity changes while still maintaining reliable
segmentation. An example of the segmentation is

Figure 3: Two different shadow detection algo-
rithm results.

shown in figure 4. It allows us to ignore shadowing
and other lighting effects altogether.

Invariant colour models become unreliable when
the light sources in a scene are not ’white’. For
example, when a red object is under a slightly
yellow light source it will appear slightly orange
with regions shadowed from the yellow light source
appearing more red. White balancing is a process
used to correct the effects of discoloured lighting
in an image [11].

By implementing reliable white balancing and us-
ing an invariant colour model an object’s colour
should rarely change due to illumination changes.
Unfortunately this is not the case when the inten-
sity of light reflected from an object nears the outer
limits of the camera’s visible range. Cameras are
not sensitive to these areas and so noise causes the
colour/hue of an object to vary dramatically.

3 Experimentation

3.1 Method

The following experiment aims to discover the cor-
relation between the effect of noise levels on hue
and the levels of the other two components of HLS
colour (luminance and saturation). These may be
useful predictors as they represent the amounts of
light coming into the camera and an indication
of the accuracy of hue. A predictable correlation
between these two factors enables countering these
noise effects.
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Figure 4: Shadow segmentation using an invariant
colour model.

Different scenes were selected for range of colour
and brightness. The camera exposure period was
up to 30 seconds to collect accurate HLS colour
information for each pixel of the scene over time.
Each pixel was classified by means of averaging to a
specific luminance and saturation pair. Standard
deviation of the hue values collected were calcu-
lated for each pixel. Hue variances are added to an
array of minimum hue variance for each luminance
by saturation pair (256x256).

3.2 Results

Figure 5(a) shows the data extracted from this
experiment. It can be seen that at low and high
luminance and low saturation values with results
indicating that the amount of noise in hue can
spike significantly. There are also some scattered
hue noise peaks in the data as can be seen in the
graph. These can be attributed to other effects
caused by the method of data collection. With a
near stationary camera, tiny movements can cause
large changes in pixel colour near the edges of ob-
jects. because of this the lowest variance is always
selected when duplicate luminance and saturation
pairs arise, this helps reduce these effects.

These results suggest that it is possible to correctly
predict the noise of a pixel without any temporal
information. Luminance and saturation may there-
fore be accurate predictors of the hue variance for
any given pixel.

3.3 Curve fitting

From the data found in figure 5(a) we can see
that, with the correct formula, hue variation can

be predicted. The problem is finding this fitting a
mathematical curve to this data. By analysing a
cross section of the data along one axis at a time,
it was found that both axes closely fit an inverse
squared curve which when multiplied together pro-
duced a close fit to the data. In the case of the
luminance direction the symmetry means the term
L is inverted half way.

When L < 128:

H = (
α

S2
+ β) × (

γ

L2
+ δ)

Else:

H = (
α

S2
+ β) × (

γ

(255 − L)2
+ δ)

To match the data from the previous experiment,
the coefficients found to be a close fit were: α =
2913, β = 1.18, γ = 1974, δ = 0.6301. This
produces the predicted graph in figure 5(b). These
coefficients would be different for different cameras
but the equation should still be the same. Each
camera would need to be calibrated for a specific
noise curve. Figure 6 shows how this can be applied
to a frame of video (a) resulting in image (d) with
noisy hue areas having less of an effect.

4 Conclusions

This research is working towards creating an illu-
mination invariance filter for colour camera input.
This can be used to better identify or correlate
objects regardless of changes in lighting conditions
or viewing angle. While white balancing and illu-
mination invariant colour models are on the way
to achieving this, they come across large amounts
of noise when trying to identify colours that have
intensities outside of the sensitive range of the cam-
era. This research has remedied this by showing
that an equation can be used to predict how reli-
able colour values are across an image. In this way
correlation between a persistent representation and
the camera input can be made more reliably.
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(a) (b)

Figure 5: Hue standard deviation vs. Saturation and Luminance (a) Experimental results (b) Predicted
curve.

(a) (b)

(c) (d)

Figure 6: (a) Original image (b) Hue image (c) Predicted hue noise image (d) Hue image with darkened
noisy areas.
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Abstract 
Non-uniform interpolation is a common procedure in image processing. A linear interpolation filter is generally 
a weighted combination of the inputs. Optimal filter coefficients (in a least squares sense) can be derived if the 
interpolated image is known beforehand. The weights of a general linear interpolation filter are independent of 
content and only depend on the relative positions of the available samples. The optimal coefficients are shown to 
be relatively independent of the content experimentally in absence and presence of noise, allowing non-uniform 
images to be interpolated using coefficients that have been optimised on a synthetic image. This results in a 
linear interpolation with computational complexity of the same order as nearest neighbour or bilinear, but with a 
near optimal performance. 

Keywords: Image super-resolution, non-uniform interpolation, scattered interpolation. 

1 Introduction 
Non-uniform interpolation, also known as scattered 
interpolation, is a key step in image super-resolution 
from multiple images [1]. After the input low-
resolution (LR) images are registered to the high-
resolution (HR) grid, these can be combined (with 
appropriate offsets) to form a compound non-
uniformly sampled image. An interpolation procedure 
can be applied to resample the compound image at the 
uniform positions of the high-resolution grid. There 
are a large number of interpolation methods exist, 
each making assumptions about the surface of the 
image function. The choice of a method depends 
strongly on the application specific requirements, as 
there is a trade-off between computational 
complexity, memory requirements, and optimality of 
the result. Sensitivity to the accuracy of registration 
procedure can also play a role in the selection. 

The scope of this work was to look at global 
translational motion only, with low noise levels. 
Image degradation was assumed to be due to the 
camera point spread function only, constant in time 
and linear space-invariant for all input images. 

Because of the assumption of global translational 
motion only, the non-uniform compound image is 
actually semi-uniform. Of course in this case the 
generalised sampling theorem [2,3] can be applied to 
reconstruct the exact high-resolution image, as long as 
average sampling rate is above the Nyquist rate. 
However, this procedure is computationally expensive 
and is sensitive to even low levels of noise. Our main 
interest is super-resolution methods with low 

computational complexity; therefore we consider this 
approach unsuitable. 

The remainder of this article summarises a number of 
interpolation methods that can be implemented as 
digital filters, and develops a new, near optimal, 
method for computing the weights of a linear 
interpolation filter. 

2 Near optimal interpolation 
The simplest method for image interpolation is 
nearest neighbour interpolation [4]. For each point on 
the HR grid, the closest known LR pixel is selected 
and the value of that pixel is simply used as the value 
at the grid point. This method, therefore, implicitly 
assumes a piece-wise constant model for the image. It 
is the fastest of all interpolation methods as it 
considers only a single pixel – that closest to the grid 
point being interpolated. 

Another simple and well-established method is 
bilinear interpolation. It can be applied to super-
resolution in the following way [5]. To interpolate a 
given point on the HR grid, the closest LR pixel is 
used, along with its three neighbours from the same 
LR image, as pictured in figure 1. These three pixels 
are picked so that they are the next closest pixels to 
the point being interpolated. The four LR pixels are 
the vertices of a square, with the point being 
interpolated located inside the square. The value at the 
point is computed using a bilinear weighed sum of the 
four vertices. Bicubic interpolation can be 
implemented in a similar way, selecting 16 closest 
points and applying bicubic weights. 
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Figure 1: Increasing resolution by a factor of two, 
using bilinear interpolation. The four input samples 
used are generally not the closest samples available. 

While this is fine for a single image, where there are 
many low-resolution images, three (or 15 in the case 
of bicubic) of the pixels that are used are not 
necessarily the closest, as these may be in other input 
images. Logically, the closest inputs to the output 
pixel are more likely to contain relevant information 
about the HR pixel value. 

Instead of using four closest pixels from a single input 
image, the selection can be made from all pixels from 
all input images. A problem then arises of 
determining the weights for each of these inputs. 

One approach is to determine the weights simply by a 
function of distance of each input sample from the 
output point (i.e. inverse distance, inverse distance 
squared, etc). This method has first been attributed to 
Shepard [6]. 

An alternative is to use Delaunay triangulation and 
then fit a plane or other type of surface to each 
triangle to interpolate an HR grid point inside that 
triangle [7]. 

Other methods also exist and can be generalised as 
follows. First, N input pixels around the point we 
want to interpolate are selected (or all input pixels 
falling inside a radius r around the output point). 
Then, the value for the output point is calculated as a 
weighted combination of these known pixels. The 
weights depend on the interpolation method. Since 
different methods would produce different weights, 
the obvious question is “which weights are the best?” 

If the ideal HR image is known (i.e. ground truth), the 
weights that minimise the squared error could be 
computed. Such weights would be optimal in a least 
squares sense. The problem is that the desired output 

image is unknown; otherwise there would be no point 
to interpolate. 

The weights of a general linear interpolation filter do 
not depend on the image content, but on the relative 
positions of the available samples. Therefore, it is 
hypothesised that the optimal weights should depend 
only weakly on the actual image content. If this is the 
case, then the optimal weights derived from one 
image should be close to optimal (thus near optimal) 
on other images with the same offsets. Hence, a 
synthetic image can be used to derive the weights, 
which are then applied to the input images. 

In terms of implementation, such a method can be 
implemented as a two-dimensional finite impulse 
response filter, just as all the other methods described 
in this section. Hence, all these methods should be of 
similar computational complexity, apart from the 
overhead of calculating the coefficients for the “near 
optimal” method, which is run just once before the 
input images are processed. 

3 Results and discussion 

3.1 Experimental setup 
To assess the performance of the above methods, it is 
necessary to have a ground truth high-resolution 
image. If the low-resolution images are simply 
captured, the ground truth is unknown. Hence we 
used a method similar to Bailey [8] to generate a 
number of LR images from a single very high-
resolution image through a simple imaging model. 
Image ‘beach’ (as pictured in figure 2) was selected to 
be the test image – it has dimensions of 1700×1700 
pixels. To form LR images, the source image was 
filtered using a 20×20 square box average filter to 
simulate area integration, shifted by random (integer 
pixel) offsets, then down-sampled by a factor of 20. 
Finally, Gaussian noise was added to simulate the 
effects of various noise sources within the process. To 
form the HR image, the source image was filtered 
using the same filter, but down-sampled only by a 
factor of 10. Note that the high-resolution image is 
blurred to the same degree as the low-resolution 
images. This enables the performance of interpolation 
methods alone to be investigated, hence deblurring is 
left out. In addition, the exact known offsets were 
used to ensure there is no misregistration of the low 
resolution images. 

LR image 1 LR image 3 
LR image 2 LR image 4 
  Uniform HR grid 
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Figure 2: Image ‘beach’. 

The down-sampling procedure resulted in offsets that 
are integer multiples of 0.05 of a pixel. Four LR 
images were used to super-resolve a single HR image 
by a factor of two. Simulating every possible 
combination would be very time consuming; hence, a 
Monte Carlo simulation was used consisting of 
10,000 runs with randomly selected offsets. On each 
run the four randomly-offset low resolution images 
were combined into a single super-resolved image 
using one of the interpolation methods. The output 
image was compared to the ground truth image and 
the mean square error was calculated. 

3.2 Experimental results 
The results can be interpreted using an inverse 
cumulative distribution function (iCDF), also known 
as percent point function or quantile function [9]. To 
form this function, the errors from all the runs are 
ranked in ascending order and plotted, with the 
probability of 0.0001 associated with the smallest 
error and probability of 1.0 associated with the largest 
error. The probability, therefore, gives the probability 
that the interpolation error is less than the associated 
error. 

The inverse cumulative distribution functions of the 
errors for nearest neighbour, bilinear and optimal 
interpolations can be seen in figure 3. This plot shows 
the expected performance for a particular percentile. 
So for example for 50th percentile (the median), 
nearest neighbour interpolation is expected to yield 
MSE below 16.4×10-5. 

 

Figure 3: Inverse cumulative distribution functions 
(percent point functions) for nearest neighbour, 

bilinear, and optimal interpolations of image Beach. 

It can be seen that the bilinear interpolation performs 
significantly better than the nearest neighbour 
interpolation. This result is intuitive, as bilinear 
interpolation uses more input information (four input 
points in comparison to one input point). The line just 
under bilinear corresponds to the optimal result that 
could be achieved if the same four points as used by 
the bilinear are utilised. For a given image, and a 
selection of input pixels used to perform the 
interpolation, this optimal method will give the 
smallest mean squared error (MSE) that can be 
obtained using a linear interpolation filter and can be 
used as a benchmark to compare other methods. The 
proximity of bilinear to optimal result is a good 
indication that bilinear interpolation is always stable 
and utilises the input information extremely well. 

However, as already mentioned, the four input points 
used by the bilinear are not the ideal choice for super-
resolution. Points further away from the desired 
location carry less relevant information, so ideally we 
want to use closest possible input points. This is 
confirmed by figure 3: optimal interpolation using 
four closest points yields a factor of two improvement 
over using the same points as the bilinear 
interpolation. 
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Figure 4: Images ‘sleep’ and ‘disk’. 

Figure 4 shows the optimal performance (median of 
iCDF) using between 4 and 20 closest points. It is 
clear that although the performance improves with an 
increasing number of points, the gains from using 
additional points decreases with points further away 
from the point being interpolated. Between eight and 
ten points seem to be a good compromise between 
accuracy and computational effort. 

Two very different images were used to simulate the 
near optimal coefficients to test the hypothesis that 
coefficients derived from one image should work on 
another image. These are pictured in figure 5. 

 

 
Figure 5: Images ‘sleep’ and ‘disk’. 

Image ‘sleep’ was chosen because it differs from 
image ‘beach’, but has similar statistics. Image ‘disk’ 
was chosen because it has significantly different 
statistics to have some idea how image content affects 
the results. It is also a synthetic image that can be 
used to calculate the coefficients for an arbitrary 
image. 

Figure 6: iCDFs of optimal interpolation and 
interpolation using coefficients optimised on images 
‘sleep’ and disk’ (using 8 closest points) and optimal 

using 4 closest points for comparison. 

Eight closest points were chosen to be used to test the 
hypothesis. Figure 6 shows that using the coefficients 
optimised on images ‘sleep’ and ‘disk’ generate 
results very close to that of optimal. Image ‘disk’ has 
very different statistics, but it contains edges of all 
directions. This is possibly the reason why 
coefficients optimised on it offer reasonable 
interpolation results. These results are tabulated in 
Table 1. 
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Table 1: 1st, 2nd, and 3rd quartiles of iCDFs plotted in 
figure 6. 

Method 
(8 points) 

1st quartile 
(×10-5) 

2nd quartile 
(×10-5) 

3rd quartile 
(×10-5) 

Optimal 0.99 
(100%) 

1.25 
(100%) 

1.56 
(100%) 

Coefficients 
from ‘sleep’ 

1.06 
(107%) 

1.32 
(106%) 

1.64 
(105%) 

Coefficients 
from ‘disk’ 

1.15 
(116%) 

1.45 
(116%) 

1.83 
(117%) 

The previous experiment was performed in the 
absence of noise. This is seldom true in practical 
imaging systems. Even if most sources of noise are 
minimised, there is still quantisation noise. For a 
typical 8-bit system this would have a standard 
deviation of 0.29 of a greyscale level. To check 
whether noise has any significant effect on the 
predicted coefficients, we super-resolved the ‘beach’ 
image at different levels of additive white Gaussian 
noise using coefficients optimised on the same image 
but without noise. 

Table 2: Interpolating ‘beach’ at different noise levels 
using coefficients optimised on the same image at 

those noise levels and coefficients optimised without 
noise. 

Median MSE 
(×10-5) 

Noise s.d. 

Optimised at 
that noise level 

Optimised 
with no noise 

0 1.25 1.25 
0.5 1.76 1.90 
1 2.67 3.58 
2 4.90 10.4 
3 7.35 21.9 
4 9.91 37.8 

Second column of Table 2 shows the performance of 
the optimal coefficients at various levels of noise. As 
expected, the MSE increases with the noise standard 
deviation. Third column shows the performance of 
coefficients optimised without noise. It can be seen 
that the relative performance deteriorates as the noise 
is increased. 

Addition of Gaussian noise to the LR image 
formation model is investigated as a possible way of 
improving performance with noisy inputs. Five sets of 
coefficients are created, each optimised on image 
‘beach’ using noise levels of zero, one, two, three, and 
four. Each set of coefficients is applied to inputs with 
various levels of noise (between zero and 4) and the 
results are plotted in figure 7. 

Figure 7: Performance of optimal interpolation on 
image ‘beach’ in the presence of noise using 

coefficients optimised at various levels of noise. 

Figure 7 shows that for each input noise level, the best 
performance is achieved if the coefficients are 
optimised on the same level of noise. Now the same 
test can be applied to optimised coefficients on a 
different image. The procedure is exactly the same, 
only image ‘sleep’ is used to optimise the coefficients. 

Figure 8: Performance of optimal interpolation on 
image ‘beach’ in the presence of noise using 

coefficients optimised on image ‘sleep’ at various 
levels of noise. 

Figure 8 shows a similar trend with the coefficients 
being optimised on a different image. Hence, if the 
level of the noise in the input images can be estimated 
[10,11], the same amount (in the case of using image 
‘sleep’ it can be seen that a slightly higher noise level 
is required) of noise can be used to optimise the 
coefficients. It can also be noticed that using 
coefficients estimated on noise levels within   ±1 of 
the input noise level yield satisfactory results, so the 
input level of noise needs to be estimated only 
approximately. 
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4 Conclusions 
Non-uniform interpolation is a common procedure in 
image processing. This paper has focused on a new 
method of deriving the weights of a linear 
interpolation filter, which are optimal in a least 
squares sense. Based on the observation that the 
weights of a general linear interpolation filter depend 
only on the relative positions of the available samples, 
it was hypothesised that the optimal weights derived 
on one image would be near optimal on other images. 

Experimentation showed that the optimal weights, 
derived through minimising the squared error between 
a known high-resolution image and a set of 
synthetically-created low-resolution images, are 
relatively independent of image content. Hence, 
weights optimised on a known image, can be used to 
interpolate an unknown image with the samples 
positioned in the same place as the known image. 

While, in general, the desired high resolution pixel 
values are not available to calculate the optimal 
weights, this opens the possibility for near optimal 
interpolation using a synthetic image to derive the 
coefficients. 

It was shown that in the presence of noise, the 
coefficients optimised at the same noise level as the 
input are likely to yield better results. 

A future direction of work is to find an analytical way 
of deriving near optimal coefficients, hence 
decreasing the overhead. More experiments are 
planned to be completed to check the method on other 
test images and to use a variety of synthetic images to 
generate the weights. 
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Abstract
This paper presents a simple, easy-to-implement method for storing and accessing large images with
sizes of the order of gigapixels. The paper discusses the requirements for working with large images
and examines how these are met in common image file formats. We propose a storage format, based on
representing images as summed area tables, that addresses these requirements. Following a brief review
of summed area tables we show how they can be used for fast downscaling of images. The storage costs
of summed area tables are discussed. We report results obtained with a pratical system to analyse large
mosaics in automated microscopy and provide some benchmarks. The appendix gives practical tips on
how to avoid restrictions in the standard C libraries of 32-bit operating systems, which can limit the size
of files to 231 bytes.

Keywords: summed area tables, integral images, mosaicing, image representation

1 Introduction: Working with Large
Images

Large digital images with sizes on the order of
gigapixels are becoming more and more common
in fields such as biological and geospatial imaging.
Such large images are typically mosaics created
from a number of smaller images that are tiled or
stitched together.

Creating very large images and accessing them in
an efficient manner poses a data handling chal-
lenge because the images are typically too large
to be held in memory on a standard PC. Although
many of the commonly used image formats theo-
retically do not impose restrictions on image size,
users typically run into practical limitations when
the decompressed image is larger than the available
RAM of their workstation.

In this paper we present a method for storing and
accessing very large images based on summed area
tables [1]. The technique is easy to implement and
addresses some of the problems associated with
large images such as efficient access to subregions
and fast down-sampling.

Our adoption of summed area tables for storing
large images was driven by a project described in
a companion paper [2] in these proceedings. For
that project, we acquired large image mosaics of
histology sections using an automated microscope.
The images were then analysed at different scales
to extract and segment objects of interest. Af-

ter the analysis, much of the image data could
be discarded or converted to compressed formats
for archiving and therefore the increased storage
requirements associated with summed area tables
were not an issue (discussed in section 4.3.1).

The paper is organised as follows: Section 2 illus-
trates some of the challenges that arise when deal-
ing with very large images, and reviews how these
are addressed in common file formats. Section 3
reviews the definition of summed area tables and
shows how they can be used in fast calculations
of rectangle sums and thus for resampling of im-
ages. Section 4 presents our approach to working
with and assembling summed areas on disk. In
section 5 we present some results we obtained using
our method for a typical application in microscopy.
We conclude with a discussion in section 6.

2 Practical Size Limitations of Com-
mon Image Formats

Although most image file formats do not place re-
strictions on the image size, their practical use be-
comes limited for very large files. The limitations
fall into two major categories:

a) Implementation Issues:
Prior to reading images from disk, many com-
monly available image libraries try to reserve
a memory buffer that is large enough to hold
the whole image. If the image size is much
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larger than the available RAM, these memory
allocation requests will fail and the image will
not be read. Another implementation issue
arises from the use of signed 32-bit integer file
pointers, which restrict the maximum file size
to 231 bytes. In the appendix (section 7) we
give some practical hints on how to circum-
vent the latter problem on common operating
systems.

b) Image Representation:
For images that are too large to be loaded from
disk as a whole, it becomes important that
subregions can be accessed efficiently and that
downscaled versions can be created without
having to read in each individual pixel. The
choice of image representation (raw pixel data,
Fourier components, wavelets etc.) therefore
becomes important. We discuss the suitabil-
ity of common image representations in the
following section.

2.1 Image Representations

The image representations used in common graph-
ics file formats can be coarsely grouped into the
following categories:

• Pixel-based.
The simplest image representations are
pixel-based, with the intensity (or palette
entry) of each pixel stored individually in a
flattened array. For colour images, the colour
triplets are typically stored either interleaved
or as separate image planes. These image
representations are basically raw formats,
with some meta data in the image header
describing the image size, bits per pixel etc.
As each pixel can be individually addressed,
it is easy and efficient to access subregions
of the image on disk. However, extraction
of downscaled previews is costly, because a
smoothing kernel needs to be applied before
sub-sampling, requiring access to every pixel
(sub-sampling without prior smoothing leads
to aliasing). Common file formats that
support pixel-based representations are BMP,
PNG and TIF.

• Fourier or DCT-based.
Frequency-based representations which store
the Fourier or discrete cosine transform
(DCT) coefficients of an image naturally
lend themselves to down-sampling, because
only the low-frequency coefficients need to be
accessed to create a low-resolution overview
image. However, because the spatial context
is lost, subregions cannot be accessed quickly.

The most common format employing DCT
coefficients, JPEG, addresses this issue by
subdividing the image into small blocks
of 8 by 8 pixels and computing the DCT
coefficients on these. The small and fixed
size of these blocks limits scalability when it
comes to gigapixel-sized images.

• Wavelet-based.
Wavelet representations provide a decompo-
sition of the image into different scales while
retaining some of the spatial context. Thus
they allow for quick scaling and efficient access
to subregions. Common image formats sup-
porting wavelet representations are JPEG2000
and OpenEXR. Closely related to wavelet rep-
resentations are pyramids, which contain pre-
computed, low-pass filtered versions of an im-
age.

All these image representations can be compressed
without loss of quality using techniques such as en-
tropy coding, dictionaries or run length encoding.
However, the ability to address individual pixels or
frequency coefficients directly in the compressed
bit stream is lost, thus making access to subre-
gions less efficient. The Fourier, DCT and wavelet-
based representations also lend themselves to lossy
compression by suppression of coefficients with low
magnitude.

Of the image representations listed above,
wavelet-based image formats appear to be the
gold standard for working large files, because
they allow fast access to subregions and efficient
down-sampling. Moreover, they allow for
lossy compression, which can be an important
consideration when building image archives.
However, the relative complexity of wavelet-based
file formats such as JPEG2000, combined with
the lack of freely available implementations that
can deal with gigapixel-sized images, limits the
widespread application of this method. There are
commercial JPEG2000 (for example Kakadu [3],
ER Mapper [4]) implementations available that
support gigapixel images, but the pricing of these
libraries can make their use uneconomic for small,
one-off commercial projects.

3 Summed Area Tables

Summed area tables form an array representation
that allows for constant-time computation of pixel
sums within any rectangular sub-window of an im-
age. While the computational technique is likely
to have been known much earlier, Crow [1] was the
first to apply the technique to texture filtering in
computer graphics. For texture filtering, summed
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area tables form an alternative to pyramid-based
interpolation techniques such as MIP1-mapping[5].
In the computer vision community, summed area
tables are sometimes referred to as integral images,
a term introduced by Viola and Jones [6].

The following definitions are specific to the case of
2D images but they can easily be generalised to the
n-dimensional case.

3.1 Definition

For a given 2D image I, the corresponding summed
area table is computed as follows:

S(k, l) =
k∑

i=1

l∑

j=1

I(i, j), (1)

where I(i, j) is the greyvalue at pixel position (i, j).
From equation (1) it is obvious that the summed
area table is simply the (discrete) integral of the
greyvalues.

The complete summed area table for an image can
easily be computed using two passes, by first calcu-
lating the cumulative sums along all rows and then
calculating the cumulative sums along all columns
(or vice versa). This operation can be performed
in-place, that is without an additional buffer, and
requires 2nm additions for an image with n × m
pixels. This means that the computation of the
table is very fast because the cost scales linearly
with image size.

3.2 Fast Computation of Rectangle Sums

Given the summed area table S corresponding to
an image I, the sum of pixels in any rectangular
subregion can be computed using four table look-
ups and four additions:

a1∑

i=a0

b1∑

j=b0

I(i, j) = S(a1, b1)− S(a0 − 1, b1)−

S(a1, b0 − 1) + S(a0 − 1, b0 − 1) (2)

This is illustrated in figure 1. The mean greyvalue
within any rectangle of an image I can thus be
quickly obtained from S using equation (2) and
dividing by the area of the rectangle.

Note that by applying equation 2 to single-pixel
rectangles the original image can be reconstructed
from its summed area table.

1MIP stands for multum in parvo, “many in a small
space”.

Figure 1: Computing rectangle sums using
summed area tables.

3.3 Fast Resampling of Images

Because summed area tables can be used to calcu-
late the mean greyvalue within any sub-window in
constant time they lend themselves to application
as low-pass filters. Thus, if one wishes to down-
scale an image by a factor of n, one can divide the
image into n by n-sized blocks, calculate the mean
greyvalue for each block and then down-sample by
n. This is equivalent to convolving the original
image with an n × n-sized box filter before down-
sampling.

Heckbert [7] presents an extension to the original
idea that uses repeated integration of the original
image and an increased (but still constant) number
of table lookups to achieve filtering equivalent to
smoothing with triangular, parabolic and higher-
order kernels.

4 Using Summed Area Tables to
Store and Access Large Images on
Disk

Fast downscaling and efficient access to subregions
were some of the requirements we identified for
working with large images in section 2. The re-
sults from the previous section show that storing
summed area tables on disk fulfils these require-
ments: it takes nm/k2 hard disk read operations
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to extract a k-times downscaled version from an
n×m-pixel subregion, for arbitrarily large images2.

4.1 Storage Layout

On the hard disk (as well as in memory), the 2-
dimensional summed area table must be flattened
into a 1D structure. For our implementation, we
store the raw values of the summed area table as
a serial vector in row-major order, with a short
file header indicating the data type and the image
dimensions.

4.2 Colour Images

Extending the storage layout presented in the pre-
vious section to colour images is straightforward,
and can be achieved, for example, by interleaving
the colour triplets for each pixel or by storing the
three colour channels as separate planes.

4.3 Combining Multiple Summed Area
Tables

Because the goal is to work with images that are
too large to be held in RAM, the summed area ta-
bles have to be built up on disk. A simple method
for this is to first write all the raw pixel values into
the file at their respective array positions. Once
all the pixels are written, the summed area table
is then calculated in-place using two passes as de-
scribed in section 3.1.

In this section, we present an alternative, tile-based
approach for constructing the summed area table
on disk. This approach was useful for our appli-
cation in automated microscopy [2] where the tiles
correspond to the individual images acquired by
moving the microscope stage stepwise to positions
on a regular grid. The tile-based construction is
sketched in Figure 2 for combining tiles horizon-
tally.

In a first step, image tiles that are small enough
to fit into memory are converted to summed area
tables and written onto disk. During a second step,
the tiles are then read line-by-line. For each line,
the rightmost pixel value of the first tile needs to
be added to all the pixels of the next tile and so
on. The combined line can then be written to disk.

We omit a detailed discussion of vertical tiling of
the images. The same technique as for horizontal
tiling can be applied, with slight implementation
differences arising from the use of a row-major lay-
out for storage.

2In practise, the performance assessment is more compli-
cated because hard disk access is block-based and because
the costs for seeking and reading differ.

Figure 2: Combining summed area tables (denoted
as SATs) horizontally tile-by-tile. It is assumed
that the individual tables are stored in row-major
order on disk.

4.3.1 Storage Cost

When working with summed area tables, care must
be taken that the data type provides enough range
to store the summed pixel intensities without over-
flow. For unsigned 8 bit integer images, a 10 gi-
gapixel image can result in a maximum sum of
256 · 1010. This requires 42 bits of storage, there-
fore a 32-bit integer type is not suitable for large
tables. For gigapixel-sized image mosaics, the table
values thus have to be stored as 64-bit integers or
double-precision floating point values, leading to a
substantial storage overhead.

5 Results

We devised a simple implementation of the pro-
posed method in C. The implementation is naive
in the sense that it does not include any optimi-
sations, such as caching read and write operations
or taking into account the block-based nature of
file access. Table entries are represented as double
precision floating point values in this implementa-
tion.

5.1 Benchmarks

We conducted a number of benchmarks on a stan-
dard PC (Pentium 4, 2.8 GHz, 1.5 GB Ram, 80 GB
hard disk drive with 7200 rpm) running Windows
XP. While conducting the benchmarks care was
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taken that no other user applications placed a sig-
nificant load on the system. However, system tasks
may still have had some influence on the overall
performance. Also, both the hard drive and the op-
erating system cache data. In an attempt to reduce
the influence of caching on the benchmarks, the
different tests mentioned in sections 5.1.2 and 5.1.3
were interleaved, but caching may still have had
some effect on the results.

5.1.1 Assembling a 1-Gigapixel Image

We recorded the time needed to assemble a gi-
gapixel sized image from tiles using the method
described in section 4.3. The summed area table
was assembled from 32× 32 image tiles containing
1024 × 1024 pixels each. The procedure was re-
peated 5 times. On average, the time required for
creating the file was 52 minutes with a standard
deviation of 4 minutes. Reading from the source
tiles and writing to the final table was performed
line-by-line and occured on the same disk. The
performance could have been improved by reading
larger blocks and by using seperate disks for read-
ing and writing.

For comparison, we encoded the same gigapixel im-
age as a JPEG2000 image using a lossless wavelet
basis. The encoding was performed using a demon-
stration version of the ER Mapper JPEG2000 li-
brary [4] and took approximately six hours.

5.1.2 Downscaling

To assess the performance of downscaling using
summed area tables, we recorded the time required
for reading from disk and computing low-resolution
versions of our 1-gigapixel image at different scal-
ing factors. For each scaling factor, this was re-
peated 10 times. Figure 3 (top) shows the distri-
bution of the times required for the downscaling
as a function of the scaling factor. For each scal-
ing factor, the boxplots summarise the median,
the quartile ranges and the outliers of the time
distribution. In the double-logarithmic plot, the
median access times lie roughly on a line, as is
to be expected based on the complexity of the
downsampling operation discussed in section 4.

Note that the scaling factor shown for the hori-
zontal axis of the plot refers is the scaling factor
along each axis of the image. Thus, the area of the
downscaled image decreases as the square of this
factor.

5.1.3 Extracting subregions

To assess the speed at which subregions can be
accessed, we extracted square regions of different
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Figure 3: Benchmark results for downscaling of an
image (top) and for accessing subregions (bottom)
using summed area tables. See sections 5.1.2
and 5.1.3 for details.

sizes at full resolution from the summed area ta-
ble. For each square size, this operation was re-
peated 10 times with subwindows located at differ-
ent, randomly chosen positions within the summed
area table. The recorded access times are shown
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in Figure 3 (bottom) as a function of the width
of the extracted squares. As for the downscaling
benchmark, we use boxplots to summarize the time
distributions.

5.2 Application Results

In addition to benchmarking, we have successfully
applied the technique to a practical problem in
automated microscopy, reported in our compan-
ion paper [2] in this issue. For that project, we
scanned histology slides using an automated mi-
croscope. The resulting mosaic images were about
150 megapixels in size and were then analysed at
different scales.

6 Conclusions

We have presented a method to work with
gigapixel-sized images that is based on represent-
ing the images as summed area tables. We have
applied the technique in multi-scale analysis of
large mosaic images in microscopy.

The technique is attractive for small, one-off
projects that require the handling of large images
because it is very easy to implement and because
many freely available image libraries are not
suitable for the task. Technically, the method
is not as advanced as wavelet-based methods, in
particular the inflated storage requirements rule
out the use in scenarios where collections of large
images are to be archived. However, it can find
its niche in scenarios as the one presented in [2],
where much of the image data can be discarded
or compressed after analysis. In particular,
the conversion to summed area tables can be
performed relatively quickly in comparison to
encoding using wavelets.

Reducing the storage requirements of summed area
tables could be a fruitful area for future work. For
example, for many natural images, subtracting the
mean intensity value from each pixel could prevent
the area sums from accumulating to very high val-
ues, and would thus allow for storage using smaller
data types. Also, a compression scheme that re-
tains fast access to individual table entries could
lead to a much wider applicability of the technique.

7 Appendix: Large Files on 32-bit Op-
erating Systems.

Currently, all modern operating systems support
file systems that can hold individual files which
are larger than 231 bytes. Nevertheless, when
using the fseek() and ftell() functions in the
standard C library one runs into problems when

trying to move the file pointer by more than 231

bytes. These problems arise from the fact that
the file offset pointer is stored as a signed 32 bit
integer. To ensure correct operation with large
files on Unix-based systems (including Mac OS X),
one should resort to using the functions fseeko()
and ftello() or fseeko64() and ftello64()
instead. In addition, it may be necessary to
define one or both of the preprocessor macros
LARGEFILE SOURCE and FILE OFFSET BITS=64.
On 32-bit Windows systems lseeki64() and
telli64() provide equivalent functionality.
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Abstract 
CCD and CMOS image sensors are commonly used in industrial image processing applications. They are often 
described using measures such as frame-rate, resolution, dynamic range, sensitivity, and read noise. However, 
noise detail within a captured image has a significant impact on subsequent image processing and is much more 
complex than read noise alone. This paper presents a model of the combined noise sources present in current 
digital video cameras, and compares measured noise between a commercially available CCD video camera and a 
CMOS video camera. 

 

Keywords: CCD image sensor, CMOS image sensor, image analysis, noise measurement. 

1 Introduction 
Advancements in digital image sensors have led to the 
wide use of digital cameras in image processing 
applications. Many of these applications attempt to 
extract useful information from the images, which is 
fundamentally limited by the images’ signal-to-noise 
ratio (SNR). The acquisition and conversion of 
photons in CCD and CMOS sensors is well 
documented in the literature and there are many 
references to the sources of image sensor noise [1-4]. 
However, there is little work on the comparison of the 
noise characteristics of CCD and CMOS image 
sensors. This study aims to model and compare the 
prominent noise sources in these sensors by statistical 
measurement, providing an objective method to 
compare their noise performances. 

2 CCD/CMOS architecture 
An overview of CCD and CMOS image sensors 
pertinent to this study is given. Photons are captured 
and converted to charge in the photo detection 
process. The charge is amplified, sampled, and 
digitally enhanced for output. Figure 1 shows a 
typical digital image sensor for a CCD/CMOS digital 
camera system [3]. 

Light passing through the sensor optics falls onto the 
imaging sensor. Many image sensors use microlenses 
to increase the amount of light incident on the 
photodetectors [1, 3, 5]. This also helps to reduce the 
problem of vignetting where, due to the optical tunnel 
formed by the sensor manufacturing process, light 
entering the sensor at an angle that is not parallel to 
the optical axis is attenuated prior to reaching the 
photodetector. In many colour cameras the light 
passes through a colour filter array (CFA) in order to 
generate trichromatic images. The filtered light then 

enters the photodetectors where, depending upon the 
sensor fabrication method and design, approximately 
half of the incident photons are converted to charge 
[6]. 

Sensor
optics

Colour filter array
Colour filter planarization layer

Photodetectors

Microlens overcoat

Microlenses

Microlens spacer

Semiconductor elements
 (CMOS only)

 
Figure 1: The components of a typical digital image 

sensor. 

2.1 CCD image sensors 
There are several readout architectures used for CCD 
sensors such as frame-transfer (FT), interline transfer 
(IL), and frame-interline transfer. IL CCD is the most 
popular image sensor for camcorders and digital still 
cameras, but suffers from a reduced fill rate (photon 
capture area) due to charge storage buffers located 
beside each pixel [1, 7]. 

This reduction in fill rate varies, but fill rates between 
20-50% are not uncommon. The reduction is often 
compensated by using a microlens filter to increase 
the effective area of incident light collection. Figure 2 
shows a typical IL CCD readout architecture. The 
charge is read sequentially, with each charge moving 
along a column or row in a conveyer type fashion. In 
CCD image sensors the analogue-to-digital 
conversion (ADC), storage, and enhancement are 
performed on supporting integrated circuits (IC's). 
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Figure 4: The noise model for image capture in a standard CCD/CMOS camera. 
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Figure 2: Architecture of an interline-type CCD 

sensor. 

2.2 CMOS image sensors 
Current CMOS sensors can be divided into two main 
architectures – passive-pixel sensors (PPS) and 
active-pixel sensors (APS) [1, 3, 8]. Figure 3 shows a 
typical readout architecture for a CMOS PPS. Each 
pixel contains a photodiode and one MOS transistor. 
As in most CMOS image sensors, row and/or column 
decoders are used for addressing the pixels in the 
array. Although they have relatively high fill rates due 
to having only a single transistor, PPS devices suffer 
from high noise due to large capacitive bus loads 
during pixel readout. They are also prone to column 
fixed-pattern-noise (FPN) from variations in the 
manufacturing process of the column amplifiers, 
which can result in objectionable vertical stripes in 
the recorded image. 

CMOS APS can be divided into three main subtypes: 
photodiode, photogate, and pinned photodiode, where 
in each type three or more transistors are used in each 
pixel. APS typically have a fill rate of 50-70%, but 
the reduced capacitance in each pixel due to the 
transistor amplifiers leads to lower readout noise, 
which increases the signal-to-noise ratio (SNR) and 
sensor dynamic range (DR). The pinned-photodiode 
APS has currently been reported as the most popular 
implementation for CMOS image sensors [1].  

There are other types of APS available but they are 
currently not in widespread use. The logarithmic 
photodiode sensor [8] operates continuously and 

provides increased dynamic range from logarithmic 
encoding of the photocurrent. However, low output 
swing during low illumination and significant 
temperature dependence on the output are serious 
drawbacks limiting the use of this method. Fowler et 
al. [9] describe a ‘digital-pixel sensor’ that has 22 
transistors and ADC functionality at each pixel. 
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Figure 3: Architecture of a passive-pixel CMOS 

image sensor. 

3 Camera noise model 
The camera noise model is shown in figure 41. This 
model allows for the measurement of camera noise 
from the analysis of output images alone, which is 
necessary when evaluating an entire camera system 
where there is no access to the internal components of 
the camera. A description of each noise source is 
given in tables 1 and 2.  

The equation for CCD image noise capture, NCCD 
(from figure 4) is: 

NCCD=(I×PRNU+SNph(I)+I+PFPN+SNdark+Nread) 

 ×ND×Nfilt+NQ, (1) 

where I is the sensor irradiance. The equation for 
CMOS image noise capture, NCMOS (from figure 4) is: 

NCMOS=(((I×PRNU+SNph(I)+I+PFPN+SNdark+Nread) 

 ×AFPNgain+AFPNoff)×CFPNgain+CFPNoff) 

 ×ND×Nfilt+NQ. (2) 

                                                 
1 Currently unpublished. Details available from authors. 
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4 Method of Noise Measurement 
The digital filtering in all tests was either disabled or 
set to neutral, effectively reducing Nfilt to an identity 
function. The interpolated pixels are dependent upon 
the original pixels, and Bayer array demosaicing 
attenuation can be calculated by measuring the effect 
of the interpolated (averaged) pixels over the entire 
demosaiced image. Both calculated and measured 
results gave the following values for bilinear 
interpolation demosaicing attenuation: 

 0 73demosaic ,R R.σ σ=  

 0 75demosaic ,G G.σ σ=  (3) 

 0 73demosaic ,B B.σ σ= . 

where σx is the standard deviation prior to 
demosaicing, and σdemosaic,x  is the standard deviation 
of the demosaiced image. Quantization noise was 
shown to be dependent upon variation of image detail 

and was measured to have a maximum value of 
σ=0.29, in accordance with quantization noise theory 
[10]. 

Video images of a GretagMacbeth ColorChecker 
Color Rendition Chart2 (GMB color chart) were taken 
in an environment with controlled fluorescent and 
incandescent lighting3 and the chart was positioned 
such that it filled as much of the image frame as 
possible. The camera was deliberately set out of focus 
to reduce the effect of high-frequency content in the 
observed image that could affect the noise analysis. 
The illumination sources were positioned above the 
camera and directed towards the chart such that the 
image was free from direct specular reflection. For 
analysis of CCD camera noise a Unibrain Fire i400 
IEEE1394 camera was used, and for CMOS camera 
noise a uEye UI-1210-C USB camera was used. Both 
use Bayer CFAs, with images captured in their native 
resolutions of 640x480 pixels and 8-bits resolution 
                                                 

2 http://www.gretagmacbeth.com 
3 Lighting was empirically chosen such that the cameras’ RGB 

responses to grey-scale colours were similar. 

Table 1: Description of modelled CCD camera noise sources. 
Noise type Symbol Manifestation Description Dependencies 
Passive offset 
fixed-pattern 
noise. 

PFPN Spatial variance. Spatial offset of pixel values due to device 
mismatches during fabrication and their 
associated dark currents. Alternatively known as 
dark-signal non-uniformity (DSNU). 

Temperature, exposure 
time. 

Photo response 
non-uniformity. 

PRNU Spatial variance. The difference in pixel responses (gain) to 
uniform light sources, due to differences in pixel 
geometry, substrate material, and microlenses. 

Incident pixel 
illumination. 

Photon shot 
noise. 

SNph Temporal variance. Arises from random fluctuations in sampling of 
photons (Poisson noise). 

Incident pixel 
illumination. 

Readout noise. Nread Temporal variance. A combination of noise sources attributed to the 
reading of pixel information: reset noise, thermal 
noise (Johnson-Nyquist), flicker noise, transistor 
dark currents, and other minor contributors. 

Temperature, CCD 
readout rate. 

Dark current 
shot noise. 

SNdark Temporal variance. Arises from random fluctuations in the number of 
dark current electrons (Poisson noise). 

Temperature, exposure 
time. 

Demosaicing 
effect. 

ND Noise amplification 
or attenuation. 

Arises from the interpolation of the colour-filter 
array to generate RGB triplets for each pixel. 

Demosaicing 
implementation, 
combined sensor noise. 

Digital filter 
effects. 

Nfilt Noise amplification 
or attenuation. 

Arises from digital effects like gain, contrast, and 
gamma. 

Camera parameters. 

Quantization 
noise. 

NQ Additive noise, 
image content 
dependent. 

Truncation or rounding of signals adds noise that 
becomes prominent when there is little variation 
in the image compared to the quantization step. 

Variance of image data. 
Sets lower noise limit 
for non-trivial image 
content. 

Table 2: Description of additional modelled CMOS camera noise sources. 
Noise type Symbol Manifestation Description Dependencies 
Active offset 
fixed-pattern 
noise. 

AFPNoff Spatial variance. The active elements in each CMOS pixel have 
variations in offset that contribute to image noise. 

Temperature. 

Active gain 
fixed-pattern 
noise. 

AFPNgain Spatial variance. The active elements in each CMOS pixel have 
variations in gain that contribute to image noise. 

Predominantly 
temperature and 
incident pixel 
illumination. 

Column offset 
fixed-pattern 
noise. 

CFPNoff Spatial (across 
columns) variance. 

Most CMOS image sensors incorporate column 
amplifiers to readout column data in parallel. 
Amplifiers each have an offset that vary across 
columns. 

Temperature. 

Column gain 
fixed-pattern 
noise. 

CFPNgain Spatial (across 
columns) variance. 

Gain variation in amplifiers described in CFPNoff. Predominantly 
temperature and 
incident pixel 
illumination. 
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per R, G, and B channel. An image from the uEye 
camera is shown in figure 5. 

 
Figure 5: An example image of the GMB colour chart 

using the CMOS uEye camera. 

Images of grey-scale panels on the 4th row of the 
GMB color chart (panel numbers 19-24) were 
analysed. These represent a grey scale from ‘white 
(Munsell value 9.5) to ‘black’ (Munsell value 2). An 
area of 50 pixels by 50 pixels was extracted from the 
centre of the image of each panel for analysis. This 
ensured that the area of analysis was located within 
each panel so that edge effects from panel boundaries 
were avoided.  

Two calibration procedures were executed prior to 
measurement of noise content to provide a uniform 
basis for measurement: 

(i) Stuck or ‘hot’ pixels were identified by 
capture of an image with long exposure in dark 
conditions. The stuck pixels were removed from 
processing.  

(ii)  The camera was tested for sensor 
homogeneity. Images were taken with no illumination 
and total image noise was measured across the GMB 
panels 19-24.  

Environmental and sensor temperatures were 
monitored and non-temperature related experiments 
performed at an ambient temperature of 
approximately 22ºC.  

The standard deviation (σ) was chosen as the 
statistical measure for the analysis of image noise as it 
can be easily related to the magnitude of pixel 
variations. The mean intensity of each pane µp, taken 
as the mean of the extracted 50x50 panel, was used as 
a measure of I. For this study, 100 images achieve a 
95% confidence interval for the resulting image 
analysis.  

Three methods for noise analysis were formulated: 
analysis of temporal noise, analysis of spatial (fixed-
pattern) noise, and analysis of the total combined 
spatial and temporally varying noise for each row and 
column of image data. These three methods enabled 

the measurement of all noise components for constant 
exposure and temperature: 

(i) Temporal noise: 

σ  of temporal data, σt, for each pixel was calculated 
over the set of 100 images. 

σt for all pixels were then averaged, giving a value 
µ(σt) for the mean temporal variation for the panel. 

(ii) Spatial (fixed-pattern) noise: 

1. The mean of the temporal data, µt, for each pixel 
was calculated over the set of 100 images. 

2. A second-order polynomial fit for each column of 
µt was calculated and subtracted from the data to 
remove optical effects such as vignetting and 1/R2 
illumination fall-off expected from the use of a 
discrete illumination source.  

The residuals after subtraction of the polynomial-
fitted data were concatenated and σ calculated to 
determine a value of σ(µt) for the mean spatial 
variation for the panel. 

(iii) Total image noise: 

1. A second-order polynomial fit was calculated for 
each data row and column of an image of a GMB 
panel. The fitted line was subtracted from the data to 
remove optical effects such as vignetting and 1/R2 
illumination falloff expected from the use of a 
discrete illumination source. 

2. The residuals after subtraction of each fitted line 
were concatenated and σ of the concatenated data 
calculated to give row and column noise values σr and 
σc respectively. 

3. σr and σc for the panel were averaged over 100 test 
images to derive the final noise figures µ(σr) and 
µ(σc) for the panel for each image set. 

NQ and ND were measured on simulated images with 
various levels of added Gaussian noise. 

5 Results 
The noise quantities in tables 1 and 2 were measured 
and are listed in table 3. Figure 6 shows the total 
measured and modelled noise response for the i400 
CCD camera. All 3 channels exhibit the same trend, 
although at different offsets. The overall noise results 
illustrate a reasonable fit between the measured and 
modelled data. Only measured data values below 140 
were used as the camera response started saturating 
above this value. Figure 7 shows the modelled noise 
response for the uEye CMOS camera. The response 
between colour channels is consistent, although it has 
a different curve than that measured with the CCD 
camera. Overall the CCD camera exhibits more noise 
than the CMOS camera. 
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Figure 8 shows the relative magnitudes of the noise 
components for the blue channel of the i400 CCD 
camera. Quantization noise only becomes significant 
with noise variations less than σ=1, and so is not a 
major contributor to image noise in this camera. In 
low illumination conditions Nread dominates but 
becomes less significant with increasing illumination, 
as PRNU and SNph increase significantly. PFPN is a 
minor source of noise. The red channel response is 
similar to the blue channel’s, but the green channel 
exhibits a greater contribution from SNph and lower 
contributions from PFPN, PRNU, and Nread. 
Figure 9 shows the relative magnitudes of the noise 
components for the blue channel of the uEYE CMOS 
camera, which exhibits a more complex response due 
to the additional sources of noise. The reduction in 
PFPN in the CMOS camera is more than offset by the 
effects of AFPNoff, due to the active elements at each 
pixel (note the scale differences between figures 8 and 
9). Measured PRNU is significantly reduced in the 
CMOS camera, which is one of the major differences 
between the overall noise responses of the two 

cameras. In low illumination the noise in the uEye 
camera is dominated by Nread and AFPNoff. SNph 
becomes significant at higher illumination levels, with 
increased AFPNgain and PRNU as well. All colour 
channels exhibit similar noise-component responses. 
NQ sets the lower limit of measurable noise in real-
world digital images. 
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Figure 6: The total measured and modelled noise for 

the i400 CCD camera. 
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Figure 7: The total measured and modelled noise for 

the uEYE CMOS camera. 

6 Discussion 
The differences in response to photon shot noise, 
SNph, between the cameras illustrate the maximum 
number of photons that each camera’s image sensor 
can capture. A camera will scale its dynamic range to 
fit within a particular number range (0-255 in the two 
cameras tested), and so a lower photon shot noise 
coefficient results in a greater number of photons 
captured. Hence the CMOS camera (1/3 inch sensor) 
which has a shot noise coefficient of approximately 
0.1 for all colour channels is able to capture more 
photons than the CCD camera (1/4 inch sensor4) 
which has a noise coefficient of greater than 0.2. 

The CCD camera exhibits variations between colour 
channels, which may in part be due to the CCD 
camera having some internal colour balancing to take 
into account the design of the CCD. 

                                                 
4 The actual sensor size is less than the quoted ‘value’, as the 

historic measurement of sensor size is based on an analogue tube 
size, not the size of the image capturing element.  

Table 3: Measured CCD and CMOS camera noise 
sources at 22ºC ambient temperature. 

Noise 
quantity 

Measured CCD 
(σ) 

Measured CMOS 
(σ) 

PFPN R=0.30 
G=0.12 
B=0.25 

R=0.14 
G=0.10 
B=0.05 

PRNU R=0.010µR-0.008 
G=0.006µG+0.122 
B=0.013µB+0.024 

R=max(0, 
0.0038µR-0.57) 

G=max(0, 
0.0038µG-0.53) 

B=max(0, 
0.0038µB-0.63). 

SNph 
R

R=0 21 0 468. .µ +  

G
G=0 52 0 01. .µ +  

B
B=0 22 0 04. .µ −  

R
R=0 10 0 15. .µ −  

G
G=0 09 0 09. .µ +  

B
B=0 10 0 08. .µ −  

Nread R=1.61 
G=0.61 
B=1.24 

R=0.60 
G=0.58 
B=0.60 

SNdark =0 =0 
ND R=0.73R 

G=0.75G 
B=0.73B 

R=0.73R 
G=0.75G 
B=0.73B 

NQ ≤0.29 ≤0.29 
AFPNoff N/A R=1.00 

G=1.00 
B=1.15 

AFPNgain N/A R=1.003 µR 
G=1.003 µG 
B=1.002 µB 

CFPNoff N/A R=0.119 
G=0.091 
B=0.034 

CFPNgain N/A R=1.016 µR 
G=1.019 µG 
B=1.008 µB 
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Of particular interest is the PRNU response of the 
CMOS camera. PRNU only starts adding to the image 
noise at incident illumination greater than 
approximately 50% of the dynamic range of the 
sensor. The effect of CFPN is reasonably minor, but 
has a visual impact on the final image as the eye is 
sensitive to constant spatial variations (like vertical 
stripes from CFPNoff) that make the column noise 
appear worse than it actually is. 
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Figure 8: The relative measured magnitudes of CCD 

noise components in the blue channel of the i400 
camera. 
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Figure 9: The relative measured magnitudes of 

CMOS noise components in the blue channel of the 
uEYE camera. 

The overall noise quantities for both cameras have a 
roughly equal contribution from spatial and temporal 
noise sources. It may be possible to reduce spatial 
noises in software by subtraction of a calibrated 
spatial noise image, although care would be required 
as many sources of spatial noise are temperature 
dependent. Apart from quantization noise, the noise 
level under illumination is bound by photon shot 
noise. 

Selection of an appropriate sensor for industrial image 
processing depends on a variety of factors. In the case 
of the i400 and uEye cameras tested, the uEye exhibits 
higher consistency between colour channels and 
exhibits less noise than the i400 camera. 
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Pros and Cons of the Nonlinear LUX Color Transform
for Wireless Transmission with Motion JPEG2000
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2 Proposed System

2.1 System Description
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2.2 Initialization step
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2.3 Foreground extraction
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• 13V02Jh9:��
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25=t1�s�iO132$4�:jL�@B-0-0i<:<2$h�13)³:<+.-043)WK,2�1dV02�A0:<=�@,43P�+~@,L3w
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2.4 Reference image updating at ground
stationz

2 /�L32|13V02�L3@,+.2{Ld8dV02$+.2{@`L�h025K,25i<),-�2�h£:<=�� Y��?13)
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2.5 Reference image updating at the re-
mote station
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h0@W1d:<=0}~LN134M@W1d25},P`b

2.5.1 Regions to be updated
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2.5.2 Local quality coefficient computation
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2�85@B=���4d:�1d2,q

Ir =

Nb−1
⋃

i=0

Irbi Imask =

Nb−1
⋃

i=0

Imaskbi
� ´ �
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lqci =
NonZero(Imaskbi)
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2.5.3 Global quality coefficient computation

H*1�Rf4M@B+.2 t � 13V02 �t/�@Bi<:O1gP�8;)�2 �~85:O2$=`1MLC@,432{/�-
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2.5.4 Remote reference updating decision
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2.5.5 Blocks pulling
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13V�2?A0i<)98Mw9L_��:�1dV�@ qc },4d2$@W1d254l1dV�@B= θqc

��:Oi<i�A�2
/0-
h0@B132�hIb�T_V025= � 13V�2_=0),=9x �t/�@Bi<:O1gP�85)�2 �Q8;:<25=t1�),R
13V�:<L�A0i<)98Mw�:<LJRµ)`4d852$h�13)Qn52$43)�� qc = 0 ��:<=�),4Mh92$413) ��@B}.:O1�@,L � 1d432�@W1d2$h���b

3 Logarithmic color transform

3.1 LUX color space introduction

Dg=�13V�2.�`G�k*�?o,\,\`\�8;)0h9:O=�}�-�@,4N1m),=02 � 13V02.+�/0iO13:j8;),+ex
-�),=�25=`1p8;)`iO)`4S134M@B=�LNRf),4d+¤:jL�85@B4d4d:O2�h�)`/91�/�L3:<=0}?@"i<:O=02�@B4
8;)`iO)`4�134M@B=�LFRf)`43+ � 2$:�1dV0254 RGB → Y UV )`4 RGB →
Y CrCb � @Bi<i<)���:<=0}~@.432$K,254MLN:<A0i<2?8;)9h9:<=0}Q@,L��*2$iOi�@,LJ@,=:<434d25K,2$4dL3:OA0i<2�8;)0h9:O=�}£4d2$L3-�2�8�1d:OK,2$iOP`b©T_V�2�8;)`=tK,254ML3:O)`=
+~@W1d43:j8;2�L � Rf),4d�l@B4Mh³@B=�h�:O=�K,254MLN2 � )BR71dV02C:<4d432$K,254MLN:<A0iO2
8;)0h9:O=�}.@,432`q

T =





0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131





A = T−1 =





1.0 0 1.402
1.0 −0.34413 −0.71414
1.0 1.772 0





T_V02m=0)`=0i<:O=02�@B4�>�EJ ¬8;)`iO)`4*1d4d@,=�LFRf)`43+��fRf),4J>�)`}`@,43:O13V9x
+.:<8�V�EJ2�25 �132$=�LN:<)`=��e:jL~:<=�LN-�:O4d2$h�AtP³13V�2�A0:<),i<),}`:<8$@Bi
Vt/�+.@,= Kt:jL3:O)`={L3P9LF1d25+²� a :<}�bc¡t��bQT_V�2.V�/0+~@B= 25P,2~:<L
@m=�@W1d/04d@,i085),+.-04d2$LdLN:<),=eL3P9LF1d25+�@,=�h�1dV02�8;),+.-04d2$LdL3:O)`=
:jL�h9)`=02p=0)`=0i<:O=02�@B4diOP
q
1dV02l8;)`=02�134M@B=�Ldh9/�8;13:<),=?Rf/0=�8�1d:O)`=
+~@�P�A�2~h92$Ld8;4d:<A�2�h�AtP�@�iO)`},i<:Ow,2^Rf/0=�8�1d:O)`= � ��V0:<iO2e1dV02
@,8;13:<),=.)BR
V�),4d:On$),=`1M@Bi0@,=�heA0:<-�),ij@B4p8;25i<ijLJ�'�*25:<},Vt132$h~@�Ktx
254M@B}`2m@B=�h��*25:<},Vt132�h�h9:��
254d25=�852m4d2$L3-�b±�^+~@�P�A�2?+e)0h�x
25i<i<2$h³AtP�@|i<:O=02�@B4e+~@W1d4d:�y�iO:<w,2 T b³T_V02�i<),}`@,43:O13V�+e:j8:<+.@,},2�-043)08;2$LdLN:<=0}~�'>�DgGl��+.)9h92$i0:jL�w�=0)W��=^1d)?P�:O2$i<h~@B=
:<+e-�432�L3L3:OK,2?8;)`=`134M@,LN1_2$=0V�@B=�8;25+.25=t1�� ´ ��b

T_V0:jL�)`=02�>cDgG�:<LpA�@`LN:j85@,iOi<Peh92;s�=02�h~:<=.1dV0278;)`=`1d:O=�/0),/�L
85@`LN2�A�P{1dV0432$2�2 �t/�@W1d:O)`=�L$qQ@�1d4d@,=�LNRf),4d+ f Rf43)`+�13V�2:O=t132$=�LN:O1FP�L3-�@,852��'KW@B4d:j@BA0i<2 x �J1d)�1dV02~LN-�@`8;2e)BRp1d),=02�L �@B=U:jL3),+.),4d-0V0:jLN+ φ Rf43)`+ 1dV02³L3-�@,8;2�),Re13)`=02$L�:O=t13)@§i<),}`@,43:O13V�+e:j8�L3-�@,852¶�fKW@,43:j@BA�iO2 y ��@B=�h¤@B=¤:<=�K,254MLN2:<L3),+.)`43-0V�:<L3+ φ−1 �fRµ)`4�+.),4d2?h92;1M@B:<i<L � L3252.�±o��µ�;b
T_V02 LUX 85),i<),4eL3-�@,852�25yt1d25=�h�L�1dV02C>�DgG�+.)9h925il13)
V�@B=�h9iO2�8;)`iO)`4dL �':ªb 2,b � Y CrCb ��b a ),4C1dV�@W1�-�/043-�)tLN2 �),=0i<P¶1dV02�8;)`+.-�)`L3:�1d:O)`=�Rf/0=�8;13:<),= Φ = φ ◦ f :<L�)BR-04M@,8�1d:<8$@Bi�:O=t13254d2$LN1$beT_V�2e:jLN)`+.),4d-0V0:jLN+ Φ -043)WK�:jh92$Lm@iO)`}`@,43:O13V0+.:j8�1d4d@,=�LNRf),4d+¶=0),4d+~@Bi<:On$2$h"AtP713V02p+~@Wy9:O+�/�+
134M@B=�L3+.:�13132�h�iO:<},Vt1$q

Φ : x → y = M ln
¡

x0

x

¢

Φ−1 : y → x = x0 exp
¡

− y

M

¢

��V0254d2 x ∈ ]0 · · ·x0]
:jLp@�85),=`1d:O=�/0),/�Lp},4M@�P�i<25K,2$i � x0 ∈

]0 · · ·M ] :jL�1dV027+.@By9:O+�/0+ 1d4d@,=�LN+.:O1N1d2$h~i<:O}`V`1l@,=�h M:<Ll13V�2?h9P�=�@B+.:j874d@,=0},27)BRS},4M@�P.i<25K,2$i<Lm�f1gP�-�b M = 256Rf),4 �BxrA0:O1J8;)0h9:O=�}t��b

a :O}`/04d2m¡�q�]l:<),i<),},:j85@BiI@B=�@Bi<),},P`b

a 4d),+�@�+~@W13V�25+~@W1d:<8$@Bip-�),:<=`1^)BR�K�:O2$� � 13V02�h9:j@B}`4d@,+
A�25i<)��¬V02$iO-�L"/0=�h0254dLN1M@B=�h�V0)W�U1dV02 LUX :jL7A0/�:OiO1mA�P
8;)`+e-�)tLN:O13:<),=�),R�Rf/0=�8;13:<),=�L$q
(R,G,B)

Norm
−→ (r, g, b)

Ψ
−→ (l, u, x)

Denorm
−→ (L,U,X)� �`�

3.2 LUX forward transform

a :O4MLF1 � 8;)`iO)`4J8;)`+e-�)`=025=t1dLJ@,432?=0),4d+~@Bi<:On$2$hIblTc)Q@`h0@B-01
13V02Ch9P�=�@B+.:j8Q4M@B=0}`2 � 13V�2�=0),4d+~@Bi<:On�@W1d:O)`=�85),=�L3:<LN1dL�:<=
1g�l)?LN132$-�L5qc1d4d@,=�LNij@W1d:<),=^)BRIh9P�=�@B+.:j85L�@B=�he432�L385@,i<:O=0}"),R
13V02��t/�@,=`13:O13:<2$LJ�?b 4$b 1$bp13V02$:O4�+~@Wy9:O+�/�+¢KW@Bi</02$L$bl6�:O=�8;2
(R,G,B) ∈ [0,M [× [0,M [× [0,M [ :<=�13V02?h0:<Ld8;4d2;1d285@`LN2 � 1d4d@,=�LNij@W1d2$h �t/�@,=`13:O13:<2$L (r, g, b) @B4d2�h92;s�=�2$h�13)LF1d:<8Mw�13)~1dV02�:O=t132$43KB@Bi ]0,M ] @,LJ4d2 �t/0:<432$h�A�P�13V02^>cDgG13V02$),4dP � P�:<25ijh9:O=�}³=0),4d+~@Bi<:On$2$h �t/�@,=`1d:�1d:O2�L ¡

R,G,B
¢ b

>�251 (r0, g0, b0)
A�2�13V02e+.@By9:O+�/0+�KW@,iO/02�L�)BR (r, g, b) bz

2?V�@�K,2`q
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r = R + 1 g = G + 1 b = B + 1
R = r

r0

G = g

g0

B = b
b0T_V02$=~1dV027=0)`=0i<:O=02�@B4p134M@B=�LFRf)`43+ Ψ ��V0:j8dV�:jLp13V02"85),+ex-�)`L3:O13:<),=¶)BR�13V�432$2�Rf/0=�8�13:<),=�L Φ−1 ◦ T ◦ Φ +~@�P§A�28;)`+.-0/9132�h�@`L5q

l = R
t11

G
t12

B
t13

u = R
t21

G
t22

B
t23

x = R
t31

G
t32

G
t33

��V02$432 tij
@,432?8;)�2 �~85:O2$=`1ML_)BRS+~@W1d43:Oy T b

6�)~R'@B4 � 1dV0:<L�i<),}`@,43:O1dV0+e:j8m+e)0h925ic�l),4dw�L�),=�iOP�Rf)`4J-�)tLFx
:O13:<K,2�KW@Bi</02�L�)BR�8MV04d),+.:<=�@B=�852$L$b|T�)�1d@,w,2�@`858;)`/0=`1^),R
13V�27-�)`LdLN:<A0i<Pe=02$}`@W1d:OK`2JKB@Bi</02$Lp),RI13V02m8dV�43)`+.@B13:j8J85),+ex
-�),=�25=`1ML � �*2�85@B=�/�L32"1dV02mRf),i<iO)W��:<=0}e4d2$LN134d:j8�13:<),=cq

u =

½

u
2

:�R u ≤ 1
1 − 1

2u
:�R u > 1

x =

½

x
2

:OR x ≤ 1
1 − 1

2x
:OR x > 1

a :O=�@Bi<iOP � @�-04d),-�254.h925=0)`43+~@,iO:<n$@B13:<),=�LN132$-³P�:<25ijh0L�1dV02
13V�432$2m=0),=�iO:<=02$@,4�85),i<),4�8;)`+.-�),=025=t1dL ∈ [0, 255] q

L = Ml − 1
U = Mu − 1
X = Mx − 1

�F[$\t�
T�)"L3:O+.-0i<Pm1dV02lk ��bj�F[�\`� � �*2l/�L32*13V02lRf),i<iO)W��:<=0}72;y9-04d2$LNx
L3:O)`=�1d)~8;)`+.-0/9132m13V�2�>cEJ URf)`43�l@,4dhQ1d4d@,=�LFRf)`43+Cq

L = (R + 1)t11(G + 1)t12(B + 1)t13 − 1
U = (R + 1)t21(G + 1)t22(B + 1)t23 − 1
X = (R + 1)t31(G + 1)t32(B + 1)t33 − 1 �F[,[��

3.3 LUX inverse transform

T_V02?:O=�K,254MLN2m)BRSk ��bj�F[`[��l:<L?q

R = (L + 1)a11(U + 1)a12(X)a13 − 1
G = (L + 1)a21(U + 1)a22(X)a23 − 1
B = (L + 1)a31(U + 1)a32(X)a33 − 1

�F[�o`�

��V02$432 aij
@B4d2�85)�2 �Q8;:<25=t1dLQ),R?:O=�K,254MLN2�+.@B134d:�y A =

T−1 b.Dg={),/04?2;y9-�254d:<+e2$=`1 � �*2./�LN2��N[,[��"@B=�h��N[�o`�J1d)
-�2543Rf),+�13V02.Rf),4d�l@B4Mh�@,=�h|:O=�K,254MLN2.>�EJ  8;)`iO)`471d4d@,=�LNx
Rf),4d+ 4d2$L3-�2$8;13:<K,25i<P,b

4 Experimental results
T_V02JLNP9LN1325+ V�@,L�A�252$=e:<+e-�iO2$+e2$=`1d2$he:<=`1d)"13V02�2$+�A�2$h�x
h92�hCh925K�:j8;2Q�f�*)`43w�:<=0}e��:O13V�@eGl(7[�\BZeRf),4d+~@W1�A�)t@B4Mh���b
T_V0:jL�),=02�:jL�+~@,:O=0i<P�A�@,L32$h�),=¤@§8$@B+.254M@ � @¶(*G*E
@B=�h£@���:O4d25i<2$LdL~1d4d@,=�LN+.:jL3L3:<),=£h925K�:j8;2,b T_V02|L3P9LN1325+
85@,=�8;/04d432$=`1diOP|L325=�h�@B= :<+~@B},2Q@W1^@C4d@B132~)BR_)`=02~:O+ex
@B}`2�-�254mLN2�8;),=�hC13V�43)`/0},V�13V02 � 60o,¡`o.-�)`4N174d2$LN134d:<8;132$h

a :O}`/0432 Z�q H -�@B4313:j8;/�i<@,4�4d25},:<)`= 8;)9h92�h ��:�1dV
�,Gpk*�?oB\`\,\ ��� Dl)`-913:<),=�@B1�A0:O174d@B132 0.1bpp(1 : 240) q=0),=�iO:<=02$@,4~85),i<),4e1d4d@,=�LFRf)`43+ RGB → LUX �µ1d),-���v
LF1M@B=�h�@B4Mh�8;),i<)`4.134M@B=�LNRf),4d+ RGB → Y CrCb �'A�)B13x13)`+~�;b

����� �����
a :O}`/0432 ´ q � 2$85),=�LN134d/�8�1d2$h :<+~@B}`2$L$q�@t�§LF1M@B=�h�@B4Mh
8;)`iO)`4_1d4M@B=�LNRf),4d+°� RGB → Y CrCb �;v�A�� LUX 85),i<),4
134M@B=�LNRf),4d+Cb
13) �,Y`\,\³A0-�L$b a ),4�2;y9-�254d:O+.2$=`1d@,i"1d2$LN1dLC�l2 /�LN2�hUo
Gl(lL$b a ),4��,G�kl�?oB\,\`\�25=�8;)9h9:<=0}"�*2_/�L32$h�13V02	�?@BwW@`h9/
6 �
�²�����������������������������������! �"���#��$�%&�(') +*��;b�T_V025=
�*2³8MV�@B=�},2$h�13V02�LN1d@B=�h0@B4Mh�iO:<=02$@,4�85),i<),4�134M@B=�LFRf)`43+
AtP LUX b

z
2�85@B=�L3252�),= a :<}�b�Z�13V�@W1 LUX }`:OK,2�L

@|A�251N132$4Q8;)`iO)`4e4d25=�h9254d:O=0}��'432$@,4.iO:<},Vt1~),=�iO25Rµ1M�^1dV�@B=
13V02CLN1d@,=�h0@B4Mh�8;)`iO)`4�1d4d@,=�LFRf)`43+ �fV02$432��l2�V�@�K,2�/�L32$h
13V02.:<4d432$K,254MLN:<A0i<2�),=02���b a :<}�b ´ LNV�)��JLm@�4d2$L3/0i�1?)BRp1dV02
432�8;)`=�LF1d43/�8;132�h�:<+~@B},2�@B1J13V02^h92$85)9h92547LN:jh92,b�T_V02�L3:On$2
)BRm1dV02�:<+.@,},2�:<L 320 × 240 ��:O13V 8 A�:�13x�85)9h9:O=�}�-�254L3@,+.-0iO2`bJD�1":jL78;)9h02$h�),=�@~i<)W�UA0:O1"4d@B132�85),+.-04d2$LdLN:<),=
0.1bpp b�T_V02�G*69X � :jL�/�L32$he13)�2$KW@Bi</�@B132_13V02�4d2$L3/0i�1p)BR432�8;)`=�LF1d43/�8;132�hC:<+~@B}`2�/�LN:<=0}�13V�2eLN1d@,=�h0@B4Mh�8;),i<),4"@B=�h
LUX b�T_V�2QG*60X � 85),+.-0/91M@W1d:O)`={Rf)`4^>cH�G*6-,~K�:<h92$):<L�},:<K,25=�)`= a :<}�b�Y0b

z
2�85@B=CL3252"1dV�@W1�1dV02�>cE� ¬8;)`iO)`4

134M@B=�LNRf),4d+¢4d2$L3/0iO17:<L7A�2;131325471dV�@B=�13V02eLN1d@,=�h0@B4Mh�8;)`iO)`4
134M@B=9Rf)`43+Cb

z
2�}t@B:<=³A�251g�*2$25= 1 @B=�h 5dB � A0/01.13V02@�K,2$4d@,},2�8;)`+.-0/91d@B13:<),=�1d:O+.2�:jLQs�K,2�1d:O+.2�L�+e)`432 � @`L

LNV�)���=CTS@BA�bI[`b
.0/21 �436587:9<;>=�?A@CBEDF�4�!;HGI�(9<;HGKJ�L�MHM4N-OKPHPRQHQ�Q-S�T!U4VXW(Y�Z�[H\4T�]6^�S

_ Ya`b;HG�c6GI;�d+egf6eg3+hi�a7Ij�k8l6jm36nmjm7-ego	�4h�jm7�p(qrj 1 ��d�js�4Dg7<;29Ij�7t9<jmfu;Hl6G
�4DghH;HGte 9 1 owvxe 9 1 9 1 jy7<jmk8l6jm36nmjm7z��dH�4egD{�4�6Dgj��(9&L�MHM4N-OKPHPX|�}+^mQHQHQ:S
|mY�\�S�TH~8\�S�Z�[8PX|I��\4��[8���([H�4T8[4�+�([X�4P
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TS@BA0i<2.[,q�HcK,2$4d@,},2m8;),+.-0/91M@W1d:O)`=�13:<+e2Q�':<= ms �l/�=�h9254�>�:<=t/9y�L3P9LF1d25+Cb(*)`i<),4�T�4d@,=�LFRf)`43++.2513V0)9h�L G_(£H � � [,b Zt�m¯�n k�+�A�2$h0h02$hCGl(7[$\,ZQ(*25i<254d),= �`\,\t�m¯Jn
6�1d@B=�h0@B4Mh [ �,\ o ´ \

LUX Y,\`\ �,\`\

a :O}`/04d2UY�q G*60X � 85),+.-0/91M@W1d:O)`= 432�LN/0iO1§),R >cHJGl6
K�:<h025) � 85),+.-04d2$LdLN2$h�@,=�h�1d4d@,=�LN+.:O1N1d:O=�}|:O+~@,},2�@W1 1 :
240 4M@W1d:<).8;),+.-04d2$LdL3:O)`=�@B=�h 1img/s 432�LN-�2�8�13:<K,25i<P
5 Discussionz
2"=�)B132"13V�@B1 LUX :jLl=0),1�@eLN1d@,=�h0@B4Mh~134M@B=�LNRf),4d+�),R13V�2_�,Gpk*�?oB\`\,\�LN1d:Oi<i�:<+.@,},2l85)9h9:O=�}"L38MV025+.2`bST_V02l/�L3254
13V�@W1�V0)`-�2$Lc1d)7/�LN2_@B=e@�KB@B:<i<@,A0iO2pV�@,4dh0�l@B4d2*�,G�kl�?oB\,\`\
8;)0h9254")`=�1dV02.+.@,43w,251":jL"�*2�h9},2�h�A�2$8$@B/�L32�1dV02 LUX8;)`iO)`4Q1d4d@,=�LNRf),4d+ :<L�=�)B1�:<+.-0iO2$+.25=`1d2$hIb T�)�@`858;)`+ex
-0i<:<L3V£1dV02{:<=tK,254ML32|8;)`iO)`4�134M@B=�LNRf),4d+ � :O=�},2$=0254M@Bi�1dV02
+~@Wy9:<+.@,i�KB@Bi</02$LS),R�1dV02�85),i<),4MLSh9P�=�@,+e:j8l4d@,=0},2l��:Oi<i9A�2
L325=`1S13)�1dV02lh92�8;)9h0254SL325-�@,4d@B132$iOP7Rf43)`+�13V�2l85)9h92$LN134d2$@,+
8;)0h92$hCAtP��,G�kl�?oB\,\`\0b�T_V02$=C1dV02^8;)`+e-�/91d@B13:<),=C13:<+.2
)BR LUX :jLJK,254dP�2;y9-�25=�L3:<K,2Q�ªLN2$2�T�@,A�bc[���b�XJ2$K,254313V025x
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Abstract 
Local descriptors are being widely used in many applications such as object recognition and image registration. 
Among many local descriptors, SIFT (Scale Invariant Feature Transformation) is one of the most popular 
descriptors due to its robustness under various image transformations. For better matching performance, 
improved local descriptors that combined the SIFT and other description methods have been recently proposed, 
for example PCA-SIFT and GLOH.  

In this paper, two moment-based local descriptors are proposed and their performances are compared. The 
keypoints extracted by SIFT are combined with each moment based image descriptor. Zernike and ART are 
adopted to generate descriptions for keypoint regions. Both are appropriate for describing the contents of blob-
like regions defined by SIFT keypoints since both have a set of basis functions that are defined in polar 
coordinates. Through experiments that took into account scale, rotation, and viewpoint changes, it was proven 
that the proposed local descriptors outperform the original SIFT algorithm. 

 

Keywords: local descriptor, ART, Zernike 

1 Introduction 
Due to their invariance under geometrical transforms 
and robustness to occlusions, local descriptors are 
vigorously employed in diverse areas such as pattern 
recognition, machine vision, and computer graphics. 
For example, they play important roles in solving 
problems such as object recognition [1], image 
retrieval [2], and the creation of panoramas [3]. For 
these reasons, there have been many studies on local 
descriptors [4]. In a comparative study conducted by 
Mikolajczyk and Schmid, SIFT was proven to be the 
most stable local descriptor under geometrical 
transformations [6][5][2].  

SIFT’s calculation consists of two parts: 1) localizing 
keypoints invariant under geometric transforms and 2) 
extracting descriptor for selected keypoint regions [7]. 
For better matching performance of SIFT, there were 
several studies that replaced only the descriptor part 
while the original keypoint obtained using the SIFT 
algorithm was kept intact. 

A method that employs, instead of the gradient-based 
descriptor of the original SIFT, PCA combined with 
the SIFT keypoints was proposed, and named PCA-
SIFT. Compared with the original SIFT, PCA-SIFT 
showed better performance under geometrical image 
transforms including scale and rotation. 

A similar method, named GLOH has been suggested 
as an alternative. GLOH also uses the SIFT keypoints, 
but employs generated descriptors in a different way 
[9]. GLOH computes gradient description consisting 
of three histogram bins in the radial direction and 
eight in the angular direction, whereas the original 
SIFT uses four bins for each of the x and y axis. 
GLOH showed better matching performance than the 
original SIFT under various image transformations. 

In this paper, we propose new local descriptors that 
combine SIFT keypoints with moment-based image 
descriptors. Zernike moments [13] and ART (Angular 
Radial Transform) coefficients [10] are utilized as the 
image descriptors. Both Zernike and ART are 
computed in polar coordinate systems; hence it is 
natural to use these moments to describe the blob-like 
area defined by SIFT keypoints. 

This paper is organized as follows. Chapter 2 provides 
a brief explanation of each of algorithm employed in 
this paper.  Chapter 3 describes how SIFT keypoints, 
Zernike moments and ART are utilized for local 
description. Chapter 4 compares the performance of 
the proposed method with the previous methods 
(SIFT and PCA-SIFT) for real images. The 
experimental conditions include image scaling, 
rotation and view point changes via affine transforms. 
Finally, chapter 5 concludes this paper. 
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2 Background 
In this section, a brief review of the algorithms 
adopted for the proposed method is provided. That is, 
SIFT keypoints and two moment-based descriptors, 
Zernike and ART. 

2.1 SIFT 
The SIFT, which was proposed by Lowe [7] combines 
a scale invariant keypoints detector and a descriptor 
based on the gradient distribution in the regions 
defined by detected keypoints. 

The calculation process of SIFT can be divided into 
two parts: 1) selecting geometrically invariant 
keypoints, 2) creating local description of neighbour 
pixels. 

First, a scale space of the input image is built by 
successive Gaussian convolutions with different 
variances. Then, DoG (Difference of Gaussian) 
images that approximate the LoG (Laplacian of 
Gaussian) image are generated from these scale space 
images.  

Equation (1) represents the Gaussian convolution 
used to build the scale space. The DoG images are 
obtained by subtracting two Gaussian images as 
shown in Equation (2).  

( , , ) ( , , )* ( , )L x y G x y I x yσ σ=  (1)
( , , ) ( ( , , ) ( , , ))* ( , )D x y G x y k G x y I x yσ σ σ= −

( , , ) ( , , )L x y k L x yσ σ= −

( , , )L x y σ

( , , )L x y kσ

2( , , )L x y k σ

3( , , )L x y k σ

( , , )D x y σ

( , , )D x y kσ

2( , , )D x y k σ

……… ………

( , , )L x y σ

( , , )L x y kσ

2( , , )L x y k σ

3( , , )L x y k σ

( , , )D x y σ

( , , )D x y kσ

2( , , )D x y k σ

……… ………

 (2)

Finally, local extrema in the DoG image are 
determined as keypoint positions. Since the keypoints 
are selected as the extrema points in a scale space, the 
same positions can be localized under scale change 
and rotation of the images. The size of the Gaussian 
kernel of the local maximum is used as the scale of 
the keypoint. The scale value is used to define the 
same area around the keypoint undergoing scale 
change.  

 

Figure 1. Calculation of DoG images and keypoints 
localization. Local extrema are selected as keypoints 
through comparison with 26 neighbours in 3x3 
regions at the current and adjacent levels. 

Figure 1 shows the process of keypoint localization.  
After DoG images are calculated in the scale space, 

keypoints are selected only if they are larger than all 
of these neighbours or smaller than all of them. 

 
Figure 2. Selected local extrema in a DoG pyramid. 

 Figure 2 shows the SIFT keypoint vectors extracted 
from an image. In the figure, the origin of an arrow 
represents the position of a keypoint, and the direction 
of an arrow indicates the main orientation of the local 
area corresponding to the keypoint. The scale of the 
local area corresponding to each keypoint is expressed 
by the length of an arrow. 

Each of the local areas is defined by keypoints in 
consideration of the variance of a DoG image where 
the keypoints are selected. In an area around a 
keypoint, the descriptor is created by sampling the 
magnitudes and orientation of the image gradient. It is 
represented by a 3D histogram of gradient locations (x 
and y direction) and orientations.  

 
Figure 3. Descriptor creation process. The histogram 
of gradient consists of a total of 128 bins, which 
include 4 bins for each location in the x and y 
directions, and 8 bins for orientation. 

The image on the left in Figure 3 is an example of 
extracted gradient values. The direction and 
magnitude of each of the gradients are expressed with 
an arrow. The image on the right shows orientation 
histograms summarizing the contents over 4x4 
subregions of the image on the left, with the length of 
each arrow corresponding to the sum of the gradient 
magnitude near that direction within the region.  

2.2 Zernike moments 
Zernike polynomials are a set of complex polynomials 
that form a complete orthogonal set over the interior 
of the unit circle [13]. 

Its basis function Vnm(x, y), of order n and repetition m 
is defined as follows. 

( , ) ( , ) ( )exp( )nm nm nmV x y V R jmρ θ ρ θ= =  (3)

In this formula, n is zero or a positive integer, and m 
is an integer that satisfies n-|m|=(even), and |m|≤n. ρ is 
the distance from the origin to point(x, y), and it is 
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valid over the range of 0≤ ρ≤1. Also, θ is the 
magnitude of the angle between point (x, y) and the x 
axis. 

Rnm(ρ), real polynomials of radial direction for the 
Zernike basis function, is defined as in equation (4).  

( | |) / 2
2

0

( )!( ) ( 1) | | | |!( )!( )!
2 2

n m
s n

nm
s

n sR n m n ms s s
ρ ρ

−
−

=

−
= −

+ −
− −

∑

 

(4)

Figure 4 is a visualized example of the basis function 
of Zernike moments. It represents the real part of the 
basis function when m is even. 

Using this basis function, a Zernike moment about the 
image function f(ρ, θ), which is defined on the polar 
coordinate, is expressed as 

*1 ( , ) ( , ),nm nmunit disk

nZ V fρ θ ρ θ
π
+

= ∫∫  (5)

where V*
nm is a complex conjugate of Vnm. 

Each of calculated moments becomes a component of 
the moment vector. The similarity distance of 
between two Zernike moment vectors is calculated by 
summing up the weighted absolute differences of each 
moment, like the formulas in equation (6), 

1

0
( , ) [ ] [ ] ,L

z i Ai
d A B W M i M i−

=
= × −∑ B

 (6) 

where L is the dimension of the Zernike moment 
vector, and M[i]s are the ith moment of each moment 
vectors, respectively. The weight, Wi can be the 
variance of each moment in the images, or it can be 
simply be set to 1. 

2.3 ART 
ART (Angular Radial Transform) is an orthogonal 
transform using a basis composed of sinusoidal 
functions on a polar coordinate system [10]. ART 
coefficients are calculated from the convolution 
between basis functions and image functions of a 
polar coordinate. A coefficient, of order n in the radial 
direction and m in the angular directions, can be 
expressed as follows. 

2 1 *

0 0

( , ), ( , )

( , ) ( , ) ,

nm nm

nm

F V f

V f d d
π

ρ θ ρ θ

ρ θ ρ θ ρ ρ θ

=

= ∫ ∫
 (7)

where, f (ρ, θ) is the image function on the polar 
coordinate, and Vnm (ρ, θ ) is the basis function of ART. 
Vnm(ρ, θ) can be divided into functions of radial 
direction Rn (ρ) and angular direction Am (θ), as in 
equation (8). 
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(8)

Figure 5 shows a part of the basis functions as an 
image. 

 
Figure 5. Image of real part of ART basis function. 

This figure shows basis functions up to the 4th order in 
the radial direction and up to the 2nd order in the 
angular direction. The ART basis is similar to the 
Zernike basis in that it also consists of complex 
polynomials; however, Figure 5 shows an image only 
of the real part. 

ART coefficients are used as descriptors after being 
normalized by n=m=0 coefficient components, and 
the similarity among descriptor vectors is determined 
by the distance between two vectors, dA (A, B). 

2
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a dd A B ART i ART i
NM

−

= −
− ∑ B

d
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3 Proposed Local Descriptor 
In this section of the paper, the proposed local 
descriptor, which combines SIFT keypoints and the 
moment-based descriptors, is described. 

Since the SIFT algorithm selects keypoints from the 
local extrema of DoG (Difference-of-Gaussian) in a 
scale space of images, the keypoints can be extracted 
at the same point even when the image suffers 
geometric transforms such as scaling and rotation. 
Also, a keypoint keeps track of the information of its 
scale and the dominant orientation that are used to 
generate identical descriptions for the keypoint region. 

As mentioned in the previous section, some of the 
previous studies employed only the SIFT keypoints 
and utilized other descriptors (rather than the original 
SIFT descriptor) to improve its matching performance. 
Similarly, the proposed method utilizes SIFT 

 
Figure 4. Real part image of Zernike basis function. 
The basis function of Zernike consists of complex 
polynomials. This figure visualizes the real part of the 
basis function. 
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keypoints with moment based image descriptors to 
compute local descriptors. Zernike and ART are 
selected as the moment based image descriptors. 

Input Image Feature Extraction

Because keypoints extracted by SIFT are the local 
extrema of DoG, they are essentially blob-like 
features. Hence, both ART and Zernike moments, 
which have unit-circle bases defined on the polar 
coordinate system, are appropriate to describe the 
contents of the keypoint areas selected by the SIFT 
algorithm.  

ART BasisDescriptor Using ART ART BasisDescriptor Using ART

Zernike BasisDescriptor Using Zernike Zernike BasisDescriptor Using Zernike

Moreover, Zernike moments and ART have the 
advantage of being invariant to rotation. The SIFT 
keypoints also contain the main direction of the local 
keypoint for dealing with rotations; however, the 
SIFT algorithm generates more than one descriptor 
for a single keypoint when there are a number of 
dominant orientations. This means that the SIFT can 
not completely cope with rotation changes, thus 
generating redundant descriptors. 

Zernike moments and ART have two desirable 
properties as a descriptor for keypoints extracted by 
SIFT. One of these properties allows Zernike 
moments and ART to make up the weak points of the 
original SIFT, that is, multiple descriptors for one 
keypoint. In fact, it is desirable to generate a 
descriptor for a keypoint, if the descriptor is 
sufficiently invariant to rotation changes. Since 
Zernike and ART representation of a local area yields 
the similar description, that is, invariance to the 
orientation, it is possible to generate only one 
description for each keypoint. The other desirable 
property of Zernike moments and ART is their 
orthogonality. In general, moments are defined as the 
projection of a function f(x, y) onto basis function set. 
Since both Zernike moments and ART have 
orthogonal basis sets, the contribution of each 
moment to the image becomes unique and 
independent. 

ART is an improved version of Zernike that maintains 
the two desirable properties mentioned above. Since 
Zernike basis functions do not equally describe the 
radial and angular directional complexities, ART was 
developed from the motivation of making new basis 
functions to improve Zernike moments (Zernike basis 
functions are defined only when m<n). So it is not 
only rotation invariant and orthogonal, but also takes 
into account both description complexities in radial 
and angular directions.  

Figure 6 represents the whole process of the proposed 
method. As illustrated in the figure, each of the local 
areas is represented by the extrema of DoG in the 
scale space, and descriptions are calculated by 
projecting local images to the basis functions of 
Zernike moments or ART. 

 

Figure 6. Extraction process of local descriptors. 

4 Experimental Results 
For the evaluation of the suggested two local 
descriptors, the matching performance under known 
artificial geometric changes was examined. The 
geometrical transform included rotation, scaling, and 
viewpoint change of images. We also used each of the 
35 ART coefficients (radial 3. angular 12) and 35 
Zernike moments (up to order 10) except the first 
component which was used for the normalization.  

The experimental results were compared with those of 
the original SIFT and PCA-SIFT. The performance of 
each descriptor was presented with the ratio between 
positively matched correspondences and total features. 

 Figure 7 shows samples of the test images. Rotation 
and scale changes were applied so that each image 
undergoes geometric distortions for that arbitrary 
viewpoint. 

For rotation, we measure the accuracy by rotating the 
images from 10￮ to 50￮ . Table 1 lists the results of the 
experiment with rotation changes, and Figure 8 
illustrates the results. According to the results, both 
methods of using Zernike moments and ART showed 
better performance than SIFT and PCA-SIFT. As 
expected, ART slightly outperformed Zernike 
moments. 

Table 2 and Figure 9 show the experimental results 
for scale changes. SIFT and our method of using ART 
slightly outperformed Zernike. Notably however, all 
three greatly outperformed PCA-SIFT. 

With regard to viewpoint and complex changes, 
proposed methods also outperformed SIFT and PCA-
SIFT. The results are presented in Table 3 and  Figure 
10. 

*100Positive MatchC
Total Features

=  (10)
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Table 1: Rotation change experimental results. 

Table 2: Scale change experimental results. 

Table 3: Viewpoint and complex change experimental 
results. 

5  Conclusion 
New local descriptors that combine SIFT keypoints 
with either ART or Zernike moments are proposed in 
this paper. In experiment, both proposed methods 
performed better than the original SIFT or PCA-SIFT, 
considering rotation, scale, and view point changes. 
Especially for the experiments with rotation, new 
local descriptors notably outperformed previous 
methods due to their unique property, the rotation 
invariance. 

Although the new descriptors showed better 
performance for geometrical changes, they suffer 
from large illumination changes. To cope with this 
problem, means of obtaining full illumination 
invariance are under investigation.  

 In future studies, the proposed descriptors will be 
applied to practical applications such as object 
recognition and image retrieval. In addition, other 
means of improving the proposed local descriptors, 
for example, ways to improve the extraction process 

Figure 7. Test images. 

  10 20 30 40 50
SIFT 71.63  70.58 70.53  70.88 70.15 
PCA-SIFT 73.29  72.21 72.45  72.35 71.52 
Zernike 75.72  74.62 74.69  75.24 74.65 
ART 76.18  74.80 75.15  76.16 75.87 
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SIFT PCA-SIFT Zernike ART  
Figure 8. Matching performance of rotation changes. 

  0.9 0.8 0.7 0.6 0.5
SIFT 75.37  80.04  78.60  80.47 78.88 
PCA-SIFT 73.37  76.68  75.33  76.85 75.93 
Zernike 75.95  79.10  78.95  79.92 77.91 
ART 76.05  79.76  79.53  80.73 78.56 

72.000
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81.000
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0.9 0.8 0.7 0.6 0.5
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Figure 9.  Matching performance of scale changes. 

  x=20, 
0.7 

x=30, 
0.8 

x=10, 
0.6 

x=40, 
0.7 

y=10 z=10 

SIFT 59.63 59.85 61.24  59.01  69.23 70.96 
PCA-
SIFT 

56.18 57.02 58.46  55.67  68.14 69.16 

Zernike 61.79 62.03 63.77  61.06  70.15 71.37 
ART 62.94 63.05 64.74  62.94  69.67 71.70 
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57.000
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Figure 10.  Matching performance of affine and 
complex changes. 
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of keypoints in colour images, will be also 
investigated.  
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Abstract  
We present a new approach that integrates supervised segmentation formulated in a Bayesian network, and   
fractal feature based unsupervised segmentation. The result is a more reliable algorithm for man-made structure 
extraction from natural scenes. A causal Multi-Scale Random Field (MSRF) model is used as the prior model on 
the class labels of the image sites, and a Gaussian Mixture Model (GMM) connects the label field to the image 
data. Instead of solely relying on supervised training, a rough unsupervised division of the image, prior to the 
accurate segmentation is performed. In this pre-segmentation,  multi-scale fractal dimensions are employed as 
the region features. This combination makes the man-made structure extraction in natural scenes more robust.   

Keywords: Man-made structure extraction, Gaussian Mixture Model (GMM), Multi-Scale Random Field 
(MSRF), Tree-Structured Belief Network (TSBN), fractal dimension, multifractal estimation.

1 Introduction 
The aim of this work is to extract man-made structure 
(specifically buildings) from 2D images. Our 
motivation is actually to assist in the segmentation of 
laser scan data (we have a system that collects laser 
scans and images of a scene with the latter to provide 
the colour information) so that, having separated the 
buildings from the other data, we can fit geometric 
models to the buildings. However, applications of 
building detection in 2D images are much wider - 
including image understanding. 

For our particular setting, one can, of course, consider 
classification based on the 3D data itself, alternatively 
on the 2D data alone; or indeed a combination - that 
is, classification based simultaneously on the 2D 
image data and the 3D data. Angeulov [1] is a recent 
example of the 3D data classification  (classifying 
laser scan data into ground, building, tree or shrub). 
However, the results do not look particularly 
impressive. We know of no examples of the hybrid 
2D-3D approach . 

A considerable body of work in man-made structure 
extraction from 2D (image data) exists. In [2] a 
technique was proposed to learn the parameters of a 
large perceptual organization using graph spectral 
partitioning. However, these techniques require the 
low-level image primitives to be computed explicitly, 
and to be relatively noise-free. Oliva and Torralba [3] 
obtained a low-dimensional holistic representation of 
the scene using principal components of the power 
spectra. But the power spectra related assumption is 
not suitable for our images which contain a mixture 
of both the landscape and man-made regions within 
the same image.  Closer to our approach, Hebert and 
Kumar [4] (following Bouman and Shapiro [7]) 

proposed a hybrid method which uses the bottom-up 
approach of extracting generic features from the 
image blocks, followed by the top-down approach of 
classifying image blocks based on the statistical 
distribution of the features learned from the training 
data. This Multi-Scale Random Field (MSRF) 
method yields better results compared with other 
approaches. 

The problem we observed with the current supervised 
learning based segmentation, is that it cannot build a 
model accurate enough. There always exists an 
overlap between man-made structures and other 
structures/scene classes, where the model cannot 
distinguish one class absolutely from another class. 
This leads to false detection. Motivated by the 
observation that the world that surrounds us, except 
for man-made environments, is typically formed of 
complex and rough surfaces for which fractal provide 
a good model, our solution employs a fractal feature 
based rough segmentation (prior to further extraction 
using a simplified version of Kumar [4]). 

The principal advantage of describing natural textures 
in terms of fractal surfaces is that it captures a simple 
physical relationship that underlies the texture 
structure and provides an accurate image 
segmentation procedure that is stable over a wide 
range of scales [6].  

By segmenting the natural scene regions using a 
fractal model prior to supervised segmentation, the 
misclassification rate caused by the overlap between 
classes of the trained model is lowered. 

Our approach is summarized in Figure 1, the input 
image data is processed in two ways. First, fractal 
features are calculated followed by a Fuzzy C-Means 
(FCM) clustering which roughly divides the image 

61



 
 Table 1. Comparison of previous approaches. 

into regions with homogeneous fractal features. 
Second, features that reflect the gradient pattern of 
man-made structures are extracted. Then, by 
combining the FCM result with the MSRF model 
built from prior training data, a final segmentation 
extracts the building regions from the image. Table 1 
contrasts our approach with previous ones. 

The remainder of the paper has the following 
structure. In Section 2, an overview is given on the 
supervised segmentation as well as a description of 
the MSRF model and the Tree-Structured Belief 
Network (TSBN). Section 3 provides details on 
multifractal dimension and related feature estimation. 
In Section 4, results are presented concerning MSRF 
segmentation and of combining this with fractal 
clustering. Section 5 summarizes the main 
conclusions of the work and discusses possible future 
extensions.  

2 Supervised Learning  
       Segmentation 

2.1 Overview 
The input image is divided into non-overlapping 
16x16 pixels blocks, and segmentation results in 

labelling each block either as structure or non-
structure class.  

Kumar’s MSRF approach [4] is used for our 
supervised learning based segmentation.  

This is formulated in the Bayesian framework, using 
a prior model (being a MSRF model in our 
application) which represents our knowledge about 
the label patterns; and a likelihood function to relate 
the image data to the class labels. A Gaussian 
Mixture Model (GMM) [8] is used for this likelihood 
function.  

The classification problem is then interpreted as 
finding the optimal class labels which are obtained by 
maximizing the posterior probability over all image 
blocks.  

The operation involves training and inference. Model 
parameters are learned through training and used for 
inference to yield the final segmentation. 

2.2 Multi-Scale Random Field Model 
The MSRF model is a better approach to Bayesian 
image segmentation compared with the fixed scale 
Markov Random Fields (MRF) model. It uses a 
pyramid structure to capture the characteristics of 
image behaviour at various scales. This is of critical 
importance since scale variation occurs naturally in 
images, and is important in quantifying image 
behaviour. 

The fundamental assumption of a MSRF model is 
that the sequence of random fields from coarse to fine 
scale form a Markov chain. The random field at each 
scale is causally dependant on the coarser scale field 
above it. The Markov chain structure facilitates 
straight forward methods for efficient parameter 
estimation. 
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Figure 1. Overall approach to man-made structure 
extraction from natural scene. 
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It is further assumed that points in each field are 
conditionally independent given their coarser scale 
neighbours. This leads to a rich model with 
computationally tractable properties.  

Also, since explicit parameters (transition 
probabilities) are available to control both coarse and 
fine scale behaviour, the MSRF model can more 
accurately describe image behaviour. 

An effective graphical representation of the 
dependencies embedded in our MSRF probabilistic 
models is a hierarchical structure known as Tree-
Structured Belief Network (TSBN) [9]. In our work, 
training and segmentation inference are all done via 
Pearl’s message passing schemes on the TSBN tree 
[9]. 

2.3 Features 

Features are computed at each block instead of at 
each pixel because integration over image blocks is 
necessary to compute the more complex features  
required for region classification. A feature vector is 
generated for each 16×16 pixel block independently. 

These features attempt to capture the gradient pattern 
of the lines and edges in man-made structures, as 
opposed to the less structured characteristics in 
natural objects. This is accomplished using a set of 
features derived from histograms of gradient 

orientations in a region weighted by gradient 
magnitudes [10] - termed “orientograms” – generated 
at three different scales; 1×1, 2×2, and 4×4 blocks. 
The gradient magnitudes are calculated using a 
derivative of Gaussian filter (scale around 5 pixels is 
typical in our implementation). As can be seen in 
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Figure 2, there are clear extrema of orientation for 
buildings, while for tree and ground, the peaks are 
more randomly distributed. 

In order to alleviate the hard binning of the data, the 
histogram is smoothed using kernel smoothing as 
follows,  
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where E be the magnitude of the orientation 

histogram at the  bin, 
δ

thδ Δ  be the total number of 
bins in the histogram and K is the Gaussian 
smoothing kernel function with bandwidth h . The 
bandwidth of the kernel is chosen to be 0.7 to restrict 
the smoothing to two neighbouring bins on each side.  

We use the mean magnitude of the orientogram   at 
three different scales as features in our MSRF model. Figure 2. Orientograms computed at three sample   

points.  For each point, three orientograms are 
derived at three different scales. 

3 Unsupervised Segmentation with  
Multifractal Dimension 

Fractal dimension is a mathematical idealisation, 
while real world textures are only “semi-fractals” that 
have anisotropic and inhomogeneous scaling 
properties  which can not be well characterized by the 
fractal dimension. In order to obtain a satisfactory 
texture analysis, a set of measures, instead of one 
single measure, should be used - i.e., multifractal 
analysis [11].  

There are several ways available to estimate the 
multifractal dimensions of the image. Instead of the 
most common box counting method, we use the 
morphology based estimation proposed by Xia, Feng 
and Zhao [11] which is more straightforward and 
accurate. 

An M x N image is considered to be a 3-D surface X,  
which can be defined as a set of triplets 

},,2,1;,,2,1;),(,,{ NjMijifji LL ==〉〈  

A series of cubic structure element (SE) of different 
scales is used to measure the image surface. For every 
scale ε , the SE  is also given as a set of triplets εY

},,2,1;,,{ εεε βε Pkji kk L=〉〈 , where  is the 

number of elements in  and 
εP

εY β  is the SE shape 

factor. The dilation of X with  at pixel  is 
calculated as 

),( jiεY
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A GMM model is trained for each of the two classes. 
Bouman’s cluster program, which can be downloaded 
from http://cobweb.ecn.purdue.edu/~bouman/, is used 
for the GMM parameter estimation. The program 
applies the expectation maximization algorithm 
together with an agglomerative clustering strategy, 
using minimum description length to estimate the 
number of clusters which best fits the data. 

}),({max),(
,,2,1

βεεεε
ε

+++=
= kkPk

jjiifjif
L

  (2) 

A local natural measure ),( jiεμ  is defined in size 
W x W window as 
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In order to learn the parameters of the MSRF, the 
image size has been cut to 256x256 and a 5 level 
quad-tree is built considering each 16x16 pixels non-
overlapping block in the image to be the  leaf node 
(level 5). The MSRF model here is a two class model: 
building (B) and non-building (N). The initial 
parameter values are obtained by building the 
empirical trees over the image labels in the training 
images using max-voting.  

The measure of order  at scale q ε  can be calculated 
as  

q
W

ji
jiqI ),(),(

,
∑≡ εμαε                                      (4) 

where 

ε
α ε∑ −
=

W

ji
jifjif

,
),(),( Figure 4 shows two test images together with its 

GMM and MSRF classification result. It can be seen 
that by adding MSRF, the false detection rate is 
obviously reduced. MSRF model tends to smooth the 
labels in the image and removes the isolated false 
detections. 

                               (5) 

),( εqIBeing a multifractal measure,  must satisfy 
the following power law: 

)(~),( qqI τεε ,                              (6) ∞<<∞− q 4.2 Adding Multifractal Clustering 
Where )(qτ is the multifractal dimension spectrum. 
Then, the local morphological multifractal exponents 
(LMME), are defined as follow: 

The MSRF model does not work well if there exist 
objects and scenes with complex and rough surfaces 
such as vegetation and hills. It can be seen from 
Figure 5 that the MSRF model cannot discriminate 
the rough parts of a scene from buildings. By adding 
the fractal based clustering, the accuracy of the 
extraction is greatly enhanced.  )1ln(

)),(ln(lim1
0

ε

ε
ε

qI
q

Lq →
= ,                          (7) .0≠q

The multifractal estimation is performed at each pixel 
 using a moving window size of 11 x 11 

centered on . The SE shape factor 

RANSAC is used to fit a line to the group of data  
(

),( ji),(ln( εqI )/1ln( ε, ), calculated at a given set of 
scales, from which the limit in (6) can be estimated. ),( ji β is 3, and 

the scales ε of SE are 2, 3, 4, 5, and 6, respectively. 
Three components of the LMME spectrum, i.e. 

and are used as features for fuzzy C-
means clustering with the results shown in (e) and (f) 
of 

On each pixel, several values of the LMME spectrum 
are calculated, forming a LMME vector on which 
fuzzy C-means clustering is applied to roughly divide 
the image into several regions with homogeneous 
fractal character. Among these regions, the region(s) 
with small LMME value, which corresponds to low 
roughness of man-made structure surfaces, are picked 
out for further supervised segmentation.  

12 , −− LL 1L

Figure 3. 

As shown in Figure 3 by sequentially increasing the 
number of clusters, we can detect a "knee" in the 
objective function (essentially the approximation 
error) where the change of the object function value 
starts to slow down. This is used to choose the 
number of clusters for the segmentation. 

4 Experiments and Results 

4.1 MSRF Segmentation  
The proposed algorithm was trained and tested using 
images that Kumar used, which are available from 
http://www.cs.cmu.edu/~skumar/manMadeData.tar. 
We used 93 images and the corresponding labels, 
with the size of all images being cut to 256x256.  

The training images are divided into non-overlapping 
16x16 pixels blocks which are labeled as one of the 
two classes, i.e. building or non-building blocks.  
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For the segmented regions, the one that covers the 
building needs to be identified and used for further 
MSRF classification, e.g., (e) and (f) in Figure 5. 
Since the LMME value of each pixel is proportional 
to the roughness of the image, a threshold (set to be 
0.1) is used to filter out pixels whose values are 
below this threshold (relatively "flat" image sites - 
typical of buildings). Then within each region, we 
calculate the non – fractal proportion of such pixels in 
those regions, and the region(s) with non - fractal 
proportion greater than a threshold (being 0.3 here) 
are selected for MSRF analysis (final detection for 
buildings). 

Table 2 show example percentages for the data in 
 Figure 5 (f). It can be seen that Block ‘4’ which 

covers the building obviously has a higher non - 
fractal proportion value. Figure 3. Selection of cluster numbers. 
 

 
Table 2. Locatin  the right block g

 
Block index Non - fractal 

proportion 

1 19% 

2 7% 

3 9% 

4 34% 
                (a)                                            (b) 

5 21% 

6 17% 

5 Conclusions and Future Work 
In this paper, we have proposed a new method for 
segmentation of man-made structure from natural 
scene. The key novelty of our algorithm is combining 
the Bayesian network (MSRF) based supervised 
segmentation with unsupervised fractal segmentation. 
The latter helps to remove false positives generated 
by vegetation, and thus effectively lower the 
misclassification rate.  

                (c)                                            (d) 

Compared with the conventional supervised 
segmentation, less features and training images are 
required to achieve the same results.  

However, several issues need to be addressed. The 
current method can only detect buildings that fill a 
significant (and connected) portion of the whole 
image. A more sophisticated solution needs to be 
developed to extract relatively small and scattered 
buildings in the image. In the meantime, the features 
of the MSRF model can be further optimized. 
Furthermore, a hybrid of 2D-3D approach can be 
investigated for our laser scan data segmentation by 
taking advantage of the accurate geometric features of 
the 3D data.  

               (e)                                      (f) 
Figure 4. MSRF segmentation results. (a) (b) original 
images, (c)(d) GMM results, (e)(f) GMM+MSRF 
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               (g)                                           (h) 

Figure 5.  Fractal+MSRF segmentation results. (a)(b) 
original images, (c)(d) GMM+MSRF results, (e)(f) 
fractal based clustering (g)(h) Fractal+MSRF 
segmentation.  
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Abstract
We examine the availability of processing power for stereo disparity matching in an increasingly
parallel computing environment. We examine the application of this trend with regard to the stereo
correspondence problem, and particularly the set of conditions imposed by the use of USB webcams. We
discuss an example correspondence algorithm and how to parallelize it, and experimentally demonstrate
a framerate increase on a dual-core CPU with an existing implementation that reaches what can be
considered real-time performance in the webcam scenario, achieving almost complete utilization of
available processing cores.

Keywords: stereo vision, stereo correspondence, webcam

1 Introduction

The problem of determining disparity correspon-
dence between two (or more) cameras has been a
subject of research for a long time. The stereo
correspondence problem is one that is hard to pro-
duce results of reasonable quality in sufficient time,
an ideal goal being a system that is capable of
processing stereo image pairs in realtime as they
are captured by cameras.

Helping to combat this has been the continual
improvement of processor performance, with
hardware now at the point where realtime
performance is possible for many algorithms.
Particularly promising has been the use of
programmable GPUs for this and other computer
vision tasks.

In this paper we examine the growing utility of
parallelizing stereo-matching algorithms, and the
performance of a simple and almost algorithm-
independent approach to parallelization of the
correspondence problem, to obtain real-time
performance in an environment powered by
normal desktop or laptop hardware.

2 Background

Recent work such as that by Woetzel and Koch [1],
Gong and Yang [2], Yang et al. [3], and Fung and
Mann[4] has shown the utility of modern graph-
ics cards for running computer vision applications
such as stereo correspondence.

Fung and Mann presented the OpenVIDIA
library[5], implementing several computer vision

in Cg and OpenGL to run on NVIDIA graphics
cards. OpenVIDIA is currently available with
a demonstration of an implemented stereo
correspondence algorithm (based on a planar
sweep), which, with an NVIDIA GeForce 6600GT
can process the ‘map’ Middlebury dataset[6] in
5.2 ms. That this performance can be achieved
independently of the CPU speaks of the merits of
off-loading such tasks to the GPU.

The task of programming for GPUs is also be-
ing made easier with such projects as Stanford’s
BrookGPU[7], which uses C++ templating to al-
low programmatic access to the GPU in a high level
fashion. Sh[8] is a similar effort, aimed at providing
a streams-based metaprogramming language that
can compile to both CPU and GPU backends. This
adds to the attractiveness of using the GPU in
stereo correspondence and other computer vision
tasks.

GPUs are not the only alternate processing power
becoming more prevalent in the mainstream
market. Increasingly the retail CPU space is being
occupied by processors with two or more cores,
presently by chips such as Intel’s Core 2 Duo, with
four core processors on the upcoming product
schedules of both AMD and Intel. As the industry
is expected to follow a trend of adding more cores
to processors, rather than increase clock-cycles
alone, increasingly there will be a proportionately
wasted amount of available processing power if
algorithms that block further computation are not
making full use of all available cores. In the realm
of computer vision, stereo correspondence is often
such a blocking activity, as there can be many
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operations in a stereo vision system’s pipeline that
depend upon a depth map of the scene presented
to the cameras.

From these trends we can extrapolate an impor-
tance requirement of future stereo correspondence
algorithms. Increasingly, the hardware power will
be available to achieve real-time or better perfor-
mance, but it may well be spread across multi-
ple processing cores, whether they be on the same
processor, or in varying configurations of differing
numbers of GPUs and CPUs. The challenge will be
to make full use of this power in a scalable manner.

3 Threading an existing algorithm

3.1 Single-thread performance check

We wrote a test harness using standard functions
from the Intel OpenCV library[9]. Using two Log-
itech QuickCam Pro 5000 USB webcams in a rough
stereo configuration, the harness performs intrin-
sic and extrinsic camera calibration with video of
the user moving a standard chessboard calibration
pattern[10]. An example of this process is shown
in Figure 1. It then establishes from these the
cameras’ epipolar geometry in the form of the fun-
damental matrix.

Pre-calibrating the cameras like this holds
important advantages. Extraction of the
fundamental matrix allows rectification of
subsequent image pairs (that is, adjusting the
images so that the epipoles of the image pair align
with their scanlines). As we see later, this allows
for greater ease of parallelization, if the algorithm
is of a class that requires rectified images. Even
if the chosen correspondence algorithm does
have any such requirement, the calibration is
required anyway. Webcams provide poor quality
images even in the best of conditions. Often this
means they suffer from radial lens distortion,
and so whether or not the stereo correspondence
algorithm requires it, calibration is a necessary
step. Additionally, due to internal exposure
mechanisms that are usually uncontrollable in
software, even pre-calibrated webcams can require
recalibration if the lighting conditions change too
much.

The harness uses the established epipolar geometry
and the (as of version 0.97) experimental OpenCV
function cvFindStereoCorrespondence[11] to
produce a depth image from the stereo images.
The algorithm used is based upon Stanfield and
Tomasi’s dynamic programming algorithm [12],
with a modified cost function.

For the purposes of performance timing, the har-
ness was given pre-recorded stereo video as cali-

bration material, and then played the same videos
again in the stereo matching phases to ensure cal-
ibration was correct across trials.

The test machine was configured with an Intel Core
2 Duo E6400 (clocked at 2.13GHz) and 1GB of
RAM, running Windows XP Professional. The test
videos were recorded at 320 by 240 pixels in size. In
the initial test, this yielded an average performance
of 117 ms per frame.

3.2 Threading

Ideally on a computer with a dual-core CPU this
processing time could be halved by utilizing the
other core, and more generally with scalability on
the order of O(np−1), where p is the number of
processing cores available. The previously noted
suitability of the GPU for the task of stereo match-
ing suggests the task is well-adapted to parallel
processing. This leads to the question of imple-
mentation. In the case of a dense algorithm (ie,
every pixel in the depth image is independently
calculated, rather than interpolated from signif-
icant points in the image pair as it may be in
a feature-based algorithm) such as the one used
in cvFindStereoCorrespondence, there are only
really two possible divisions of labour to thread
the system with: time and space.

3.2.1 Dividing labour over time

In the case of this algorithm, one way to split work-
load across time would be to split the algorithm
into two basic parts: finding the corresponding
points in a scanline pair, and post-processing data
column-wise between scanlines. The fundamental
flaw with this approach is the asymmetry of the
tasks, which is an algorithm-independent problem
with this approach. Since the processor cores are
of identical speed, the elementary answer is that
they are best utilized by sharing identical tasks.
This also aids scalability of the algorithm as more
processing cores are added. An example of a näıve
implementation would be dedicating sequential im-
age pairs to the processing cores in a round-robin
fashion, so that frame pair f is assigned to be
completely processed by core c in a system with
n cores, where

c = f (mod n) (1)

This approach, while theoretically reducing the av-
erage time to process an image pair by a factor of
n, has two pathological downsides. The first is that
even if the cores can maintain an average framerate
that is sufficient to call realtime (ie, in this case
of stereo USB webcams, 15 frames per second),
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Figure 1: Views from the stereo webcams in an example calibration, with chessboard corner recognition
markers overlaid.

there can still be a latency of up to n − 1 frames
between image-pairs entering the stereo-matching
algorithm, and their corresponding disparity map
emerging. The second and more likely problem
is that this leads to a stuttering framerate as the
cores risk falling into a pattern of rapidly accepting
n queued input image-pairs and processing them
while more image-pairs queue, awaiting processing.

A third problem — albeit algorithm-dependent —
arises from the situation where the algorithm de-
pends on knowledge of the previous frame(s), a
simple example being where the previous image
pair is subtracted from the current one to cut down
on the amount of pixels that have to have their
disparities recalculated. In this case, the system
collapses back to the performance of a single core
as each image pair waits upon the completion of
the previous.

3.2.2 Dividing labour over space

The other approach to multithreading stereo-
matching, division of labour over image-space,
turns out to be much more practical for most
algorithms. Particularly well suited to this
are the dense grey-matching algorithms. As
mentioned earlier, the input images to the
cvFindStereoCorrespondence function are
rectified, thus the need for calibration at the
start of the session. The advantage of this in this
algorithm’s case is that the most time-consuming
phase, matching points between scanline pairs and
assigning costs to each, is highly parallelizable.
The point matching calculations to be performed
on each scanline pair can be done so completely
independently of each other. The only algorithmic
limit on concurrency here is the number of
scanlines.

The situation changes after that step. The
function cvFindStereoCorrespondence then
enters a column-wise post-process, propagating
information between scanlines. Theoretically

Figure 2: Top: Single-thread processing an image
(one of a pair). Bottom: An image being process
by two threads. Arrows indicate direction of data
reading and writing. Note the severed column-wise
data flow in the two-thread example.

this process is just as parallelizable as that of
the scanline pair feature matching. However,
splitting column-wise across the threads at this
point requires all the threads wait after the
first part of the algorithm. Depending on the
platform (specifically in a scalable system, the
latency between computing nodes, whether they
be individual CPU cores, individual CPUs, or
even separate computers linked over a network), it
may be desirable to avoid any such time overhead.
With an algorithmic-dependent compromise in
result quality (since various algorithms carry
out different numbers of horizontal and vertical
passes), we can continue the algorithm still
maintaining the same allocation of image space to
each thread. That is, in the case of two threads,
the first thread is allocated the top half of each
image in the pair, and the second thread the
bottom (see Figure 2). This part unfortunately
is not scaleable, since as n increases, the size
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of the vertical passes decreases, leading to the
deterioration of results.

Another advantage of only separating the workload
across threads once is that it allows the program-
mer to leave the original algorithm more intact if
it is being parallelized post-creation, as we did to
cvFindStereoCorrespondence.

4 Results

Taking the approach described only required
approximately 25 lines of C++ code to
parallelize cvFindStereoCorrespondence. When
benchmarked, it gave the results seen in Table 1.

Table 1: Results (Core 2 Duo E6400 2.13GHz)

Threads Average framerate

One 8.544
Two 16.204

Given the physical limits of the USB webcams of-
ten allow no more than 15 frames per second, it is
arguable that this parallelization has brought the
system into the realm of real-time. The system
frame-rate has also nearly doubled, indicating the
second core is now being utilized almost completely
efficiently.

5 Conclusion

In this paper we examined the availability of pro-
cessing power for stereo disparity matching in an
increasingly parallel computing environment. We
examined a pre-existing algorithm performing at
sub-real-time speed on a modern system, and ex-
amined it for parallelization, rejecting implemen-
tations as inappropriate on the basis of scalibility,
overly algorithm-dependent attributes, and other
grounds. Upon implementation, a simple image-
space splitting approach was able to garner close
to complete utilization of the second core. As mul-
tiple core processors become more prevalent in the
mainstream market, this technique could easily be
applied to other stereo-matching algorithms with
suitable success.

5.1 Limitations and future work

As mentioned earlier in the paper, GPUs have been
proven to perform well in this area. This paper
does not cover the implementation and synchro-
nisation complexities of integrating of GPUs into
such a system. Future research is possible in the
area of developing frameworks that will scale stereo
matching algorithms across CPU cores and GPUs
alike.
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Figure 3: Left images: View from the left camera. Right: The corresponding depth image calculated for
that frame.
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Abstract
This paper presents a new fitting strategy for Active Appearance Models (AAMs.) The warping function is

implemented using orientated patches and is based on the theory of Active Shape Models (ASMs). We present

a modified inverse compositional fitting strategy to fit our patch-based AAM (PAAM). The modification allows

the fitting of the PAAMs with similar accuracy to AAMs but using far less texture information. We compare our

implementations of the AAM against the PAAM using three different data sets. Through our experiments we show

that there is almost no additional error introduced by our reduced local texture models.

Keywords: Active Appearance Models, Active Shape Models

1 Background

Active Appearance Models (AAMs) are a popular tech-

nique to model objects in images. It is a two stage

modeling-by-synthesis approach that has been broadly

used in the field of computer vision and was first intro-

duced by Cootes et al [1]. An AAM encodes both the

shape and texture information of an object in an image

and is typically built using hand-labelled data. The first

stage of an AAM is training, where corresponding fea-

tures (which form shapes) are labelled across an image

set and then aligned using Procrustes [2] alignment.

Once the shapes are aligned, the texture and shape vec-

tors are stacked into matrices and Principal Component

Analysis [3] (PCA) is performed. Here the goal is to

estimate any valid instance of the object using PCA as

the parametric models for shape and texture variation:

ŝ = s̄ + S · diag(σ) · γ (1)

t̂ = t̄ + T · diag(σ) · Ω (2)

The shape and texture models encode the modes of

variation that the labeled image set provide. A new

shape ŝ or texture t̂ can then be constructed as a linear

combination (γ or Ω) of the principle components (col-

umn space) of the measurement matrices for shape and

texture. These modes of variation are shown in figure

1, where the first principle component of both the shape

and texture models are varied from −3.5 to 3.5 square

roots of the first eigenvalue.

Active Shape Models (ASMs) are similar two stage

models and were also introduced by Cootes et al [4].

The key difference between the ASM and the AAM is

simply the size of the much smaller texture model in the

ASM. This is due to the ASM only modelling pixels

along the normal to shape vertices. ASMs have been
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(b) First mode of variation in texture model, 28k pixels

Figure 1: AAM: Shape and texture models

applied extensively in computer vision also, however

the AAM demonstrated that their performance could

be improved by modelling the complete texture of the

object. The final stage of the AAM and ASM is fitting.

In this paper we have taken the concept of the ASM

and the AAM and combined them to reduce texture

model sizes and increase the efficiency of a popular

AAM fitting method (ICIA) [5].

2 AAM Fitting

Fitting the texture and shape models for an AAM is a

complex nonlinear problem. This is because pixels and

their locations in images are generally not related [6].

Fitting an AAM is much like the nonlinear optimization

applied to image alignment. In fact image alignment

algorithms can be directly applied to the fitting of an

AAM. In this scenario the AAM (shape component)

is represented as a special transform and is called a

piecewise affine transform. This paper demonstrates

that the common use of the piecewise transform is not

required for fitting AAMs.

Image alignment is generally a nonlinear optimization

task that is commonly solved using Gauss-Newton op-
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Figure 2: Transforming a pixel, x, in patch defined by v1, v2, v3 to its corresponding position, x̂, in a different

patch defined by v̂1, v̂2, v̂3.

timization [3]. This was first proposed by Lucas and

Kanade [7] to solve for the affine relationship between

an image and a transformed template. The approach

was later extended to AAMs by Baker et al [5, 8, 9], in

a method termed Inverse Compositional Image Align-

ment (ICIA). In this paper we extended ICIA to use a

modified sampling transform that reduces the size of

the texture model required for AAM construction and

fitting.

3 Modifying ICIA AAM Fitting

ICIA fitting is an analytical solution to fitting AAMs

which is presented in an optimization framework. ICIA

minimizes the cost function:

ε =
∑

x

[A0 − I(W(x; γ))]2 (3)

where A0 is the mean shape and mean texture AAM

render and I(W(x; γ)) is the image sampled to the

mean shape using the transforming parameters γ. Here

γ is simply the shape parameters for the AAM shape

model. The key to ICIA fitting is to swap the template

and the image during optimization, which makes the

transform Jacobian (∂W
∂γ ) constant.

There has already been a substantial amount of work

that extends ICIA to the task of AAM fitting [5, 8, 9].

This paper demonstrates how to remove the standard

piecewise transform and replace it with a patch-based

transform in ICIA. To do so we need to modify the

ICIA algorithm presented in [6]. In this section we

define the key differences presented by our method.

Specifically we will now define: 1) A modified patch-

transform function and 2) A different Jacobian struc-

ture.

3.1 The Patch-Transform, W(x; γ)

A transform changes the pixels x from one shape into

another using the parameters γ; W(x; γ). In order to

define the transforming function W(x; γ) we have to

define the connectivity of the shape model. For our

approach we define an oriented patch centered on each

model vertex.

The linear algebra for our patch representation is based

on that used in the ASM where the sampling at each

vertex is done along the normal to that vertex. To do

so, three connected shape model vertices are required.

From these vertices’s we can determine two vectors:

vd = v3 − v1 (4)

vn =
[ −vd(2)

vd(1)

]

(5)

where v1, v3 are the adjacent vertices to the current

model vertex, v2. With this information it is possible

to define the vector from v3 to v1, which is vd and

consequently the normal of v2 which is vn. This leads

to the normal equation used in the ASM. Here the size

of the sample (in pixels) is defined by a length k along

the normal direction:

x = v2 + k · vn (6)

where v2 is the model vertex of interest, and x is the

sampled pixel at distance k. In our method we use a

similar approach to the ASM for local texture mod-

elling. Instead of a single line we have introduced the

idea of a patch with a width and height defined by a

patch size constant, K pixels. We define the patch as

the combination of orthogonal vectors and call them

the principle directions. To define the first principle

direction we must define a single point that is K pixels

along the normal to the current model vertex v2:

u = v2 + K · vn (7)

We must also defined another point along the orthogo-

nal direction to u:

u⊥ = v2 + K · vd (8)

Using these two points it is possible to define all pixels

in the patch using barycentric coordinates. Where a

pixel, x, in the patch is defined as a magnitude along the

direction from v2 to u⊥ and from v2 to u. An example

is shown in figure 2. This leads to the transforming

function that we use for patch fitting:

w(x; γ) = v2 + α (u − v2) + β (u⊥ − v2) (9)

It is important to note the similarities to the equation

of Baker and Matthews [5]. This is a mathematically
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Figure 3: AAM: Patch transformed texture model

useful form that allows the Jacobian of the transform,

with respect to a model vertex (∂W
∂v ), to be computed

easily. The key difference in our approach is that we do

not strictly adhere to the true barycentric form, allow-

ing both α and β to be negative.

For ICIA AAM fitting the key task is to transform

the image back into the AAM coordinate frame. This

equates to transforming a shape, ŝ, built from equation

(1) into the mean shape, s̄. To do so with our modified

patch-transform we require the computation of each

principle direction per vertex and the corresponding

barycentric coordinates. In practical terms the

barycentric coordinates for the patches of the mean

shape are cached. This means that to transform using

our method only the principle directions for the new

shape ŝ need to be computed. An example of this

transform is shown in figure 3.

3.2 The Patch-Transform Jacobian

In the implementation of the AAM outlined in

[5] model points are triangulated and the triangle

Jacobians are summed together. We have removed the

triangulation and in doing so have derived a simpler

representation of the optimizations Jacobian for each

patch, v.
∂W
∂v

= 1 − α− β (10)

The Jacobian is derived from equation (9). Using our

patch transform, for each vertex in the model there is an

orientated patch, the angle of which is defined solely by

the neighboring vertices. The orientation of the patch

affects the Jacobian which is now a plane that has a

saddle point on the vertex v. This Jacobian is multi-

plied with the Jacobian of the transform with respect to

the shape model (∂W
∂γ ). The new transform Jacobian is

now a product of equation (1) and1 the new definition

for the patch-transform:

∂W
∂γ

=
∂W
∂v

· ∂W
∂γ

(11)

3.3 Practical considerations

In this section we outline the required changes to ICIA

AAM fitting for our patch-based transforming function.

1 ∂W

∂γ
is the Eigenvectors of the shape model in equation (1)

The standard AAM (with patch-transform) is presented

in Algorithm 1. During implementation there are a

number of practical as well as necessary additions that

should be made to the standard algorithm outlined in

[5]. We have implemented all of these additions in both

our implementation of the AAM and the Patch-AAM

(PAAM).

Algorithm 1 AAM Fitting

J = �A0
∂W
∂γ

{precompute the Jacobian}
γ = [0]
{set the initial parameters for shape}
while �γ > 1e−4 do

I(W(x; γ)
{transform the patches to the AAM coordinate

frame}
ε = (A0 − I(W(x; γ)))
{compute the error vector}
H = (J) · (J)T

{compute the Hessian}
�γ = H−1 · JT · ε
{compute the parameter update}
γ = γ ◦ � γ−1

{compose the update with the current parameters}
end while

The first addition is to include a global normalizing

transform. This appends a similarity transform to the

AAM fitting. In doing so we suggest that the local and

global transforms are orthogonalized. This can be done

using QR factorization and is outlined in [10]. We also

suggest that the gradient function for computing image

derivatives be a plane based method. In the AAM there

are discontinuities at the model edges that should not

be encoded.

The second addition would be to extend the method us-

ing the well known Levenberg-Marquadt optimization.

This typically improves the convergence speed of the

AAM fitting.

The third and final addition to improve generality could

be to use the simultaneous ICA algorithm. It has been

documented in [11] that person specific AAMs perform

much better than AAMs trained using many different

identities (generic AAMs). One solution is to update

the computation of the transform Jacobians during fit-

ting. This improves the generic models convergence
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Figure 4: Ventricle, Meat and Face dataset examples.

properties and results in a slightly different (less effi-

cient) algorithm called simultaneous ICA [11].

4 Experiments

For our modified AAM, experimental results are

reported for three datasets: 1) 14 meat images with

83 landmarks [12], 2) 14 Ventricle images with

66 landmarks [13] and 3) 36 face images with 58

landmarks [14]. Each of the datasets provided a

linkage matrix, describing landmark connectivity.

Examples of the data are shown in figure 4.

The first experiment examined the generalization prop-

erties of the PAAM and AAM. To this end we per-

formed a 4-fold cross-validation for all sets. Measuring

the error as the mean RMS vertex error between the

fitting and the test sample. For each test the AAMs

were initialized using a center of mass approach by

aligning the mean of the model points to the mean of

the test data. The starting condition was then corrupted

by Gaussian noise with zero mean and a standard devia-

tion of five pixels. The starting condition was perturbed

five times per experiment. We performed 70 tests for

the ventricle and meat dataset and 180 tests for the face

dataset. A total of 250 fittings were performed.

Figure 6 shows the relative performance of the PAAM

in comparison to the AAM using ICIA fitting. Fig-

ure 5 also shows examples of a fitting for each set.

For a suitable selection of the patch-size constant, K,

there is a significant amount of overlap between the

AAM and the PAAM fitting distributions. This is a

encouraging result which shows that the PAAM and the

AAM are roughly equivalent models in terms of error

when generalizing to new data. Table 1 summarizes

the comparatively small texture models used with re-

spect to the AAM and it also shows the difference in

CPU2 time required to transform each models’ texture

representation.

The second experiment demonstrated the effect of

varying the patch size of the PAAM. By increasing

2This was bench-marked on an Intel Xeon 3.2gigahertz with a

MATLAB implementation of the different transforms.

the patch-size constant K we increase the local texture

sizes and potentially introduce overlapping in the

texture model. We tested the effect of increasing K
from 1 to 20 by performing the previous experiment

for each K. The patch size ranged from 4 pixels

(K = 1) to a maximum of 400 pixels (K = 20) and a

total of 8400 fittings were performed. Figure 7 shows

the effect on the different data sets. For all our data

sets the plots show that as K increases, the effect on

fitting is relatively small.

The third experiment demonstrated the effect of dis-

placing the starting conditions for the PAAM. This was

achieved by generating a “basin of convergence” im-

age. Where each pixel is the mean RMS shape error

for a fitting to data outside the training set. We exper-

imented with a translation displacement of −40 to 40
pixels. In the face model case that displacements of up

to 20 pixels could be applied (figure 8).

5 Conclusion

This paper has introduced a different patch-transform

function for ICIA AAM fitting. This allows for the tex-

ture model to be significantly smaller than in the stan-

dard approach. Using our patch representation and a

suitable selection for patch size, we were able to signif-

icantly reduce the number of pixels required for AAM

fitting. The reduced texture size translates directly to

a reduced fitting time and this is shown in our sum-

mary of results. We have also shown that the method,

although it only encodes local texture patches, is quite

robust with respect to model initialization. Future work

will focus on removing the requirement for a patch size

constant and automatic initialization.
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Model Type Fitting Error (mean) Fitting Error (std) Texture Size (pixels) Transform (seconds)

AAM (face) 4.8 1 30031 0.11

AAM (heart) 1.7 0.3 2261 0.064

AAM (meat) 7.6 2 116748 0.36

PAAM (face,k=5) 4.7 1.3 5838 (19% of AAM) 0.06

PAAM (heart,k=2) 2.3 0.6 1070 (43% of AAM) 0.03

PAAM (meat,k=7) 6.2 2 16295 (13% of AAM) 0.07

Table 1: AAM and PAAM comparison.

(a) AAM fit to Face data. (b) AAM fit to Heart data. (c) AAM fit to Meat data..

(d) PAAM fit to Face data. (e) PAAM fit to Heart data. (f) PAAM fit to Meat data.

Figure 5: Fitting examples from the test sets, green shape is ground truth, red is AAM/PAAM estimate.
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(b) Fitting Error on Heart data.
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(c) Fitting Error on Meat data.
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Abstract
The Kalman filter is usually considered to be too computationally infeasible for image super-resolution.
This paper presents a modified Kalman filter super-resolution algorithm, for the case of global
translational motion, by approximating the Kalman gain matrix with patterns empirically uncovered
within steady state Kalman gain matrices. The resulting algorithm is capable of creating high quality
super-resolution images in the order of megapixels, and is tractable for real time implementation.

Keywords: image super-resolution, Kalman filter

1 Introduction

Image super-resolution is the process of estimating
a high-resolution image, or image sequence, from
a sequence of noisy low-resolution image frames
taken of the same scene (or target) but from
marginally different perspectives. The differences
in the camera position ensure that that the
scene has been sampled differently in each image,
causing the pixel intensity values to differ between
the image frames of the low-resolution sequence.
Image super-resolution utilizes these differences to
build a higher resolution composite image using all
of the information contained within the individual
low-resolution frames. Maximum a-posteriori
(MAP) and projection onto convex sets (POCS)
algorithms were the dominant approaches to image
super-resolution during the 1990’s [1], with recent
research focusing on fast and simple algorithms
aiming for real-time applications [2, 3].

Kalman filters are widely acknowledged for
creating the optimal mean square error estimate
in the context of linear constraints. However, in
the field of image super-resolution they are equally
recognised as being computationally unfeasible
because the update of the Kalman gain matrix
requires a large matrix inversion. Previously
published approximations to the Kalman filter
have included: recursive steepest-descent (R-SD)
and recursive least squares (R-LMS) algorithms
that avoid the matrix inversion by approximating
the Kalman filter itself [4, 5]; reduced update
Kalman filters that approximate the state-space
into smaller regions to minimise the processing
required for the matrix inversion [6]; and an
approximation for global translational motion with
constant blur formed by removing the blurring
matrix from the Kalman filter formulation [3].

This paper presents a novel simplified time varying
Kalman filter for image super-resolution for the
special case of global translational motion. Empiri-
cal patterns uncovered by the steady-state Kalman
gain matrices have been used to approximate the
time varying Kalman gain matrices, and signifi-
cantly improve the computational complexity of
the Kalman filter with minimal loss of information.

Section 2 of this paper provides background details
on Kalman filtering. In section 3, the modified
Kalman filter algorithm will be formulated. Re-
sults from trials on both simulated and real im-
agery are presented in section 4, with a summary
of major findings provided in section 5.

2 Background

2.1 Problem Statement

The original scene may be approximated by a high-
resolution image that provides an improvement in
resolution by the magnification factor, m, relative
to the low-resolution pixels measurements. Be-
tween each frame in the sequence, the imaging sys-
tem experiences a globally translational motion rel-
ative to the scene of interest. To simplify process-
ing, the low and high-resolution images are con-
verted into 1-dimensional vectors using column-
wise lexicographical ordering. The vector contain-
ing the pixel values from the kth low-resolution
frame is denoted as yk, with the underlying high-
resolution pixels contained in xk.

The relationship between the low-resolution frames
and the high-resolution image is given by equa-
tion (1). The measurement matrix, Hk, models
the blur and decimation of the camera sensor used
to create the low-resolution frame yk. Errors in
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this modelling, as well as any further system aber-
rations and noise, are modelled as Gaussian mea-
surement noise,vk, with covariance matrix Rk =
σ2

Rk
I and zero mean.

yk = Hkxk + vk (1)

The motion of the sensor with respect to the scene
of interest is assumed to be known and is modelled
by a system matrix, F k. Possible errors in the mo-
tion model are considered to be Gaussian system
noise, wk, with covariance matrix Qk = σ2

Qk
I and

zero mean. The change in location of the sensor’s
field of view is modelled by equation (2), where xk

corresponds to the current high-resolution image
and xk+1 corresponds to the high-resolution image
after the next camera motion when yk+1 enters the
field of view.

xk+1 = F kxk + wk (2)

2.2 Kalman Filtering

The states of the Kalman filter, x̂k|k, are the
super-resolution estimates of the underlying high-
resolution scene xk. Every time increment, k, of
the Kalman filter will correspond to the sequential
input of a low-resolution image frame, yk.

The Kalman filter prediction equation in (3)
takes the current super-resolution image after
processing frame k − 1, x̂k−1|k−1, and applies
the transition matrix, F k, to predict the next
super-resolution estimate, x̂k|k−1. The correction
equation in (4) updates the prediction from
equation (3) with a weighted error signal. The
error signal is the difference in low-resolution pixel
values between the next frame, yk, and those
that would have been created from the predicted
super-resolution image when passed through the
measurement matrix, Hk. The Kalman gain
matrix, Kk calculated using equation (5), applies
and weights the low-resolution pixel error signal to
correct the high-resolution pixels of the predicted
super-resolution estimate.

x̂k|k−1 = F kx̂k−1|k−1 (3)

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1) (4)

Kk = Σk|k−1H
T
k (HkΣk|k−1H

T
k + Rk)−1 (5)

The error covariance matrices, Σk|k and Σk+1|k,
are also calculated in a similar prediction and cor-
rection process as shown in equations (6) and (7).

Σk+1|k = F kΣk|kF T
k + Qk (6)

Σk|k = Σk|k−1 − KkHkΣk|k−1 (7)

Every update of the Kalman filter requires the in-
version of a matrix formed by (HkΣk|kHk + Rk),

with each of the square dimensions equal to the
total number of pixels in a low-resolution frame.
This inversion requires an unfeasible amount of
processing for standard sized images, and it has
been the avoidance of this inversion that has led to
approximations of the Kalman filter in past litera-
ture [4, 5, 6, 3] and within this paper.

2.3 Steady state Kalman filtering

Steady state is considered to occur when neither
the motion between frames, F k, nor the point
spread function of the camera sensor, Hk, changes
between the frames of the low-resolution sequence.
The error covariance matrix then becomes equal
to the solution of the Algebraic Ricatti Equation
(ARE) given in equation (8), and the Kalman
gain matrix needs only to be calculated once using
equation (9).

Σ = FΣF T −FΣHT (HΣHT +R)−1HΣF T +Q
(8)

K = ΣHT (HΣHT + R)−1 (9)

3 Modified Kalman Filter

The aim of the Kalman filter modification pre-
sented here, is to utilise patterns from the steady-
state Kalman gain matrix to form an approximate
reconstruction of time varying Kalman gain matri-
ces. The development, formulation and computa-
tional complexity is covered below.

3.1 Modified Kalman Filter Development

The steady state Kalman gain matrix produced by
equation (9) is a relatively sparse matrix with a
row dimension equal to the total number of high-
resolution pixels and a column dimension equal
to the total number of low-resolution pixels in a
frame. Most of the matrix elements are signifi-
cantly small in magnitude compared to the main
positive peaks observed in the matrix. An example
row from a Kalman gain matrix is plotted in fig-
ure 1. By applying a threshold to the Kalman gain
matrix, the positive peaks can be extracted. No-
tably, the structure of this reduced-element matrix
matches that of the transpose of the measurement
matrix, irrespective of the choice of blur and deci-
mation operations. Example structure (spy) plots
of HT and the resulting reduced element Kalman
gain matrix are shown in figure 2 for both a simple
spatial averaging and decimation operation and a
random measurement matrix. For the remainder
of this paper, it has been assumed that the sen-
sor point spread function can be approximated by
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a simple square “top-hat” spatial averaging and
decimation operation.

Figure 1: Example row of steady state Kalman
gain matrix [m=2, QR=1, & (1,1) motion].

Figure 2: HT and reduced-element steady state K
matrix structures for m=2 (left) and random blur
(right).

As each row of the Kalman gain matrix
corresponds with one high-resolution pixel, and
each column corresponds to one low-resolution
pixel, the largest positive peaks within the matrix
lie where the low-resolution pixels contain their
respective high-resolution pixels. The other
minor peaks, as shown in figure 1, correspond
to small error contributions at the edges of
neighbouring low-resolution pixels. Examination
of these relationships uncovered two results that
apply without discrimination: at some locations
these minor peaks enhance the edges of the low-
resolution pixel areas; but at other locations the
minor peaks enhance one side of the low-resolution
pixel edge and smooth the other side. Given that
the Kalman gain matrix is formed independently
from the image sequence, the contrast in these
two functions suggest that the minor peaks are
likely to be residual effects formed in the process
of solving the ARE.

When the positive peaks are extracted and
displayed in a 2-dimensional format according to
their corresponding high-resolution pixel position,
repeated patterns become apparent as shown in
figure 3. Each of the repeating pattern blocks
corresponds to a low-resolution pixel, with the

internal pattern of that block indicating the
weightings given to the individual high-resolution
pixels. The internal patterns were found to change
with different sensor motions and system-to-
measurement noise variance ratios (QR=σ2

Q/σ
2
R).

Figure 3 displays a progression of the gain patterns
for an example case of a magnification by 4 and
a constant one pixel diagonally down and right
sensor motion. While the leading edges within
this figure have low gain values, the patterned
sections are relatively constant.

Figure 3: Reduced-element gain patterns with
increasing QR. [m=4, (1,1) motion]

Further investigations showed that the individual
high-resolution pixel gain weightings within each
low-resolution pixel pattern were found to have log-
arithmic relationships with the QR ratio, as shown
in figure 4. By disregarding the QR ratios be-
low 0.2 where the measurements are too noisy to
be useful, and the QR ratios above 10 where the
motion estimation is too inaccurate to be useful,
the central portion of the logarithmic QR ratios
plots can be approximated by a linear relationship.
These linear relationships form the foundation of
the modified Kalman filter formulation presented
here.

Figure 4: Logarithmic relationship between re-
duced element gains and corresponding pixel lo-
cations. [m=4, (1,1) motion]
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3.2 Modified Kalman Filter formulation

The modified Kalman filter presented in this pa-
per creates an approximate Kalman gain matrix,
K̂k, based on the reduced-element Kalman gain
matrix discussed in the previous section. As given
in equation 11, K̂k is created by multiplying the
structure of the transpose of the measurement ma-
trix by a diagonal matrix, Dk, based on the sub-
pixel motion of frame k. The diagonal elements
of Dk are the approximations of the patterned
high-resolution pixel gain weightings discussed in
section 3.1, rearranged back into vector notation.

K̂k = Dk.structure(HT ) (10)

By assuming a constant 2-dimensional pattern in
the positive peaks of the Kalman gain matrix,
the high-resolution pixel gain weightings within
each low-resolution block pattern may be defined
as per figure 5. For any given QR ratio, and
subpixel motion between frames, the approximate
high-resolution gain weightings within Dk may
then be calculated in the form of equation (11).
Table 1 contains a collection of the empirically
derived coefficients for these relationships with
magnifications of 2, 3 and 4.

A1,1 = Slope(A1,1) ∗ log10(QR) + Const(A1,1)
(11)

Figure 5: High-resolution pixel gain weighting
labels for m=2 (A’s), 3 (B’s) & 4 (C’s).

The subpixel motions of the camera sensor can be
defined as z high-resolution columns to the right
and y high-resolution rows downwards. Larger sen-
sor motions can be broken into two parts: low-
resolution pixel shifts that are applied directly to
the super-resolution estimate; and subpixel shifts.
It should be noted that, through symmetry, the full
range of positive and negative subpixel motions are
not required to be considered independently:

• If z < 0 (leftward camera motion) then con-
sider z = abs(z) and horizontally flip each low-
resolution pixel block of gain values.

• If y < 0 (upwards camera motion) then con-
sider y = abs(y) and vertically flip each low-
resolution pixel block of gain values.

• If y > z then swap the z and y values, and
take the transpose of each low-resolution pixel
block of gain values.

• If z = 0 and y = 0 (stationary motion) choose
to set the gain to be equal to the lowest gain
equation for that magnification. Note that it
is not possible to solve the ARE directly for
the case of stationary motion as the eigenval-
ues of the error covariance matrix fall too close
to the unit circle.

For a magnification of 2, the coefficients within
table 1 are essentially the same irrespective of the
gain positioning or the motion between frames. A
time-invariant approximation of Dk can therefore
be made by calculating a single value, such as
0.35log10(QR) + 0.48, to apply to the entire
structure of the HT matrix. This provides a
slightly faster modified Kalman filter algorithm
option with minimal loss of information.

The complete modified Kalman filter formulation
can be used to form super-resolution images, or im-
age sequences, over any length of image frames or
alternatively as a sliding window algorithm. Fur-
ther enhancements can easily be incorporated by
changing the QR ratio between frames, or within
the individual low-resolution pixel blocks as de-
sired.

3.3 Computational Complexity

For a p x q pixel low resolution frame with a desired
magnification of m, every update of the modified
Kalman filter will require: A shifting operation on
the super-resolution estimate; 2m2pq element ad-
ditions; (m2+1)pq element multiplications; pq ele-
ment subtractions; and 2m2 lookups. This compu-
tationally efficient algorithm is capable of creating
super-resolution images in the order of megapixels,
and is attractive for real time implementation.

3.4 Related Methods

In [3], the Kalman filter for global translational
motion utilised the assumption that H (excluding
the decimation operation) and F k were block
circulant and commutable. While this is true
for the H matrix, the F k matrix will only be
fully block circulant if the pixels leaving the
field of view are wrapped to the opposite edge
of the super-resolution estimate. Despite this
assumption, the empirical results agree with [3]
in that the H matrix is extractable from the
Kalman filtering process, leaving only a diagonal
gain matrix. The matrix formed within this paper
relates to the high-resolution pixels formed from
a spatial averaging process whereas [3] creates
a matrix of low-resolution relationships, and
estimates the high-resolution pixels as a separate
bilateral filtering process.
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Table 1: Coefficients of equation (11) for magnifications of 2, 3 & 4 and various subpixel motions.
Magnification = 2

Motion Pos. Slope Const.

(z,y)

(0,0) A1−2,1−2 0.3457 0.4703

(1,0) A1−2,1 0.3578 0.4810
A1−2,2 0.3457 0.4703

(1,1) A1,1 0.3527 0.4963
A1,2 & A2,1 0.3529 0.4944
A2,2 0.3522 0.4935

Magnification = 3

Motion Pos. Slope Const.

(z,y)

(0,0) B1−3,1−3 0.2263 0.2916

(1,0) B1−3,1 0.3754 0.4432
B1−3,2 0.2345 0.2858
B1−3,3 0.4032 0.4522

(2,0) B1,1−3 0.4406 0.4525
B2,1−3 0.2263 0.2916
B3,1−3 0.3738 0.4085

(1,1) B1,1 0.3510 0.4459
B2,1 & B1,2 0.3132 0.3973
B3,1 & B1,3 0.4006 0.4833
B2,2 0.2543 0.3213
B3,2 & B2,3 0.3410 0.4085
B3,3 0.3944 0.4630

(2,1) B1,1 0.4201 0.4757
B2,1 0.3507 0.4107
B3,1 0.4119 0.4588
B1,2 0.3219 0.3859
B2,2 0.2528 0.3240
B3,2 0.3511 0.4033
B1,3 0.3665 0.4229
B2,3 0.3200 0.3841
B3,3 0.4183 0.4634

(2,2) B1,1 0.4133 0.4616
B2,1 & B1,2 0.3525 0.4056
B3,1 & B1,3 0.4208 0.4664
B2,2 0.2517 0.3242
B3,2 & B2,3 0.3200 0.3850
B3,3 0.3662 0.4237

Magnification = 4

Motion Pos. Slope Const.

(z,y)

(0,0) C1−4,1−4 0.1902 0.2370

(1,0) C1−4,1 0.4044 0.3969
C1−4,2 0.2372 0.2609
C1−4,3 0.1902 0.2370
C1−4,4 0.4684 0.4135

(2,0) C1−4,1−2 0.3139 0.2892
C1−4,3−4 0.3004 0.2751

(3,0) C1−4,1 0.4965 0.3488
C1−4,2 0.2510 0.2457
C1−4,3 0.2738 0.2535
C1−4,4 0.3572 0.2741

(1,1) C1,1 0.3752 0.4044
C2,1 & C1,2 0.3393 0.3685
C3,1 & C1,3 0.3137 0.3479
C4,1 & C1,4 0.4768 0.4550
C2,2 0.2432 0.2837
C3,2 & C2,3 0.2193 0.2667
C4,2 & C2,4 0.3840 0.3775
C3,3 0.2132 0.2660
C3,4 & C4,3 0.3782 0.3767
C4,4 0.4512 0.4231

(2,1) C1,1−2 0.3883 0.3482
C2,1−2 0.3290 0.3146
C3,1−2 0.3127 0.3084
C4,1−2 0.4311 0.3694
C1,3−4 0.3727 0.3289
C2,3−4 0.3142 0.2977
C3,3−4 0.2993 0.2920
C4,3−4 0.4184 0.3509

(2,2) C1−2,1−2 0.3229 0.3051
C3−4,1−2 0.3203 0.2932
C1−2,3−4 0.3203 0.2932
C3−4,3−4 0.3178 0.2920

Magnification = 4

Motion Pos. Slope Const.

(z,y)

(3,1) C1,1 0.5066 0.3661
C2,1 0.4371 0.3346
C3,1 0.4331 0.3333
C4,1 0.4875 0.3564
C1,2 0.3443 0.2953
C2,2 0.2748 0.2638
C3,2 0.2708 0.2625
C4,2 0.4276 0.3312
C1,3 0.3607 0.3010
C2,3 0.2911 0.2695
C3,3 0.2707 0.2624
C4,3 0.4275 0.3312
C1,4 0.3621 0.2839
C2,4 0.3448 0.2765
C3,4 0.3279 0.2708
C4,4 0.4630 0.3293

(3,2) C1−2,1 0.4423 0.3356
C3−4,1 0.4420 0.3355
C1−2,2 0.3330 0.2882
C3−4,2 0.3328 0.2882
C1−2,3 0.3383 0.2908
C3−4,3 0.3381 0.2907
C1−2,4 0.3656 0.2855
C3−4,4 0.3655 0.2854

(3,3) C1,1 0.4939 0.3594
C2,1 & C1,2 0.4332 0.3340
C3,1 & C1,3 0.4343 0.3344
C4,1 & C1,4 0.4714 0.3331
C2,2 0.2729 0.2646
C3,2 & C2,3 0.2740 0.2650
C4,2 & C2,4 0.3335 0.2740
C3,3 0.2940 0.2721
C4,3 & C3,4 0.3500 0.2798
C4,4 0.3684 0.2876

Essentially the algorithm presented in this paper
has the same processing requirements as the “sim-
ulate and correct” algorithms of the late 1980’s [1]
but with the advantages of the Kalman filter.

4 Results

4.1 Simulated data

Simulated sequences of low-resolution frames were
created from model high-resolution images by per-
forming square “top hat” spatial averaging and
decimation on shifted cropped regions. Example
imagery is shown in figure 6 for magnifications of
4. With perfect registration and matched point
spread functions, very good reconstructions were
achieved but mild halo effects occasionally became
apparent along severe black/white edges. Future
work will be aimed at correcting this ringing, and
investigating the effects of noise and motion esti-
mation errors.

4.2 Real data

The modified Kalman filter algorithm has been ap-
plied to real data in the form of video sequences ob-

tained from unmanned aerial vehicle (UAV) flights
and image sequences from confocal microscopes.
Neither the camera point spread functions, nor the
motion between frames were known, providing an
opportunity to examine how well the ”top hat”
point spread function approximation can be ap-
plied to real imagery. Promising results have been
obtained to date, with example imagery shown in
figure 7. In these examples, simple multi-scale
correlation was used to align the image frames. As
per most super-resolution algorithms, the quality
of the reconstruction using this paper’s algorithm
is highly dependent on the quality of the motion
estimation.

5 Conclusion

This paper has proposed a modified Kalman filter
algorithm for image super-resolution, that is based
on empirical patterns uncovered in the steady state
Kalman gain matrices. Good super-resolution re-
constructions have been achieved with both simu-
lated and real imagery, despite the assumption of
an ideal “top hat” spatial averaging point spread
function. The algorithm is computationally effi-
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LR SR

LR SR

Figure 6: Super-resolution images (‘SR’) formed
from simulated low-resolution imagery (‘LR’).

cient as compared to a full Kalman filter, allows
super-resolution images in the order of megapix-
els to be created, and is attractive to real time
implementation. Future investigations are aimed
at comparing this algorithm more closely to cur-
rent techniques, reducing the halos apparent at
severe black/white edges, expanding the algorithm
to colour super-resolution and focussing on specific
applications.
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Abstract 
The paper presents a hybrid technique for affine invariant feature extraction with the view of object recognition 
based on parameterized contour. The proposed technique first normalizes an input image by removing affine 
distortions using independent component analysis which also reduces the effect of noise introduced during 
contour parameterization. Then two invariant functionals at three different dyadic levels are constructed using 
the wavelet based conic equation. Experimental results conducted using three different standard datasets confirm 
the validity of the proposed approach. Beside this the error rates obtained in terms of invariant stability are 
significantly lower when compared to other wavelet based invariants and the proposed invariants exhibit higher 
feature disparity than the method of Fourier descriptors.   

Keywords: Affine invariants, Independent Component analysis, Dyadic Wavelet Transform, Conics, 
Geometric Transformations, Pattern recognition. 

1    Introduction 
One of the key tasks in robotic vision is to recognize 
objects when subjected to different viewpoint 
transformations and this can be achieved by 
constructing invariants to certain groups (Euclidean, 
affine, projective transformations) which hold 
potential for widespread applications for industrial 
part recognition [14], handwritten character 
recognition [15], identification of aircrafts [6], and 
shape analysis [16] to name a few. Viewpoint related 
changes of objects can broadly be represented by 
weak perspective transformation which occurs when 
the depth of an object along the line of sight is small 
compared to the viewing distance. This reduces the 
problem of perspective transformation to the affine 
transformation which is linear [18].  

The affine group includes the four basic forms of 
geometric distortions, under weak perspective 
projection assumption, namely translation rotation, 
scaling and shearing. Finding a set of descriptors that 
can resist geometric attacks on the object contour can 
act as a good starting point for the more difficult 
projective group of transformations.     

In this paper we propose a new method of 
constructing invariants which is based on normalizing 
an affine distorted and noise corrupted object 
boundary using independent component analysis 
which makes it invariant to translation, scaling and 
shearing deformations beside removing noise from the 
contour data points. Then using the restored object 
contour we construct two invariants using the 
approximation coefficients of the dyadic wavelet 

transform. It is important to mention here that the 
constructed invariants are independent of the contour 
scan order.  

The rest of the paper is organized as follows. In 
section 2 we review some the previously published 
works, section 3 describes the proposed method in 
detail and section 4 provides experimental results and 
comparisons with previously published techniques. 
Let us have a brief overview of independent 
component analysis before going into the details. 

1.1  Independent Component Analysis  
Primarily developed to find a suitable representation 
of multivariate data it performs blind source 
separation of a linear mixture of signals and has found 
numerous applications in short time.  Assume that we 
observe a linear mixture Q of n independent 
components: 
       Qj = Aj1S1 + Aj2S2 + … + AjnSn    for all j           (1)
where A represents the mixing variable and S the 
source signals. Using vector notation it can be 
expressed as:   

Q = AS              (2)
The model above is called the independent component 
analysis or ICA model [1][2] which is a generative 
model as it describes the process of mixing the 
component signals Si. All that is observed is Q and A,
S must be estimated from it. In order to estimate A, 
the component Si must be statistically independent 
and have a non-gaussian distribution. After estimating 
the mixing variable A we can compute its inverse say 
W and obtain the independent components as:  

S = WQ              (3)
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Figure 1 shows the complete system diagram for the construction of contour based invariants. 

We opted for ICA as a possible solution space 
because an affine deformation of the object contour 
results in the linear mixing of the data points on the 
coordinate axis besides being coupled with random 
noise during contour parameterization. 

2    Related Work 
Keeping in view the importance of constructing 
invariants and their widespread applications research 
has been conducted by many which can broadly be 
classified into two groups namely: Region based and 
Contour based invariant descriptors.  In the context 
below we review some of the contour based 
techniques that are most related to the present work. 

Several parameterizations of the object boundary that 
are linear under an affine transformation have been 
proposed. The affine arc length τ proposed in [8] is 
defined as: 

dttytxtytx
b

a

3 )'(')'(')'()'(            (4)

where x(t)′, y(t)′ are the first and x(t)′′, y(t)′′ the second 
order derivatives with respect to the parameterization 
order t. As the above computation requires second 
order derivates so it becomes susceptible to noise 
introduced because of incorrect segmentation of the 
object.  

To solve the above problem Arbter et al. [9] 
introduced the invariant Fourier descriptors using the 
enclosed area parameter defined as: 

b

a
dttxtytytx |)'()()'()(|

2
1            (5)

The above formulation was derived using the property 
that the area occupied by an object changes linearly 
under an affine transformation. The only drawback is 
that it is not invariant to translation and requires the 
starting and ending points to be connected.  Arbter 
also found that using sign in the enclosed area 
parameter (5) makes it much less sensitive to noise 
instead of the absolute values. Beside this the 
technique has a higher misclassification rate as 
compared to the wavelet based descriptors. 

Zhao et al. [10] introduced affine curve moment 
invariants based on affine arc length (4) defined as:  

C
dttxytytyxtxqytypxtxvpq })'(]~)([)'(]~)({[]~)([]~)([

               (6)
where x and y  are the centroid of the contour 
computed using (4) after removing the cubic root in 
the framework of moments. They derived a total of 
three invariants using equation (6) and have shown 
them to be invariant to the affine group of 
transformations. The draw back of the above 
framework is that the invariants are sensitive to noise 
and local variations of shape because the computation 
of invariants is based on moments and derivates of 
first order.  

More recently Manay et al. [7] introduced the 
Euclidean integral invariants to counter the effect of 
noise based on the concept of differential invariants. 
They have derived two invariants namely; distance 
integral invariant and area integral invariant.  The 
major drawback of their work is that the distance 
integral invariant is a global descriptor and a local 
change of shape i.e. missing parts of shape, effects the 
invariant values for the entire shape, where as the area 
integral invariant only counters for the Euclidean 
group of transformations. 

Tieng et al. [4] proposed the use of dyadic wavelet 
transform for constructing invariants using the 
approximation and detail coefficients. They 
formulated a framework based on enclosed area 
parameter for constructing invariants in the wavelet 
domain. Later Khalil et al. [5][6] extended their work 
and derived invariants using the detail coefficients 
and wavelet based conic equation.  

More recently Ibrahim et al. [3] derived invariants 
using the approximation coefficients based on the 
framework proposed in [4] and showed that 
approximation based invariants outperform detail 
based invariants in terms of error rates.  We make use 
of the framework proposed in [5][6] while 
constructing invariants in the next section and 
improve upon the wavelet based methods by reducing 
error rates.    

In short we improve on many of the short comings 
mentioned previously. 
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3    Proposed Technique 
We propose a three step process for the construction 
of contour based invariant descriptors of the objects. 
The first step acts as foundation for second and third 
steps in which ICA is applied and then invariants are 
constructed. Next we provide the detailed description 
of each step:  

3.1       Boundary Parameterization and 
Re-sampling

In the first step object contour is extracted and 
parameterized. Let us define this parametric curve as 
[x(t), y(t)] with parameter t on a plane. Next the 
parameterized boundary is resampled to a total of L
data points. Thus a point on the resampled curve 
under and affine transformation can be expressed as: 

)()()(~
210 tyatxaatx

)(2)(10)(~ tybtxbbty             (7)
The above equations can be written in matrix form as: 
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where t and t′ are different because of the difference 
in contour scan order and sampling of the two 
contours, and Y′ is obtained as a result of linear affine 
transformation of Y, P is the affine transformation 
matrix and B is the translation vector which can be 
removed (B = 0) by using the centroid contour 
coordinates. 

3.2 Theoretical Formulation and 
application of ICA

We know that Y(t) and Y′(t′) are the linear 
combination of the same source S with a different 
mixing matrix A and A′ referring to equation (2). 
Then we can write: 

 AS(t)Y(t)
)(')'(' tSAtY             (9)

where A′ is the linear combination of P and random 
noise N. In (9) the mixing matrix A′ is different 
because of the difference in affine transformation 
parameters and the random noise introduced during 
contour parameterization. 

Next we estimate the mixing variable A′ by finding a 
matrix W of weights using the Fast ICA algorithm 
from [1]. Then W will be used to find the original 
source S as per equation (3). The two step process for 
computing ICA is as follows: 

Step 1: Whiten the Centered Data 

Whitening is performed on Y′(t′) in order to reduce 
the number of parameters that need to be estimated. 
Its utility resides in the fact that the new mixing 

matrix A′ that will be estimated is orthogonal such 
that it satisfies: 
  A′ A′ T = I          (10)
So, the data Y′ becomes uncorrelated after this step. 
Whitening is then performed by computing the Eigen 
value decomposition of covariance matrix as:  

Y′ Y′T  = EDET     
Y′ = ED-1/2ETY′          (11)

where E is the orthogonal matrix of eigenvectors of {
Y′ Y′T  } and D is the diagonal matrix of eigen values. 

Step 2: Apply ICA on the Whitened Object 
Contour  

Here we apply the independent component analysis 
on the whitened contour Y′ = [x′(t′) y′(t′)]. The steps 
involved in the algorithm are detailed below: 

a. Initialize a random matrix of weights W.
b. Compute the intermediate matrix as: 

')}WY'g'(WY')}- E{ Y'g(WY E{ W TT ~~~~

            (12)
where g is a non quadratic function and E{.}
represents the maxima of the approximation 
of negentropy. For more details refer to [1].  

c. Let ||||/ WWW
d. If not converged, then go back to b. 

It is important to note that convergence means 
that the previous and current values of W have the 
same sign and the difference is below a certain 
permissible value. 

By using the above procedure we have been able to 
find a matrix W′ of weights that satisfies: 

1''),'()'(')'('' WAtStASWtYW    (13)
So we now use the inverse of the matrix W′ to find S
as per equation (3). The obtained source S(t′) will 
have the same statistical characteristics as the original 
source S(t) but will only differ from it because of the 
random contour parameterization order.  

(a)  (c)  (e) 

       
 (b)  (d)  (f) 
Figure 2 (a) Original Image (b) Parameterized 
boundary (c), (e) are affine transformed version of 
(a) and (d), (f) are the restored (normalized) 
counterparts obtained after applying above steps.    
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Figure 1 shows the complete system diagram and 
elaborates the above mentioned operations in a 
sequential and precise manner where as figure 2 and 
figure 3 demonstrate the output obtained after 
applying the above mentioned steps.  

  (a)          (b) 
Figure 3 (a) An affine deformed and noise 
corrupted object contour (b) Noise reduced and 
affine normalized image obtained as a result of 
above operations. 

Although using the above procedure we have been 
able to recover the contour of the object but the 
obtained independent components may have been 
inverted either along the parameterized x-axes or y-
axes. As a result there are four possible cases [x, y], 
[xr, y], [x, yr] and [xr, yr] where xr , yr represent values 
in reverse order. However we can consider only one 
of the two cases [x, y] and [xr, yr] for invariant 
construction as the effect of inversion along both axes 
can be removed by using normalized cross 
correlation. So we are left with three cases and we 
construct invariants I1 and I2 proposed in the next sub-
section for each of the cases and use them while 
performing cross correlation.   

3.3 Affine Invariant Functions 
As a result of previous operations we have been able 
to remove translation, scaling and shearing distortions 
from the object contour besides reducing the effect of 
noise considerably which is introduced during the 
parameterization process because of incorrect 
segmentation. The only distortion we are left with is 
rotation. So in this third and final step we construct 
two invariants using the wavelet based conic equation 
for the restored object contour.  

Conics have been used previously in computer vision 
to derive geometric invariant functions. For a point (x, 
y) from the restored object contour the conic can be 
expressed as the quadratic form [20]: 
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where h is a constant and G is a symmetric matrix.  

A wavelet based conic equation can be obtained from 
(14) using three dyadic levels Wix(t) and Wiy(t) where 
W represents the wavelet transform and i є {a, b, c}.
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An affine invariant function can then be defined as: 
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122211,, ttttcba          (16)
The above function has been proven [5][6] to be 
equivalent to: 
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where  
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The function in (17) is an invariant of weight four. 
We make use of the approximation coefficients of the 
wavelet transform while constructing the invariants I1
and I2 using (17) and the dyadic wavelet transform is 
implemented using the “A Trous algorithm” proposed 
by Mallat [19]. Figure 4 shows the plot of invariants I1
and I2.

            (a)      (b) 

           (c)         (d) 

            (e)          (f) 
Figure 4 (a) Original Image. (b) Affine 
transformed image. (c), (d) shows invariant I1 for 
images in (a) and (b). (e), (f) shows invariant I2 for 
images in (a) and (b). 

4    Experimental Results 
The proposed technique was tested on a 2.4 GHz 
Pentium 4 machine with Windows XP and Matlab as 
the development tool. The datasets used in the 
experiments include the MPEG-7 Shape-B datasets, 
10 aircraft images from [6] and English alphabets 
dataset. All the parameterized contours are resampled 
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to have the same length L of 256 data points. In the 
construction of the invariant I1 and I2 the 
approximations coefficients at level {3, 4, 5} and {2, 
4, 6} are used, where as qubic spline filters are used 
for wavelet decomposition. Besides this we use 
normalized cross correlation for comparing two 
sequences Ak and Bk which is defined as: 
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This section is divided into three parts first we 
demonstrate the stability of the two invariants against 
five different affine transformations then we provide a 
comparative analysis of the two invariants with the 
method in [3] and lastly we demonstrate the feature 
discrimination capability of the two invariants when 
compared to the method of Fourier descriptors. 

Figure 5 shows the comparison of invariant I1 and 
I2 with the method in [3]. The results are averaged 
over the MPEG-7 shape-B dataset. 

Table 1 provides comparison of the invariants I1 and 
I2 in terms of the normalized cross correlation values 
against different affine transformations for the objects 
in figure 2(b) and figure 4(a) from the aircraft dataset. 
In the table following notation is used: Rotation (R) in 
degrees, Scaling (S), Shear (Sh) along x and y axis 
and Translation (T). The figures in brackets represent 
the parameters of the transformation. 

Table 1 shows the normalized cross correlation 
values of the invariants after applying different 
affine transformations.  

Object 1 [2(b)] Object 2 [4(a)] Transformation 
I1 I2 I1 I2

Original Image 1.00 1.00 1.00 1.00 
R(70), S(2,1) 0.9693 0.9571 0.9403 0.9335 
R(135), S(2,3), T 0.9718 0.9709 0.9785 0.9596 
R(45),Sh(2.05,1.0),T  0.9369 0.9202 0.9035 0.9267 
R(165), S(3,3), 
Sh(1,2), T 

0.9845 0.9818 0.9148 0.9423 

R(230), S(4,1), 
Sh(3,3), T 

0.9376 0.9679 0.9217 0.9466 

To further elaborate and demonstrate invariant 
stability figure 5 compares the proposed invariants I1
and I2 with [3] over a set of 15 affine transformations. 

The results are averaged over the MPEG-7 shape-B 
dataset. Obtained results show a significant increase 
in performance as a function of increased correlation 
between the original and affine transformed images 
for the proposed invariants. 

Figure 6 demonstrates the discrimination 
capability of invariant I1 and I2 using the aircraft 
and MPEG7 dataset.  

Finally we demonstrate the feature discrimination 
capability of the proposed invariants using figure 6 
and compare it with that of the Fourier Descriptors in 
figure 7. Figure 6 plots the result of correlation of the 
proposed invariants for the aircraft dataset and its 
fifteen affine transformed versions and correlation of 
fifteen objects and there affine transformed version 
from the MPEG-7 shape-B dataset with the aircraft 
dataset. The results have been averaged for I1 and I2.
For the invariants that can exhibit good disparity 
between shapes the two correlation plots should not 
overlap which has been the case for the proposed 
invariants I1 and I2 in figure 6. Figure 7 plots the 
above mentioned correlations using the method of 
Fourier Descriptors where the two correlation plots 
overlap significantly.     

Figure 7 demonstrates the discrimination 
capability Fourier Descriptors using the aircraft 
and MPEG7 dataset.  

It is important to mention here that a preprocessing 
step such as a smoothing operation applied on the 
object contour after restoration can significantly 
increase the correlation values, which at present has 
not been used to preserve the shape discrimination 
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power of the two invariants. Obtained results show 
significant reduction in error, thus validating the 
proposed approach. 

5    Conclusion 
In this paper we have presented a hybrid approach for 
invariant construction using the independent 
component analysis and wavelet based conic 
equation. Experimental results validate the use of an 
affine normalization technique as a preprocessor to 
the computation of invariant functionals. Beside this 
the use of dyadic wavelet transform after affine 
normalization added the much needed discriminative 
power to the proposed set of invariants. Presently, 
work is in progress to extend the framework to handle 
the projective group of transformations and estimation 
of the affine parameters, in future we intend to build 
an intelligent classifier for performing object 
recognition over a large dataset based on the proposed 
invariants. 

6    Acknowledgment 
The authors would like to thank National Engineering 
and Scientific Commission (NESCOM) for their 
financial support, GIK Institute of Engineering 
Sciences & Technology for facilitating this research 
and Temple University, USA for providing the 
MPEG-7 Shape-B dataset. 

7    References 
[1] A.Hyvarinen, “Fast and robust fixed point 

algorithms for independent component 
analysis”, IEEE Transactions on Neural 
Network, vol. 10 no.3, 1999. 

[2] A.Hyvarinen, E.Oja, “A fast fixed point 
algorithm for independent component 
analysis”, Neural Computations, vol. 9, 
1997. 

[3] I.E.Rube, M.Ahmed, M.Kamel, “Wavelet 
approximation based affine invariant shape 
representation functions”, IEEE Transactions 
on pattern analysis and machine intelligence,
vol.28, no.2, February 2006. 

[4] Q.Tieng, W.Boles, “An application of 
wavelet based affine invariant 
representation”, Pattern recognition Letters
vol. 16, 1995. 

[5] M.I.Khalil, M.Bayoumi, “Affine invariants 
for object recognition using the wavelet 
transform”, Pattern recognition letters,
no.23, 2002. 

[6] M.Khalil, M.Bayoumi, “A dyadic wavelet 
affine invariant function for 2D shape 
recognition”, IEEE Transactions on pattern 
analysis and machine intelligence, vol.23, 
no.10 October 2001. 

[7] S.Manay, D.Cremers, B.Hong, A.Yezzi, 
S.Soatto, “Integral Invariants for shape 
Matching”, IEEE Transactions on pattern 
analysis and machine intelligence, vol. 28, 
no. 10, October 2006. 

[8] H.W. Guggenheimer, “Differential 
Geometry”, McGraw-Hill, New York, 1963. 

[9] K. Arbter, E. Synder, H.Burkhardt, 
G.Hirzinger, “Application of affine invariant 
Fourier descriptors to the recognition of 3D 
objects”, IEEE Transactions on pattern 
analysis and machine intelligence, vol.12, 
no.7, 1990. 

[10] D.Zhao, J.Chen, “Affine curve moment 
invariants for shape recognition”, Pattern 
recognition, vol.30, no.6 1997. 

[11] J.Flusser, T. Suk, “Pattern recognition by 
affine moment invariants”, Pattern 
recognition, vol.26, no.1, 1993. 

[12] M.Petrou, A.Kadyrov, “Affine invariant 
features from the trace transform”, IEEE
transactions on pattern analysis and machine 
intelligence, vol.26, no.1, January 2004. 

[13] E.Rahtu, M.Salo, J.Heikkila, “Affine 
invariant pattern recognition using multiscale 
autoconvolution”, IEEE Transactions on 
pattern analysis and machine intelligence,
vol.27, no.6, June 2005. 

[14] Y.Lamdan, J.T.Schwartz, “Affine Invariant 
Model based object recognition”, IEEE 
Transactions on robotics and automation,
vol.6, no.5, October 1990. 

[15] T. Wakahara, K.Adaka, “Adaptive 
Normalization of handwritten characters 
using global-local affine transformations”, 
IEEE Transactions on pattern analysis and 
machine intelligence, vol.20, no.12, 
December 1998. 

[16] I.E.Rube, M.Ahmed, M.Kamel, “Coarse to 
fine multiscale affine invariant shape 
matching and classification”, Proc of 17th

International Conference on Pattern 
recognition, 2004. 

[17] Z.Hauang, F.S.Cohen, “Affine invariant B-
spline moments for curve matching”, IEEE 
Transactions on image processing, vol.5, 
no.10, October 1996. 

[18] J.Mundy, A.Zisserman, “Geometric 
invariance in computer vision”, MIT Press, 
Cambridge, MA. 

[19] S.Mallat, “A Wavelet Tour of Signal 
Processing” 2nd   Edition, Academic Press, 
1999. 

[20] I.Weiss, “Geometric invariants and object 
recognition”, International journal of 
computer vision, vol. 10, no. 3, 1993. 

90



 

VQ-Based Data Hiding in Images  
by Minimum Spanning Tree 

Hung-Min Sun1, King-Hang Wang2, Hou-Wen Wang3, Chia-Yen Chen4 

1,2,3Department of Computer Science 
National Tsing Hua University, Taiwan 

4Department of Computer Science,  
The Univeristy of Auckland, New Zealand 

Email: 1humsun@cs.nthu.edu.tw, {2khwang0, 3blark}@is.cs.nthu.edu.tw, 4yen@cs.auckland.ac.nz 

Abstract 
Image data hiding transmits secret information via side channel. The two conflicting properties: image quality 
and data capacity, are two major concerns in image data hiding, especially in compressed image format. In this 
paper, we seek a balance between the conflicts using vector quantization (VQ). Two approaches have been 
proposed based on coloring in minimum spanning tree. One of our schemes has shown to provide the best 
theoretic heuristic solution. Our results have significant advantages over other techniques as shown by the 
experimental results. 

Keywords: image data hiding, vector quantization, minimum spanning tree 

1 Introduction 
Steganography is designed to carry secret information 
in side channel without anyone noticing. Image data 
hiding and watermarking [11] are two similar topics 
in steganography, but they have significant 
differences from the purposes they serve and the 
applications they are employed in. Watermarking is 
mainly used for protecting the metadata of digital 
contents. It provides the proof of the ownership of a 
digital content. The major concern of watermarking is 
its robustness. Image data hiding is employed to 
secretly carry information through a static image. A 
typical application of data hiding is in the military. It 
focuses on the capacity (the amount of data being 
hidden) and the imperceptibility (chances of being 
discovered that the image is loaded with information), 
which can also be explained as the image quality 
degraded by the embedding secret data. In contrast to 
watermarking, data hiding embeds lossless data in an 
image rather than lossy data. In addition, the data 
carried in data hiding are usually encrypted; that 
makes adversary unable to extract the hidden 
information; while some of the watermarks can be 
publicly retrieved. 

Data hiding schemes are divided into spatial domain 
and frequency domain. A classic method in spatial 
domain is Least Significant Bit (LSB) substitution 
[1][7]. This method substitutes the LSB of every pixel 
in the image with the information it embeds. Methods 
working in spatial domain are generally faster and are 
able to carry larger amount of data. Methods in 
frequency domain apply discrete Fourier transform 

(DFT) or discrete cosine transform (DCT) to 
transform the spatial signal to the frequency domain, 
where data is embedded in the coefficients of the 
DCT or DFT equations. Schemes designed in 
frequency domain are more robust against different 
types of image operations (like sharpening, contrast, 
adjustment, etc.).  

Vector Quantization (VQ) [10] is a lossy compression 
technique in spatial domain. It divides the image into 
many small blocks and tries to represent each block 
with a master palette (codebook). This may 
significantly reduce the size of the original image.  

Current trend is to handle images in a compressed 
format, yet, the distortion introduced by lossy 
compression has limited the room for data hiding.  
Therefore, it is a great challenge for researchers to 
develop an efficient data hiding scheme with VQ. 

Some previous works have been proposed for data 
hiding with VQ [3][5][9]. These methods fail to 
achieve good image quality and high data rate 
simultaneously. Also, some of the schemes [4] further 
require the secret encoder and the secret extractor to 
share an additional codebook for embedding and 
extracting the secret. This assumption may not be 
feasible in many applications. 

In this paper, we propose two data hiding schemes 
with VQ. The first approach is a simple scheme that is 
capable of hiding one bit per block and the second 
scheme is able to hide multiple bits per block. The 
contribution of our work is significant. Our first 
approach is the best theoretical heuristic solution in 
hiding a single bit per block, while the second 
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approach has a significant advantage over the work of 
[3]. These two approaches do not require the sender 
and the receiver to share an additional codebook. 
Furthermore, our algorithm allows VQ compression 
to be complete separated from secret embedding. This 
feature may facilitate lightweight devices in data 
embedding. 

The organization of the paper is as the following. We 
review some related data hiding schemes in VQ in 
section 2. In section 3, we introduce the proposed 
schemes, followed by performance analysis in section 
4. We conclude the paper in section 5. 

2 Related Works 
In this section, we take a quick look at VQ and review 
four previous approaches on data hiding. They are 
mean gray-level embedding method (MGLE), pair-
wise nearest-neighbor embedding method (PNNE), 
principle component analysis method (PCA), and 
least significant bit substitution method (LSB). 

2.1 Vector Quantization 
VQ is a well known technique to compress images 
[10]. First, a codebook is generated and shared by the 
encoder and decoder. A codebook of size N contains 
2w vectors (codewords) }21|{ w

i iCC ≤≤= . Each 
codeword is in j dimensions },...,,{ ,2,1, jiiii CCCC = . 
The LBG algorithm [8] is a classic method to train a 
representative codebook. To encode a gray-level 
image I, we first divide the image into many non-
overlapped blocks },...,,{ ,2,1, jiiii vvvv = where 

},...,,{ 21 kvvvI = . Each block contains n by n pixels (j 
= n × n). Then, for every block, we find the closest 
codeword from the codebook and record their index. 
Therefore, each block of the image will be 
represented by an index. These indices will be sent to 
a receiver as a compressed image. The receiver can 
reconstruct the image by filling up codewords found 
in the codebook. 

2.2 Mean Gray-Level Embedding 
method (MGLE) 

MGLE appears in [3][4] as the intuitive approach in 
data hiding with VQ. All codewords in the codebook 
are sorted in advance according to their mean value. 
The mean value of each codeword ci is calculated by 

jcc j
s sii /)( 1 ,∑ == . Then, these codewords are divided 

into two sub-codebooks with the odd indices in ‘0’-
codebook and even indices in ‘1’-codebook. As 
shown in Figure 1, we encode each block vi with 
different sub-codebook, depends on the secret bit 
being embedded. If the i-th bit of the secret is ‘0’, we 
will choose the ‘0’-codebook to encode the block vi. 
The decode procedure is the same to the VQ decode. 
To extract the data embedded in the image, we simply 
search which sub-codebook the codewords belong to.  

The codebook is sorted according to the mean value 
based on the belief that two codewords with similar 
mean value have a short Euclidean distance. Two 
close codewords should not be placed in a same 
codebook. Follow this logic, this sorting method tries 
to avoid any two close codewords being placed in the 
same codebook.  

We shall see the reason to separate two close 
codewords in different sub-codebooks in section 3. 
However, the reader may realize that the difference 
between the mean values of two codewords has no 
implication on the distance between them. This can be 
justified by the example of the following two 
codewords: {10, 0} and {0, 10} where both of them 
have the mean value 5 but the distance in between is 

210)100()010( 22 =−+− . The mean value of {4, 
0} and {0, 0} is different by 2 while their distance is 
only 2. These two examples prove that the difference 
of mean values of two codewords does not have 
absolute implications on the distance between them. 

2.3 Pair-wise Nearest-Neighbor 
Embedding method (PNNE) 

PNNE [4] is an improvement of MGLE. The design 
philosophy of PNNE is to pair up nearest codewords 
together. In PNNE, we repeatedly select two 
codewords which are closest to each other, label one 
of them as ‘0’ and the other one as ‘1’. The encoding 
and decoding schemes of PNNE are exactly the same 
as MGLE. They are only different in the division of 
sub-codebooks. 

 
Figure 1: The encoding procedure used in MGLE, 

PNNE, and PCA. 

2.4 Principle Component Analysis (PCA) 
Principle component analysis (PCA) [6] is a famous 
algorithm widely used in pattern recognition and data 
analysis. PCA clusters the input vectors by projecting 
them into a K-dimension space.  

In [2], the authors proposed that the codebook should 
be sorted using PCA instead of the mean value of 
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codewords. The motivation of PCA method is 
somehow the same as PNNE – to cluster near 
codewords together. This method can be generalized 
in hiding multiple bits in a single block [2]. 

2.5 Least Significant Bit (LSB) 
LSB method [7] first appeared in uncompressed 
domain. It substitutes the least significant bit of each 
pixel with the secret information. Later, it has also 
been introduced in VQ domain [2]. By sorting the 
codebook with some mechanisms, after encoding the 
image using standard VQ technique, we substitute the 
least significant bit of each code vector. In some cases, 
we may further stuff more bits into each codeword by 
substituting the last two or three bits of the code 
vector. As a consequence, this will further degrade the 
image quality. 

The method of sorting codebook, like MGLE and 
PCA, can be used with LSB method. Later in this 
paper, we refer MGLE_LSB and PCA_LSB as the 
method that combines MGLE and PCA with LSB 
method respectively. 

3 The Proposed Approach 

3.1 Motivation 
Consider a toy example shown in the Figure 2. We 
have four codewords },,,{ 4321 CCCCC =  in a 
codebook. To simplify the problem, we further 
assume that these codewords lie on a straight line with 
equal distance apart. More specifically, the distance 
Dij between Ci and Cj is defined as Dij = K ⋅ | i – j | ∃ 
constant K and 1≤ i, j≤ 4.  

Before embedding data into an image, we have to 
separate these codewords into two sub-codebooks G0 
and G1. There are 16 – 2 = 14 ways (excluding two 
with empty set) to do so. We compare two ways to 
separate these codewords. The first one sets 

},{};,{ 431210 CCGCCG ==  and the second one 
sets },{'};,{' 421310 CCGCCG == . Let Pi be the 
distribution of the distance between a codeword Ci 
and a random code vector sampled from original 
image. We assume that all Pi’s are identical; that 
implies any random vector has equal probability to be 
closest to any codeword. We claim that the second 
approach to separate the codewords has a better 
performance than the first approach, which is proven  
in the following lemma.  

 
Figure 2: Example to illustrate the importance of 

codeword classification in data hiding 

Lemma 1: The average distortion in encoding with 
}','{ 10 GG  is less than encoding with },{ 10 GG . 

We learn from the toy example and Lemma 1 that the 
penalty induced in data hiding is controlled by “how 
far” away the alternating codeword is. If the 
alternating codeword of C1 is C3, which means we are 
now using },{ 10 GG , the longer distance between C1 

and C3 would cost us more distortion penalty. 
Therefore minimizing the distance between each pair 
of “alternating” codewords is very important.  

To formalize our goal in designing a good data hiding 
scheme, we can generalize the distortion penalty 
equation from the toy example as listed as below: 
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∑ ∑
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Minimization of the above term is equivalent to the 
minimization of the average distance between each 
pair of alternating codewords. This can be optimized 
by using minimum spanning tree which guarantees 
that every codeword has an alternating codeword in 
the other sub-codebook. Owing to page limitation, the 
reduction is omitted.  

3.2 Our Proposed Scheme 
We first describe the simple scheme that embeds only 
a single bit in each block. Roughly speaking, our 
approach is to build a minimum spanning tree with 
the codewords being vertices and their distances being 
edges. Then, we color the spanning tree with the 
requirement that no adjacent vertices have the same 
color. These colors represent the information bit 
carried by the codewords. To encode a block, we 
simply choose its nearest codeword or the 
corresponding alternative, depends on the information 
to be hidden, to represent the block.  
Detailed procedures of the algorithm are illustrated 
below:  

Generation of codebook: (output: a colored 
spanning tree T) 
1) Generate a codebook }21|{ w

i iCC ≤≤=  
with 2w of codewords and each codeword is 
n × n large. 

2) Build a minimum spanning tree based on 
the Euclidean distance amongst codewords 

3) Paint C1 with color ‘0’ and add C1 into a 
queue Q 

4) Do the following until all Q is empty. 
I. Pop the first element Ck from Q 
II. Set p’ = (p + 1) mod 2 where p is the 

color of Ck 
III. Color all the uncolored neighbors of Ck 

as p’ and add them into Q 
Embedding: (Input: a stream of 
block }|,...,,{ 321

nn
i RbbbbB ×∈= , a codebook 
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}21|{ w
i iCC ≤≤= , a colored spanning tree T, 

a stream of secret bits 
}}1,0{|...,,{ 321 ∈= issssS . Output: a stream 

of indices }|,...,{ 21 CdddD i ∈∀= ) 
1) Find the nearest codeword of bi. Name it as 

Ck 
2) If the color of Ck = si, encode bi as Ck;  

Otherwise, find the nearest neighbor of Ck 
from the spanning tree and encode bi as 
that neighbor.  

Decode and extract: (Input: a stream of 
index }|,...,{ 21 CdddD i ∈∀= , codebook C. 
Output: blocks }'|,...',','{' 321

nn
i RbbbbB ×∈= , a 

stream of secret bits }}1,0{'|...',','{' 321 ∈= issssS ) 
1) Build the colored minimum spanning tree 

using the method mentioned above 
2) Rebuild a block bi by replacing each index 

di by the codeword found on the codebook. 
3) Extract the secret bit s’i by looking up what 

color di is from the colored spanning tree. 
 
Since the Euclidean distance of codeword 

follows triangular inequality, there should have a 
unique minimum spanning tree that guarantees each 
codeword directly connects to its nearest neighbor. 
Also, there is no cycle in a minimum spanning tree; 
therefore, our algorithm would not paint two adjacent 
nodes with the same color. As a result, step 3) of 
Embedding will encode the secret bit properly, even if 
the color of Ck does not equal to si.  

The quality of an embedding image is solely 
reflected by its PSNR value, which is in fact the 
Euclidean distance of the recovered image and 
original image. Despite the random distribution of 
source image that brings uncertainties to different 
embedding algorithms, this embedding scheme 
promises that the alternative of every codeword has a 
minimum distance apart from it; that also suggests the 
best theoretic heuristic solution for hiding a single bit 
in each block.  

We describe the extension of our algorithm that 
hides multiple bits in a block. Assuming that we are 
going to hide r-bits secrets in a block, the Decode and 
Extract procedures are same as the signal-bit hiding 
scheme except the color of the spanning is no longer 
binary. We explain the algorithms for Generation of 
Codebook and Embedding in details here: 
Generation of Codebook: (Output: a 2r-colored 
spanning tree T) 

1) Generate a codebook }21|{ w
i iCC ≤≤=  and 

build a minimum spanning tree based as 
describe in the basic scheme. 

2) Paint C1 with color ‘0’ and add C1 into a 
queue Q 

3) Create two tables called Global(i) and 
Local(i,j) where wr ji 21,120 ≤≤−≤≤ . 
Initially all entries are zero. 

4) Do the following until all Q is empty. 

I. Pop the first element Ck from Q and set 
p is the color of Ck 

II. For each Cj being the uncolored 
neighbors of Ck 
1. Name the set of i as I that 

minimizes Local(i,k) where i ≠ p 
2. If |I|>1, find i that minimizes 

Global(i) 
3. If there are more than one i that 

minimize both Local(i,k) and 
Global(i), then select the least i. 

4. Set Global(i) = Global(i) + 1 and 
Local(i,k) = Local(i,k) + 1 

5. Color Cj as i and add Cj into Q 
Embedding: (Input: a stream of block 

}|,...,,{ 321
nn

i RbbbbB ×∈= , a codebook 

}21|{ w
i iCC ≤≤= , a colored spanning tree T, a 

stream of secret bits }}12,..,0{|,...,{ 21 −∈= r
isssS . 

Output: a stream of indices }|,...,{ 21 CdddD i ∈∀= ) 
1) Find the nearest codeword of bi. Name it as 

Ck 
2) If the color of Ck = si, encode bi as Ck;  

Otherwise, find the nearest codeword from 
Ck with the same color as si from the 
spanning tree and encode bi as that 
codeword. 
 

This algorithm is an extension of our simple 
scheme. The underlying theory is the same – to 
minimize the distance between codewords and their 
alternating codewords. As we can see, if the number 
of colors increases, the average distance between 
codewords and their alternating codewords will also 
increase. This degrades the image quality of the 
embedded image, but in exchange, allows more data 
to be carried by the image.  

We note that the two algorithms can be further 
improved by fully searching the best codewords from 
the candidates set, rather than just selecting the 
alternative codewords to replace the nearest codeword. 
However, from our experience, these improvements 
are not significant.  

As we have mentioned above, the data 
embedding scheme can be totally separated from the 
VQ compression. On the inputs of the codebook, and 
the VQ-compressed image, one may embed secret 
data using the algorithm stated above, by simply 
replacing the index by the desired alternative 
codewords. Pre-computation of colored minimum 
spanning tree and alternative codewords mapping can 
be done at a backend server in advance, to allow a 
lightweight device embed secret in an image 
efficiently. 

4 Performance 
The performance of distortion is measured by PSNR. 
PSNR is defined as: 
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Here, K is the size of image, 2b is the size of the 
codebook, oi is the i-th pixel value of the original 
image, and ri is the i-th pixel value of the compressed 
image. We generate the codebook using LBG 
algorithm with Tiffany (Figure 3(a)) in the training set 
and F16 (Figure 3(b)) not in the training set. The 
tested images are of 512 × 512, 8-bits gray-level. The 
codebook size is set to 256, each block size is 16 (4 × 
4). Experimental results, in terms of PSNR, are shown 
in Table 1 and Table 2. In Table 1, we hide a single 
bit (r = 1) in each block of totally 16K bits of 
randomly generated secret. We compare our result 
with MGLE, PCA, and PNNE with Tiffany and F-16. 
For the same embedding capacity, we have achieved 
the best image quality. Next, we perform another test 
with our extended scheme with various numbers of 
bits hidden in each block. We compare this to the 
PCA_LSB and the MGLE_LSB in Table 2. Again, we 
have significant performance over PCA_LSB and 
MGLE_LSB. Figures 4 and 5 show some pictorial 
results of different schemes. 

5 Conclusions 
In this paper, we propose two image data hiding 
methods with VQ using minimum spanning tree. As 
shown in the experimental results, we have achieved  
best image quality among all of the existing schemes. 
By using coloring minimum spanning tree, we reduce 
the penalty when embedding secret in images. In the 
future, we will try to adapt this technique to hide data 
in images which are transformed in frequency domain. 
We will also try to cope this with industrial standards, 
such as JPEG. 

Acknowledgements 
The authors wish to acknowledge the anonymous 
reviewers for valuable comments. This research was 
supported in part by the National Science Council,  

 

 

Taiwan, under contract NSC 95-2221-E-007-021. 

References 
[1] C. K. Chan and L. M. Cheng, “Hiding data in 

images by simple LSB substitution,” Pattern 
Recognition, vol. 37, pp. 469-474, March 
2004 

[2] C. C. Chang, D. C. Lin, and T. S. Chen, “An 
improved VQ codebook search algorithm 
using principal component analysis,” Journal 
of Visual Communication and Image 
Represent, vol. 8, pp. 27-37, March 1997 

[3] C. C. Chang, and P. Y. Lin, “A compression-
based data hiding scheme using vector 
quantization and principle component 
analysis,” 3rd International Conference on 
Cyberworlds (CW 2004), pp. 369-375, 2004 

[4] W. C. Du, and W. J. Hsu, “Adaptive data 
hiding based on VQ compressed images,” 
IEE Proc., Vis. Image Signal process, vol. 
150, No. 4, pp. 233-238, August 2003 

[5] Y. C. Hu, “Gray-level image hiding scheme 
based on vector quantization,” IEE 
Electronic Letter, vol. 39, No. 2, pp. 203-203, 
January 2003 

[6] I.T. Jolliffe, “Principle Component 
Analysis,” New York: Springer-Verlag, 1986. 

[7] W. N. Lie, L. C. Chang, “Data hiding in 
images with adaptive numbers of least   
significant bits based on the human visual 
system,” in Proc. IEEE Int. Conf. on Image 
Processing, vol. 1, pp. 286–290, 1999. 

[8] Y. Lined, A. Bozo, and R. M. Gray, “An 
algorithm for vector quantizer design,” IEEE 
Transactions on Communications, vol. 28, 
pp. 84-95, Jan 1980 

[9] Z. M. Lu, W. Xing, D. G. Xu, and S. H. Sun, 
“Digital image watermarking method based 
on vector quantization with labeled 
codeword,” IEICE transactions on 
information and systems, vol. E86-D, pp. 
2786-2789 , Dec 2003 

Table 1: Hiding 16384 bits (r =1) in two testing images 

PSNR VQ (no hiding) Ours PCA PNNE MGLE 
Tiffany 30.96 28.68 27.38 27.53 26.68 
F-16 27.59 26.17 25.70 25.91 25.36 

 
Table 2: Hiding bits = r × 16384 (bits) in two testing images 

Ours PCA_LSB MGLE_LSB PSNR 
Tiffany F-16 Tiffany F-16 Tiffany F-16 

r = 1 28.68 26.17 24.40 22.34 24.43 22.12 
r = 2 24.95 23.91 22.66 20.85 22.73 20.80 
r = 3 22.17 21.66 21.62 20.00 21.63 19.96

95



 

[10] R. M. Grey, “Vector quantization”, IEEE 
ASSP Magazine, pp. 4-29, April 1984 

[11] F. A. P. Petitcolas, R. J. Arderson, and M. G. 
Kuhn, “Information hiding – A survey,” in 
Proceedings of the IEEE, special issue on 

protection of multimedia content, vol. 87, pp. 
1062-1078, July 1999 

 
 

  
 
 
 
 
 

             
                            (a)VQ,PSNR=27.59  (b)PCA_LSB,r =1      (c)PCA_LSB, r = 2     (d) PCA_LSB, r =3 

                                                       
                                                     (e)Ours, r = 1               (f)Ours, r = 2                  (g)Ours, r = 3 

Figure 5 Experimental results for embedding more than one bit per block 

                            
         (a)VQ (no hiding), PSNR=30.96  (b)Ours, PSNR=28.68  (c)PNNE, PSNR=27.53  (d)MGLE, PSNR=26.68 

Figure 4 Experimental results for embedding single bit per block 

  (a)Tiffany               (b) F-16 
Figure 3 Images for Experiment
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3 Gray-tone Salient Regions
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Abstract
An explicit snake is a smooth closed curve which deforms towards the desired features in an image.
There are two types of force controlling the motion of the snake: internal and external forces. The
former constrains the snake, while the latter generates attraction forces. The currently existing snake
models have generally used the same internal forces, i.e., the first and second Tikhonov smoothness force
terms. To investigate the possible role of higher Tikhonov constraint parameters, third and fourth force
terms are added in this study. The related theoretical equations are derived and the respective influence
of the four internal force terms are examined and followed on test images. While still at the preliminary
stage, the present study shows that the added internal force terms may improve the smoothness and
convergence of the snake.

Keywords: active contour, contour extraction, Tikhonov

1 Introduction

An explicit snake model provides a unified solution
to a set of visual problems which were treated in
different ways in the past. In this model, edges,
lines and object contours can be extracted by
the same mechanisms. Tracking these features
in videos and matching them in stereo vision
system can also be realized by using the same
framework. It is a powerful tool for high-level
image processing.

Since the first active contour, also called snake
for its characteristic motion over time, was pro-
posed by Kass, Witkin and Terzopulos[1] in the
late 1980’s, a significant number of studies has been
conducted to improve and to solve the problems
related to its optimal convergence. Cohen’s[2] bal-
loon model gives the snake an additional force to
make the snake inflate or deflate. The GVF model
proposed by Chenyang and Prince[3] computes the
external force as a diffusion of the gradient vectors
of a gray-level or binary edge map derived from
the image. In 1993, Cohen L.D. and Cohen I.[4]
suggested using Chamfer distance to edge points as
external force. The basic ideas of these solutions
are to increase the capture range of the external
force, so that the initial snakes do not necessarily
lie very close to the regions of interests.

Almost all of the existing explicit snake models
have the same internal force which is composed of
the first and second Tikhonov smooth force terms.
Higher order Tikhonov smoothness force terms

could also have some effects on improvement of
the smoothness but this was never investigated.
To explore these possible effects, the third and
foutrh Tikhonov smooth force terms are added to
the snake internal constraint in this study. After a
theoretical characterisation of these added terms,
the roles of the internal force terms are examined.

2 Explicit snake

2.1 Model

An explicit snake (parametric snake) is a specific
type of deformable model, which is a mapping:

Ω = [0, 1] → R2

s �→ v(s) = (x(s), y(s))

Where s denotes the curvilinear abscissa and (x,y)
the Cartesian coordinates of the snake points. An
explicit snake model is defined as a space of admis-
sible deformations A and a functional E to min-
imize. This functional represents the energy of
the model which will be minimized and has the
following form:

E : A→ R

v �→ Esnake(v) =
∫ 1

0

Esnake(v(s))ds

=
∫ 1

0

Eint(v(s)) +Eext(v(s))ds (1)

where
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Eint = α(s)|vs(s)|2 + β(s)|vss(s)|2
+T (s)|vsss(s)|2 + F (s)|vssss(s)|2 (2)

Eext = Eimage(v(s)) + Econstrain(v(s))

Assume v is a local minimum for E, equation (1)
leads to the following associated Euler-Lagrange
equation:

−(αvs)s + (βvss)ss − (Tvsss)sss + (Fvssss)ssss

+∇Eimage(v) + ∇Econstrain(v) = 0 (3)

(v(0), vs(0), v(1) and vss(1) are known.)

Here,vs(s), vss(s), vsss(s) and vssss(s) denote
derivatives of v(s), α(s), β(s), T (s) and F (s) are
the weights of vs(s), vss(s), vsss(s) and vssss(s)
respectively, one can control the importance of
vs(s), vss(s), vsss(s) and vssss(s) by adjusting
the weights α(s), β(s), T (s) and F (s). Eimage

refers to the image energy which correspond to the
desired attributes and Econstrain is the external
constraint force. In practice, we always give
a weight to the image force and external force
respectively, thus equation (3) becomes:
−(αvs)s + (βvss)ss − (Tvsss)sss + (Fvssss)ssss

+κ∇Eimage(v) + κp∇Econstrain(v) = 0 (4)

A solution can be seen either as realizing the equi-
librium of the forces in the equation (4) or reaching
the minimum of the energy (1).

2.2 Numerical solution

Assume f(v) = κ∇Eimage(v) + κp∇Econstrain(v),
then (4) becomes:

−(αvs)s + (βvss)ss − (Tvsss)sss

+(Fvssss)ssss + f(v) = 0 (5)

Using the finite difference method approximate
the derivatives of v, assume the special distance
is equal to 1 constantly, then the left terms of (5)
can be expressed as:

(αvs)s = +αi+1(vi+1 − vi) − αi(vi − vi−1)
= +α(vi+1 − 2vi + vi−1) for α constant

(βvss)ss = +βi+1(vi+2 + vi − 2vi+1)
−2βi(vi+1 + vi−1 − 2vi)
+βi−1(vi−2 + vi − 2vi−1)

= +β(vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2)
for β constant

(Tvsss)sss = +Ti+2(vi+3 − 3vi+2 + 3vi+1 − vi)
−3Ti+1(vi+2 − 3vi+1 + 3vi − vi−1)
+3Ti(vi+1 − 3vi + 3vi−1 − vi−2)
−Ti−1(vi − 3vi−1 + 3vi−2 − vi−3)

= T (vi−3 − 6vi−2 + 15vi−1 − 20vi

+15vi+1 − 6vi+2 + vi+3)
for T constant

(Fvssss)ssss = +Fi+2(vi+4 − 4vi+3 + 6vi+2 − 4vi+1 + vi)
−4Fi+1(vi+3 − 4vi+2 + 6vi+1 − 4vi + vi−1)
+6Fi(vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2)
−4Fi−1(vi+1 − 4vi + 6vi−1 − 4vi−2 + vi−3)
+Fi−2(vi − 4vi−1 + 6vi−2 − 4vi−3 + vi−4)

= F (vi−4 − 8vi−3 + 28vi−2 − 56vi−1 + 70vi

−56vi+1 + 28vi+2 − 8vi+3 + vi+4)
for F constant

Thus (5) can be written in matrix form:

AV + f = 0

Where A is a quasi nona-diagonal circulant Toepliz
matrix:

567891234

49123

3912

234567891

123456789

189

189

123456789

189

189

189

118

8917

789123456

678912345

0....0
0....0

0....0
0....0

0....0
0......0...0
00......0..0
000000
0000.....00
00..0.....0
0....0.....

.....0.....
.....0.....

.....0
0...00

aaaaaaaaa
aaaaa
aaaa
aaaaaaaaa

aaaaaaaaa
aaa

aaa
aaaaaaaaa

aaa
aaa

aaa
aaa
aaaa
aaaaaaaaa
aaaaaaaaa

A

The nine ai weights are derived from the above
equations:

a =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F
−T − 8F
β + 6T + 28F
−α− 4β − 15T − 56F
2α+ 6β + 20T + 70F
−α− 4β − 15T − 56F
β + 6T + 28F
−T − 8F
F

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

V and f denote the vector of the locii and forces
of the snake points.

As explained in[1], to solve equation 5, the right-
hand side of the equation is set equal to the product
of a time step size and the negative time derivatives
of the left-hand sides. For simplicity, assume f is
constant during a time step, leading to an explicit
Euler method with respect to the external force.
Because the matrix A completely specified the in-
ternal forces, we can evaluate the time derivative at
time t rather than time t-1 and consequently arrive
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at an implicit Euler step for the internal forces.
The resulting equation is:

AVt + ft−1 = −γ(Vt − Vt−1) (6)

Equation (6) can be solved by matrix inversion:

Vt = (A+ γI)−1(Vt−1 − ft−1) (7)

Note that the matrix of equation (7) needs to be
inverted once if the smoothness parameters are set
constant through the snake temporal evolution.
This can be achieved via a LU decomposition
scheme in O(n) time[5][6] or through the direct
computation of its coefficients[7].

3 Weights of internal forces

In equation (4) each term appears as a force
applied to the snake. The first four terms are
the internal forces namely the first, second, third
and fourth order Tikhonov smoothness force
terms where α(s), β(s), T (s) and F (s) are their
associated weights.

In this section, four groups of experiments are con-
ducted, each group focusing on one of the Tikhonov
smoothing parameter. Each parameter influence is
studied over an order of magnitude. The external
parameter kappa is set to 0. The initial snake is
a square with width equal to 40 and the distance
between the snake points are set to 1. The set of
parameters values studies is shown in Table1 and
the relevant results are discussed in each subsection
(Figure 1, Figure 2 and Figure 3).

3.1 The first group

a. =0.05,iter=100 b. =0.5,iter=100

c. =2,iter=100 d. =5,iter=70

Figure 1: Snake evolution in absence of image
features; Parameters values are set as in the first
row of Table 1

From this group of experiments, it can be seen that
a slight change in α can bring big change in topol-
ogy of the snake. In the last experiment, when α

= 5, after 70 iteration, the square shaped snake
becomes a point, which illustrates the elasticity
imposed to the snake by α.

3.2 The second group

a. =0.05, iter=100 b. =0.5, iter=100 c. =2, iter=100 

d. =5, iter=100 e. =50, iter=100 

Figure 2: Snake evolution in absence of image
features; Parameters values are set as in the second
row of Table 1.

Compare to the first group, the affect of β is not as
powerful as α. When β = 5, after 100 iteration, the
snake is still in square shape, except that the four
corners of the rectangle become curve. Further-
more, when β = 50, after 100 iteration, the snake
turns into a circle which illustrates the smooth
function of the internal force. This in line with
the known curvature constraint effect of 2nd or-
der Tikhonov parameter while the first order term
binds the snake elasticity.

3.3 The third group

a. T=1,iter=250 b. T=10,iter=250 c. T=50,iter=250

d. T=100,iter=250 e. T=500,iter=250

Figure 3: Snake evolution in absence of image
features; Parameters values are set as in the third
row of Table 1.

The snake shapes in this group are similar to those
in the second group. However to gain the similar
shapes the value of T in this group has to be set
much higher than corresponding value in the sec-
ond group. The effect of the third order Tikhonov
smoothing parameter could be the same as the sec-
ond order Tikhonov smoothing parameter provide
that T value is set around 10 times as the value of
β (refer to the corresponding Experiment e).
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Table 1: The Tikhonov smoothing terms parameters values set applied in our experiment.

The focused Tikhonov

smoothing parameter
parameters

1. α
(first order)

a. α = 0.05, β = 0, T = 0, F = 0, iter = 100
b. α = 0.5, β = 0, T = 0, F = 0, iter = 100
c. α = 2, β = 0, T = 0, F = 0, iter = 100
d. α = 5, β = 0, T = 0, F = 0, iter = 70

2. β
(second order)

a. α = 0, β = 0.05, T = 0, F = 0, iter = 100
b. α = 0, β = 0.5, T = 0, F = 0, iter = 100
c. α = 0, β = 2, T = 0, F = 0, iter = 100
d. α = 0, β = 5, T = 0, F = 0, iter = 100
e. α = 0, β = 50, T = 0, F = 0, iter = 100

3. T
(third order)

a. α = 0, β = 0, T = 1, F = 0, iter = 250
b. α = 0, β = 0, T = 10, F = 0, iter = 250
c. α = 0, β = 0, T = 50, F = 0, iter = 250
d. α = 0, β = 0, T = 100, F = 0, iter = 250
e. α = 0, β = 0, T = 500, F = 0, iter = 250

4. F
(fourth order)

a. α = 0, β = 0, T = 0, F = 1, iter = 250
b. α = 0, β = 0, T = 0, F = 50, iter = 250
c. α = 0, β = 0, T = 0, F = 100, iter = 250
d. α = 0, β = 0, T = 0, F = 500, iter = 250
e. α = 0, β = 0, T = 0, F = 5000, iter = 250

3.4 The fourth group

a. F=1,iter=250 b. F=50,iter=250 c. F=100,iter=250

d. F=500,iter=250 e. F=5000,iter=250

Figure 4: Snake evolution in absence of image
features; Parameters values are set as in the fourth
row of Table 1.

In this group, the iter values are equal to those in
the third group. To achieve the similar final result,
F value has to be around 10 times of T value.

The results from these experiments suggest that
the effects of these internal forces can be generally
categorized into two groups: impose the elasticity
of the snake, while the other three (β, T and F )
impose the rigidity of the snake. To achieve the
similar final result, the values of β, T and F has
to be set in an increasing order, this indicates that
the effects of the forces controlled by these parame-
ters are in a decreasing order, in other words, the
curvatureness of the corresponding force impose to
the snake is also in a decreasing order. Because
of this, the higher order smoothness force could be

seen as a way to micro adjust the topology of the
snake.

4 Test on images

In order to examine the function of the high order
smoothness parameters, two groups of experiments
are conducted, using different images. The first
group use a 64*64 U shape binary image[8], the
snake is initialized as a square (Figure 5), the dis-
tance between the snake points is 2, the weight of
the image force is set to 1. Another group uses a
128*128 synthetic lip colour image, manual initial-
ization, the distance between the snake points is to
3, the weight of the image force is set to 0.5;. In
both groups, the time step is 1 and the image force
is adapt from GVF model.

In each group, different values of the smoothness
parameters are applied to the image. The parame-
ters used in both groups are shown in Table 2 and
Table 3 respectively.

Figure 5: The U shape image (gray) and the initial
snake (red).
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Table 2: Parameters used in the group using the U shape binary image.

1 α = 0.01, β = 0.1, T = 0, F = 0, iter = 250
2 α = 0.01, β = 0.1, T = 0.5, F = 0, iter = 250
3 α = 0.01, β = 0.1, T = 0, F = 1, iter = 75
4 α = 0.01, β = 0.1, T = 0.1, F = 1, iter = 75

Table 3: Parameters used in the group using the lip image.

1 α = 0.1, β = 0, T = 0, F = 0, iter = 250
2 α = 0.1, β = 0.2, T = 0, F = 0, iter = 250
3 α = 0.1, β = 0.2, T = 1, F =, iter = 75
4 α = 0.1, β = 0.2, T = 1, F = 1, iter = 75

Figure 6: Left: the final result when using the
parameters in the first row of Table2; Right: the
zoom in of the left square area.

Figure 6 shows the result when just using α and
β, the snake can not properly converge to the deep
concave regions of the image feature.

Figure 7: Left: the final result when using the
parameters in the second row of Table2; Right: the
zoom in of the left square area.

Once the third term joins, the final snake better
converges towards the concave region, as shown in
Figure 7.

From Figure 8, it can be seen that the fourth order
smoothing term can play a similar role as the third
term did.

Figure 9 shows that the third and fourth order
smoothing applied together may achieve a better
convergence.

The results corresponding to the parameters listed
in Table 3 are shown in Figure 10. The left column
of Figure 10 is the final results. Two sections of the
lip contours are zoomed in right column. One is the

Figure 8: Left: the final result when using the
parameters in the third row of Table2; Right: the
zoom in of the left square area.

Figure 9: Left: the final result when using the
parameters in the fourth row of Table2; Right: the
zoom in of the left square area.

lower part of the Cupidon arch (up cell), the other
is the mouth left corner (bottom cell).

According to the topology of the lip image, the
extracted contour should be symmetric, the line
between the two middle points of the final snake
should parallel to the image edge; Regarding the
left corner of the lip, because it link the up lip
and the bottom lip, the snake in this area should
be smoothed. It can be seen in figure 10 that the
active contour achieves a better convergence when
the higher smoothness terms are added.

From the experiments in this group, it can be ob-
served that the third and fourth order parameters
can help achieve a better convergence. Both of
them can be used through weights T and F control
micro adjustment of the smoothness and conver-
gence.
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Figure 10: Left: the final results when using the
parameters in the corresponding rows of Table 3;
Right: top: the magnified Cupidon arch region;
bottom: the magnified left corner area of the lip.

5 Conclusion

We have seen that the four smoothing terms con-
trol the snake in different way: the first order term
imposes the elasticity to the snake, all the others
including the second, the third and the fourth or-
der terms impose the curvatureness of the snake.
Because the third and the fourth order terms may
provide micro-adjustment of the curvature control
they may play an important role in optimal con-
vergence of the active contour.

The present study has some implications. Theoret-
ically a variety of higher order Tikhonov smooth
terms could be developed to improve the snake
control. In practice various internal forces could
be chosen to improve the convergence depending
on the topology of the desired feature and the im-
age features characteristics. We are currently con-
ducting studies to derive an optimal selection of
Tikhonov smoothing terms weights.
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Abstract
This paper is about real-time refinement of the 3D positions of a large number of stationary point-targets
from a sequence of 2D images which are taken by a hand-held, calibrated camera group moving along
an arbitrary path. To cope with the large data quantity arriving rapidly, an efficient iterative algorithm
was developed. The problem and solution are expressed entirely within the computational framework of
conformal geometric algebra. Experiments are performed to evaluate the algorithm based on simulated
and real data.

Keywords: conformal geometric algebra, pose estimation

1 Introduction

Recovering the positions of many point-targets
over a large area is computationally expensive.
This paper describes an efficient iterative
algorithm to refine target positions from a
sequence of 2D images. The targets used are
point-lights as shown in Figure 1. A group of
rigidly co-located calibrated cameras, as shown in
Figure 2, is moved along an arbitrary path and
takes images of the targets. The image points
of the targets are transformed to 3D lines which
are used by the algorithm to update the 3D
positions of the targets. The targets together with
the camera group form part of a 6D positioning
system.

Figure 1: Targets in the laboratory.

The algorithm is expressed entirely within the com-
putational framework of conformal geometric alge-
bra (CGA). The previously developed target cali-

Figure 2: Camera group.

bration algorithm described in [1] is non-iterative
and requires all the line data to be gathered before
the algorithm can proceed. It can be used to obtain
an initial estimate of the target positions which can
be refined using the iterative algorithm described
in this paper. This work is a continuation of work
reported in [1] in the application of the conformal
model of geometric algebra.

1.1 Geometric Algebra and Conformal
Model

In this section, the basic concepts and operations
of geometric algebra that are required in this paper
are briefly introduced. For a detailed introduction
to geometric algebra, refer elsewhere e.g. [2, 3, 4,
5, 6].
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Geometric algebra (GA) is the application of Clif-
ford algebras to geometric problems. It integrates
many concepts and techniques, such as linear alge-
bra, vector calculus, differential geometry, complex
numbers and quaternions, into a coherent frame-
work. A geometric algebra over R is denoted Gp,q

with p positive and q negative basis elements. Let
x1, x2, . . ., xr be vectors. X = x1 ∧ x2 ∧ . . .∧ xr is
referred to as an r-blade where ’∧’ is called outer
product. r is the grade which indicates the dimen-
sionality of the blade. A linear combination of mul-
tiple r-blades constructs an r-vector. Gr

p,q denotes
the r-vectors in Gp,q. A linear combination of a set
of elements with different grades is a multivector.
For example, if A is a multivector then it can be
written as A =

∑

r 〈A〉r where 〈A〉r represents the
grade r part of A. 〈A〉 or 〈A〉

0
represents the scalar

part of A. The part of A containing the grades in
another multivector B is denoted as 〈A〉B. A�B =
Σr,s 〈〈A〉r 〈B〉s〉s−r

is defined as the left contract
inner product of A and B. The outer product can
be related with the inner product by the following
equation: A�(B�C) = (A ∧ B)�C. Reverse of X

is defined as ˜X = xr ∧ . . . ∧ x2 ∧ x1. The dual of
a blade X is defined as X∗ = X�I−1, where the
pseudo-scalar I is an (p + q)-blade of unit norm.
The norm of a multivector A can be calculated by

|A| =

√

∣

∣

∣

〈

˜AA
〉∣

∣

∣. If S is a linear operator, the

outermorphism S is defined by S(X) = S(x1) ∧
S(x2) . . . ∧ S(xr). The derivative of multivector
valued function F with respect to multivector X
is denoted ∂XF . ∂̇XFĠ means differentiate G =
G(X) with respect to X while regarding F as a
constant. The following result [7] is required in
later developments,

∂X

〈

XY X−1Z
〉

=
〈

Y X−1Z
〉

X

−
〈

X−1ZXY X−1
〉

X

(1)

where X , Y , Z be multivectors where Y and Z are
independent of X .

GA expresses a number of models of 3D Euclidean
space (E3), such as 3D Euclidean model, 4D ho-
mogeneous model and 5D conformal model. In
this paper we use the conformal model of geometric
algebra (CGA) based on G4,1. G4,1 is based on the
orthonormal basis {e1, e2, e3, e+, e−} where e2

k =
e2
+ = 1 and e2

−
= −1. It is usually more convenient

to use the basis {eo, e1, e2, e3, e} as it has a better
geometric interpretation, where eo = e

−
−e+

2
is as-

sociated with the origin and e = e− + e+ with the
point at infinity. CGA allows a diversity of objects
to be represented directly as blades (e.g. point,
line, plane, circle, sphere, tangent and orientation)
and allows a variety of operations to be represented
as versors (e.g. rotor, translator, motor). A vector
is represented as v = v1e1 + v2e2 + v3e3 where

v1, v2, v3 are scalars. A point with location at
the Euclidean point �p ∈ G1

3 is represented as p =
�p + eo + 1

2
�p 2e ∈ G1

4,1. A line is represented by
Λ = p∧v∧e where p ∈ G1

4,1 is a point on the line and
v ∈ G1

3 is a direction vector. A line is normalised
by the mapping Λ → Λ

‖Λ‖
. A dual sphere centered

at point p with radius ρ is given by s = p− 1

2
ρ2e. A

Euclidean motion is represented by a motor M =
exp

(

− 1

2
B

)

, B = B − te, where B ∈ G2
3

and
t ∈ G1

3 . The transformation of X is by a motor

M is given by MX ˜M . A motor M has properties
which are important for deriving the algorithm:
(i) M ∈ span{1, e1e2, e1e3, e2e3, e1e, e2e, e3e, I3e} ∈

G0,2,4
4,1 , (ii) M ˜M = 1, (iii) if X ∈ Gk

4,1 then MX ˜M ∈

Gk
4,1.

1.2 Problem description

The Nc individual cameras which comprise the
camera group are set up to approximate an
omnidirectional camera, with maximum possible
coverage and least amount of overlap between their
image planes. Since the geometric relationships
between the individual cameras are fixed and
known, the camera group can be associated
with a single moving coordinate system denoted
by CSM . The targets are defined in a world
coordinate system denoted by CSW .

An initial estimate of the positions of K targets
{q0

k ∈ G1
4,1, k = 1 . . .K} is given [1]. The initial

pose of the camera group, CSM , is also given and
represented as a motor Mo. The camera group,
CSM , is moved along an arbitrary path in CSW .
The movement of CSM is tracked and represented
by a sequence of motors Mn, n = 1 . . . . At each
position in CSW , Nc images of the targets are
captured. Since the camera group does not pro-
vide complete coverage, some targets might not be
seen whereas some might be captured in more than
one image. The image points of the targets are
extracted and converted to normalised lines {Λj ∈
G3

4,1, j ∈ Jkn}, in CSM , where Jkn represents the

set of lines associated with the kth target at the
nth position. These lines are processed to refine
the initial target position estimates. When CSM
is moved to the next position, the new estimate
of target positions will be calculated based on the
previous estimate and a new set of lines. For each
position on the path an update is performed.

The problem can now be summarised as follows:
Given a group of lines {Λj, j ∈ Jkn} in CSM , a
previous pose Mn−1, and a previous estimate of
the kth target qn−1

k , we wish to estimate the target
at the nth iteration qn

k .
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2 Target refinement

The solution to the problem is developed in this
section. The following steps need to be done dur-
ing the target refinement for the nth update: (i)
update of pose of CSM , Mn; (ii) transformation of
lines {Λj , j ∈ Jn} from CSM into CSW using Mn;
(iii) update of target positions in CSW , {qn

k , k =
1 . . .K}.

2.1 Update of pose, Mn

The distance d between a point q and a line Λ is
defined [7] by d2(q, Λ) = − 1

2
〈ΛqΛq〉.

As this section deals with estimating the pose at
the nth position, for clarity we temporarily drop
the subscript n so for example M = Mn. The
objective function is defined as the total distance
between all the points and their associated lines in
CSM and is given by

d2 =

K
∑

k=1

∑

j∈Jk

d2(qk, MΛj
˜M) (2)

where Jk represent all the lines associated with the
kth target (at the nth position).

The pose of CSM is estimated using a Quasi-
Newton non-linear minimisation technique
(Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update) which is described in [8] (pages 425–430).
The optimisation routine requires an objective
function, its gradient and an initial estimate of the
pose. The motor M representing the pose of CSM
is parameterised M = M(x) where x ∈ R

6. We use
M(x) in the objective function d2 in Equation (2)
to express the objective function as g(x) =
d2(M(x)). The gradient is given by [∇xg(x)]i =
∂xi

g(x) = ∂xi
M ∗ ∂Md2. The derivative

∂Md2 =
∑K

k=1

∑

j∈Jk
∂Md2(qk, MΛj

˜M).

For clarity, we will temporarily drop the subscripts
k and j, so d2(qk, MΛj

˜M) = d2(q, MΛ˜M). Using

Equation (1), and that M is a motor so ˜M = M−1,
the derivative is calculated as follows:

∂Md2(q, MΛ˜M) = −
1

2
∂M

〈

MΛ˜MqMΛ˜Mq
〉

= −
〈

Λ˜MqMΛ˜Mq
〉

M

+
〈

˜MqMΛ˜MqMΛ˜M
〉

M
(3)

The operator 〈. . .〉M denotes the projection of a
general multivector onto the grades being present
in multivector M . The optimisation returns the
estimated parameters x of the motor M(x).

The above update is applied at each position along
the path. To estimate Mn, the initial estimate

Mn−1, lines {Λj, j ∈ Jkn}, and targets positions
{qn−1

k , k = 1 . . .K} are passed as inputs to the op-
timiser. Performance improvements can be made
by also passing the previous estimate of the Hessian
matrix required for the BFGS update.

2.2 Update of target positions

With the estimated pose M of CSM , the given
lines Λ in CSM can be transformed to CSW by
MΛ˜M . Given all the lines in CSW for all poses,
the current target positions can be calculated by
Lemma 1 [1],

Lemma 1 Let Λj ∈ G3
4,1, j ∈ J be a set of

normalised lines and S(x) =
∑

j∈J S(x, Λj) where
S(x, Λj) = x − (x�Λj)�Λj. If SI3 
= 0 then
the point q ∈ G1

4,1 closest to all the lines in the
least squares sense is given by the center of the
normalised dual sphere

s = −
S(I3)�I4

S(I3)�I3

(4)

where I3 = e1 ∧ e2 ∧ e3 and I4 = eo ∧ e1 ∧ e2 ∧ e3.

As the target positions are estimated in real
time, an increasingly large number of lines and
frequently repeated calculations would require
too much computational resource. Rather than
storing all the lines we update some summary
variables to implement an iterative algorithm.

In Lemma 1, S(I3) depends on all lines and vary
with each update. As S(I3) = S(e1)∧S(e2)∧S(e3)
it is only necessary to store and update S(e1),
S(e2) and S(e3). During the iterations, the in-
formation contained in the lines needed for esti-
mating the target positions, are accumulated in
S(e1), S(e2) and S(e3). Recall S is defined as
S(x) =

∑

j∈J (x − (x�Λj)�Λj).

Let Sk,n(ei) denote the current estimate of S(ei)
for the kth target at the nth iteration. Sk,n(ei) can
be calculated based on previous Sk,n−1(ei), and
new lines Λj, j ∈ Jkn as

Sk,n(ei) = Sk,n−1(ei)+
∑

j∈Jkn

(ei−(ei�Λj)�Λj) (5)

From Sk,n(ei) the current estimate of target posi-
tion is given by

qn
k = sk +

1

2
(sk�sk)e, sk = −

Sk,n(I3)�I4

Sk,n(I3)�I3

(6)

It is not necessary to update the targets on every
pose update iteration. For example, the targets
may be updated after CSM has been moved by
some specified distance.
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3 Experiments

Experiments were carried out to test the algorithm
using both simulated and real data.

The scene used in both experiments was a labo-
ratory which is visualised in Figure 4. The room
is approximately 8.7m long, 5.0m wide and 2.9m
high. The targets are placed around the scene to
provide reasonably even coverage shown as disks in
Figure 4. Ground truth target positions (±2.5mm)
were obtained using a total station which are used
in the experiments.

The camera group shown in Figure 2 was mod-
elled and calibrated. This involves calibrating the
intrinsic parameters of the cameras [9] and cali-
brating the pose of the cameras with respect to
CSM .

A path for CSM was generated by walking for ap-
proximately 3 minutes in the laboratory and con-
tinuously acquiring the pose of the scanner head
as shown in Figure 4.

3.1 Simulated Data

Lines were generated using the path by projecting
the ground truth targets through the calibrated
camera group model. To test the performance of
the algorithm, Gaussian noise with σ ∈ [0.1, 2.0]
deviation pixels was added to the target image
coordinates. The results are shown in Figure 3.
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Figure 3: The RMS (Root Mean Square) of errors
in targets vs update iterations with different levels
of noise.

The results show for all noise levels there is a sig-
nificant reduction in the rms error of the targets
positions. With the minimum noise, the errors of
estimation decrease smoothly by nearly 65%. The
minimum noise of σ = 0.1 pixel is a reasonable
approximation of the noise present in the real data.

The maximum noise was included to show the al-
gorithm is stable under high noise conditions.

3.2 Real Data

The camera group was moved along the path
shown in Figure 4. The algorithm was applied to
the acquired line data. Results for real data are
shown in Figure 3. The rms errors of estimation
decrease smoothly by nearly 57%

They are not as good as the low noise level simu-
lations due to system errors that are unrelated to
the actual algorithm. For example, (i) the mea-
surement errors of the ground truth targets play
no role in the simulation results as they do for the
real data, (ii) the camera group model calibration
errors have no influence on the simulation results
since the same model is used for both projection
(targets mapped to image points) and backprojec-
tion (image points mapped to lines). With the real
data, the camera model may not perfectly model
the physical camera group. The algorithm can

Figure 4: A model of the laboratory used. Disks
are estimated targets; the figure also shows a few
CSM coordinate systems along the path of the
camera group.

update the target positions at 30Hz on a standard
3GHz PC.

4 Conclusion

We developed an iterative algorithm for refining
3D target positions over a large number of images.
The data is gathered by moving a camera group
along an arbitrary path in the scene. The iterative
target update algorithm performed well over a wide
variety of noise conditions. The algorithm has low
storage and computational requirements.

The use of the conformal model of geometric al-
gebra (CGA) benefits the development of the so-
lution in both theory and practice. CGA pro-
vides a compact symbolic representation of objects
and their transformations. A variety of objects
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(e.g., vectors, points, lines, spheres) and opera-
tions (e.g. motors) can be represented in a sin-
gle algebra which simplifies the implementation.
The use of a single motor element to represent
a Euclidean transformation (instead of separate
rotation and translation), further simplified the im-
plementation.
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Abstract 
Shape context, a robust descriptor for point pattern matching, is applied in fingerprint matching by enhancing 
with minutiae type and angle details. A modified matching cost between shape contexts, by including the 
application specific contextual information, improves the accuracy of matching when compared with the original 
definition. To reduce computation for practical use, a simple pre-processing step termed elliptical region filtering 
is applied in removing spurious minutiae prior to matching. Empirical experiments conducted on a database of 
fingerprint images confirmed the improvements in accuracy and speed attained by the proposed method. 

Keywords: fingerprint matching, minutiae, shape context, elliptical region filtering, point pattern matching

1 Introduction 
Biometric recognition is a technology for confirming 
a person's identity based on his physiological and 
behavioural traits. Among these, fingerprints, face, 
speech, iris and hand geometry are most commonly 
used [1]. An early application of this technology was 
Automatic Fingerprint Identification System (AFIS) 
found in law enforcement. Recently, a number of non-
forensic applications like secured access to restricted 
areas, network login, etc appeared.  

Post-evaluation of the terrorist attacks that occurred in 
America on September 11, 2001 called for increase in 
surveillance both within the country and at border 
control. Primary activities are identity verification and 
matching against a list of suspects. To automate these 
activities, America and her partners in the visa-waiver 
program developed their biometric passports based on 
standards defined by the International Civil Aviation 
Organisation (ICAO). Currently, digital images of 
fingerprints, face, or iris are stored only. The main 
performance requirements are accuracy and speed. 

This work attempts to address both the accuracy and 
speed in automatic fingerprint identification. The 
method proposed belongs to the class of minutiae-
based fingerprint matching [1]. Like most methods in 
this class, the presence of spurious minutiae adversely 
affects the accuracy. In addition, the computational 
overhead could increase considerably, rendering the 
method impractical for online application. 

In practice, one can model minutiae matching as a 
kind of point pattern matching. Recently, a robust 
descriptor called shape context was proposed and its 
effectiveness demonstrated in general shape matching 
involving point patterns [2]. In the original paper, 

application-specific contextual information was not 
considered. The sets of points on both shapes were 
randomly selected. However, as the authors pointed 
out, application-specific contextual information can 
be exploited to improve accuracy.  This is one of the 
major motivations underpinning this work. 

In this paper, our contributions are two-fold. First, a 
simple pre-processing method called elliptical region 
filtering is proposed to filter out potential spurious 
minutiae that were introduced in preliminary minutiae 
extraction. To assess its effectiveness, two simple 
metrics motivated by the precision and recall adopted 
in information retrieval research are defined and 
verified by experiments.  

Second, by including minutiae type and angle details 
as application-specific contextual information, we are 
able to improve the matching accuracy versus speed 
ratio over the original shape context in cases where 
large number of minutiae were removed by filtering.  

The rest of the paper is organized as follows. Section 
2 briefly reviews related work. Section 3 explains our 
method in detail, supported by empirical experimental 
results. Section 4 concludes with future directions. 

2 Related Work 
Fingerprint matching methods can be largely grouped 
into three main classes, including correlation-based 
matching, ridge feature-based matching, and minutiae 
based matching [1]. In correlation-based matching, 
correlation between corresponding pixels on a pair of 
fingerprint images is computed for various alignments 
like displacement and rotation and used for matching. 
In ridge feature-based matching, features like local 
orientation, frequency and shape of ridge patterns are 
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used. In minutiae based matching, minutiae are first 
extracted from the fingerprint images and stored as 
sets of points on a two-dimensional plane. Matching 
essentially consists of finding the alignment between 
the template and the input minutiae sets that result in 
the maximum number of pairings.  Fig. 1 shows a 
fingerprint with two kinds of minutiae marked. 

The process of finding an optimal alignment between 
the template and the input minutiae sets can be 
modelled as point pattern matching. Recently, the 
shape context, a robust descriptor for point pattern 
matching was proposed in the literature. According to 
experiments on the MNIST handwritten digit database 
and the MPEG-7 shape silhouette database, the shape 
context was reported to outperform a number of well-
known methods [2].  However, in the original 
definition, it only considered the distribution of the 
remaining points with respect to each selected point.  
While the authors mentioned the possibility of 
including application specific contextual information 
in the definition, no concrete suggestion was given. In 
this work, both minutiae type and angle details are 
applied as application specific contextual information 
to enhance the original shape context, leading to 
improved matching accuracy. 

A major problem that could degrade the accuracy of 
minutiae-based matching is due to spurious minutiae 
extracted from poor quality fingerprint images. These 
could result from dry skin, a person's age or his 
occupation. Pre-processing steps utilizing fingerprint 
enhancement and minutiae filtering algorithms have 
been reported in the literature [3, 1]. In this work, a 
method similar to Hong et al. [3] was applied in 
fingerprint enhancement, while a method called 
elliptical region filtering is proposed to remove 
potential spurious minutiae. Spurious minutiae often 
occur along the edge between areas of a fingerprint 
that either touch or not touch the scanner surface. 

 
Figure 1: Fingerprint with minutiae marked. 

3 Proposed Method 
Existing minutiae-based matching methods largely 
comprises the following four processing stages: 

• Fingerprint enhancement: features in poor quality 
fingerprint image are enhanced before extraction. 

• Minutiae extraction: in most cases, ridge endings 
and ridge bifurcations are detected and extracted 
from the enhanced image. 

• Minutiae filtering: an optional stage in which 
spurious minutiae that can degrade both accuracy 
and speed of matching are filtered. 

• Fingerprint matching: two sets of minutiae, one 
for the input and another for the template, are 
matched. A score that measures their similarity 
(or dissimilarity) is computed and compared to a 
threshold to decide either acceptance or rejection. 

Here, our contributions lie in the stages of minutiae 
filtering and fingerprint matching. For completeness 
sake, we will describe briefly fingerprint enhancement 
and minutiae extraction as used in this work. 

Fingerprint enhancement follows largely the approach 
reported in Hong et al. [3]. First, ridge regions in the 
input image are identified and normalised. Next, the 
ridge orientations are determined. Third, local ridge 
frequencies are calculated. Fourth, contextual filters 
with the appropriate orientations and frequencies are 
applied. Fifth, binarization is performed resulting in a 
black and white image of the fingerprint. Fig. 2’s 
upper half presents the output of the steps in the 
enhancement process. 

Minutiae extraction starts by thinning the black and 
white fingerprint image resulted from enhancement. 
From the thinned image, potential minutiae are 
detected and extracted by tracking the set of one pixel 
width edges. Fig. 2’s lower half shows both the 
thinned image and the minutiae extracted, with ‘o’ 
indicates ending and ‘+’ a bifurcation. 

3.1 Minutiae Filtering 
In this work, a simple method called elliptical region 
filtering is proposed to remove potential spurious 
minutiae in order that the computational overhead in 
matching a pair of fingerprints can be reduced while 
accuracy could be maintained. This method is 
motivated by the observation that the surface of a 
fingerprint that touches the sensor can be modelled as 
an ellipse (Refer to the filtered image in Fig. 2 for the 
idea). As a result, true minutiae are more likely 
extracted within the ellipse than would be on or 
outside the boundary (Refer to the bottom left image 
in Figure 2 for the argument). 

ridge 
endings  

ridge 
bifurcations

As mentioned, the method we proposed makes use of 
a simple geometric property of an ellipse. In the 
ellipse shown in Fig. 3, the centre is M while both F1 
and F2 are the foci that lie on its major axis. The 
length of the major axis is a/2, while that of minor 
axis is b/2. For any point P, one way to determine if it 
is inside an ellipse is by using the following formula: 

1<+
2

2

2

2

b
y

a
x    (1) 
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Figure 2: Fingerprint enhancement and Minutiae extraction 

 

where (x,y) are coordinates of P on a plane. Here, 
our objective is to remove minutiae that lie outside 
of the ellipse. That is, we want to retain points like 
P1 but not P2 or P3. To compute this efficiently, 
we make use of another definition of ellipse that the 
circumference is the set of points such that the sum 
of the distances from each point to the two foci 
equals 2a, which is the length of the major axis. In 
other words, a point is inside an ellipse if the sum 
of the distances is less than 2a. 

Formally, if we denote the two foci vectors that 
point from M to F1 and M to F2 by C1 and C2 
respectively, a point P is inside the ellipse when 

2aC2PC1P <−+−    (2) 

Using this idea, filtering minutiae is carried out as 
follow. First, we compute the smallest rectangular 
bounding box that encloses all the minutiae. Taking 
the longer side of the box as the length of the major 
axis of an ellipse, we fit it inside the bounding box. 
By referring to equation (2), we determine if each 
of the minutiae falls inside the ellipse or not. Those 
that are not will be filtered. 

Fig. 4 shows the sets of minutiae extracted both 
before and after applying elliptical region filtering.  
The one on the left plot is the pre-filtered set and 
has 90 minutiae altogether, while the one on the 
right plot has 53 minutiae, just several more than 
half the size of the pre-filtered set. By comparing 
the before and after images, we can verify that most 
of the false endings due to the boundary effect have 
been filtered, while those that lie within the centred 
or “confident” region remained. 

We understand that this simple filtering procedure 
can potentially remove genuine minutiae as neither 
the structural nor the contextual information of each 
minutia was examined. To evaluate its effectiveness 
empirically, we define two simple metrics based on 
the precision and recall that are used in Information 
Retrieval research as follows: 

minutiaeextracted#
minutiaegenuineprecision #

=   (3) 

minutiaetruthground#
minutiaegenuine#recall =  (4) 

Here, the set of genuine minutiae is the subset of 
the total extracted minutiae that are in the set of 
ground truth minutiae. By ground truth minutiae, 
we are referring to those that are agreed visually by 
2 out of 3 human subjects. Using the same 
fingerprint shown in Fig. 1 and Fig. 2 as example, 
the number of ground truth minutiae is 37. Out of 
90 minutiae in the pre-filtering set, 33 are genuine 
minutiae. Compared to this, out of 53 minutiae in 
the post-filtering set, 32 are genuine minutiae. 

Y1 

P2 

M F1 
X1 

Y2 

X2 

a = length(X1,M) 

P1 
P3 

F2 

b = length(Y1,M) 

Figure 3: An ellipse showing the centre and foci
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Pre-filtering minutiae set Post-filtering minutiae set 

 Figure 4: The sets of minutiae both before (90) and after (53) applying elliptical region filtering 

 

Based on equations (3) and (4), the values for 
precision and recall are 0.36 and 0.89 for pre-
filtering, while those for post-filtering are 0.60 and 
0.86. By comparing these figures, we notice that 
precision in fact improves in the post-filtering set 
while recall is largely maintained. Comparable 
figures were obtained in our extensive experiments 
involving other fingerprint images in the database. 
Based on these empirical results, the following two 
conclusions can be drawn. First, the proposed 
filtering method does not adversely affect the set of 
genuine minutiae extracted. Second, both the total 
number and the number of false minutiae (factors 
that might decrease matching accuracy while 
increasing computational load) are largely reduced. 

3.2 Fingerprint Matching 
In this section, we will explain how the shape 
context proposed recently in [2] is enhanced and 
applied in matching a pair of fingerprints whose 
minutiae are modelled as point patterns. To provide 
the necessary background for our explanation, we 
briefly summarize below how the shape context is 
constructed for the set of filtered minutiae of a 
fingerprint shown in Fig. 5. They will be used in 
matching the minutiae of the fingerprint shown in 
right hand plot of Fig. 4 in our discussion. 

Basically, there are four major steps in the shape 
context based fingerprint matching (Fig. 6): 

• Construct shape context: for every minutia pi, a 
coarse histogram hi of the relative coordinates 
of the remaining n – 1 minutiae is computed, 

( ) (kbinpqpqkh iii ∈−≠= :#)(

The set of all costs Cij for all pairs of minutiae pi on 
the first and qj on the second fingerprint are 
similarly computed. 

• Minimize matching cost: given all costs Cij in 
the “current” iteration, this step attempts to 
minimize the total matching cost, 

( ) ( )( )∑= i ii qpCH ππ , .  (7) 

Here, π is a permutation enforcing a one-to-one 
correspondence between minutiae on the two 
fingerprints. (Top right hand plot of Fig. 6 
illustrates the set of initial correspondences)  

• Warping by TPS transformation: given the set 
of minutiae correspondences, this step tries to 
estimate a modelling transformation T: R2→ R2 
using thin plate spline (TPS) to warp one onto 
the other. The objective is to minimize bending 
energy of the TPS interpolation by f(x,y) as, 
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Further details on the form of the interpolant f(x,y) 
and the interpolation conditions can be found in [2]. 

This and the previous two steps are repeated for 
several iterations (5 in our experiments) before the 
final distance that measures the dissimilarity of the 
pair of fingerprints is computed. (Refer to the two 
bottom plots of Fig. 6 for the idea) 

Log-polar space 
(5 bins for log r 
and 12 bins forθ) ){ }. (5) 

The bins are uniform in the log-polar space 
(Fig. 5). To measure the cost of matching two 
minutiae, one on each of the fingerprints, the 
following formula based on the χ2 test statistic: 

( ) ( ) ( )[ ]
( ) ( )∑

− +

−
=≡

K

k ji

ji
jiij khkh

khkh
qpCC

1

2

2
1, . (6)  

Figure 5: Shape context of a fingerprint’s minutia 
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Figure 6: Major steps in shape context based fingerprint matching 

 
 Calculate final distance: in the original paper, •

the final distance D is defined as, 

DDDD beacsc βα ++= .  (9) 

where Dsc is the shape context cost calculated 
after the iterations, Dac an appearance cost, and 
Dbe the bending energy. Both α and β are 
constants determined by experiments. In this 
work, Dac is not included as it is relevant only 
for grayscale images while the image here is 
binary.  The distance D is thus defined as, 

DDD besc β+= .   (10) 

By repeated experime

3.2.1 Enhanced Shape Context 

ut filtering. 

us 

plus itself came in the top 8 of the final ranking. 

te 

nts using our database, the 
optimal value for β ∈[0,1] is found to be 0.1. For 
each fingerprint in the database, its distance from 
the input is calculated. A final ranking in which the 
top has the least distance from the input is obtained. 

Initially, we applied shape context witho
The database we used contains 21 different fingers, 
each having 8 impressions totalling 168 fingerprint 
images. For our notation, 1_1 denotes the first 
impression of finger 1 while 21_8 the eighth of 
finger 21. Although the size of our database might 
be small, it is adequate for illustrating our idea.  

Even in the presence of a larger number of spurio
minutiae, matching by the original shape context is 
still quite effective (Refer to the two pre-filtered 
ranking columns in Table 1). For example, when 
input fingerprint is 1_1, all remaining 7 impressions 

For fingerprint 2_1, though the result is not as 
spectacular as 1_1, 6 out of 8 impressions came in 
the top 9 ranking. This speaks strongly the intrinsic 
robustness of the shape context matching model. 

But, the practical problem we face is speed. Even 
though CPU time cannot be considered an accura
estimate of computational load, it could provide an 
idea on how efficient fingerprint matching with the 
original shape context runs. In the case of matching 
1_1 and 2_1 against the database, the times are 697 
sec and 850 sec, limiting its usefulness in practice. 

Table 1: Matching results by original shape context 

   1_1    2_1 

 
pre-

filtered 
ranking ranking 

 
pre-

filtered 
ranking ranking 

post-
filtered 

post-
filtered 

1_1 1 2  1 _1 1 1 

1_2 4 3 2_2 29 57 

1_3 6 6 2_3 9 4 

1_4 2 2 2_4 3 41 

1_5 7 84 2_5 2 2 

1_6 3 4 2_6 100 61 

1_7 5 5 2_7 7 129 

1_8 8 45 2_8 5 75 
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T uce executio e, we apply filtering re 
m ng. e mat g ti eco  120 sec and 

ual 

Here, Cij is the original shape contex
in equation (6), Cij

type the cost in matching the type 

o red
atchi

n tim
chin

 befo
Th mes b me

161 sec, which are less than 20% the pre-filtered 
figures. However, accuracy is degraded when we 
compare the rankings in the post-filtered columns 
with those of the pre-filtered columns in Table 1. 
The goal of improving the matching accuracy while 
maintaining the reduction in execution time leads to 
enhanced shape context that is described below. 

In our formulation, minutiae type and angle details 
are incorporated as application-specific context
information to enhance the original shape context. 
To accomplish that, we define a new matching cost 
Cij

* between two minutiae pi and qj as, 

( ) ( ) ij
angle
ij

type
ijjiij CCCqpCC γ−=≡ 1,**  (11) 

t cost defined 

of pi and qj, Cij
angle the cost in matching the ridge 

orientations tangent at pi and qj respectively, and γ 
∈[0,1] whose optimal value is tuned by repeated 
experiments. Note that the multiplications between 
Cij

type, Cij
angle and Cij in equation (11) are scalar (i.e., 

element-by-element) rather than the usual matrix 
multiplication. Cij

type and Cij
angle are defined as, 

( ) ( ) ( )
( ) ( )⎨

⎧ =−
= ji

ji
type

qtypeptype
qpC

,1
,  

⎩ ≠ ji qtypeptype,0
(12) 

where the type is either ridge ending or b

where ∠initial-warped is the absolute value
difference in ridge orientations tangent at p and q  

ifurcation. 

( ) ( )( )warpedinitialji
angle qpC −∠−∗−= cos15.0,  (13) 

 of the 
i j

in the beginning and after each iterative warping. If 
∠initial-warped is greater than π, it is adjusted as (2π − 
∠initial-warped) so it will be less than or equal to π. 

Table 2: Compare matching results by original and 
enhanced shape contexts 

   1_1    2_1 

 
original 
shape e  

original 
shape e 

context 

enhanced 
shap

context context 

enhanced 
shap

context 

1_1 1 2_1 1 1 1 

1_2 3 3 2_2 57 37 

1_3 6 6 2_3 4 53 

1_4 2 2 2_4 41 3 

1_5 84 48 2_5 2 2 

1_6 4 4 2_6 61 38 

1_7 5 5 2_7 129 123 

 
Figure 7: Compare ROCs between the enhanced 

and original shape contexts 

Table 2 the enhanced shape context is compared
w
it is clear th t improves 

nd 

d 
nhancing with minutiae 

 modified shape context 

A. Jain, and S. 
Prabhakar, Handbook of Fingerprint 

nger, 2003. 

In  
ith the original after filtering is applied. For 1_1, 

at the enhanced shape contex
the rankings of both 1_5 and 1_8 while the other 
six remain same. For 2_1, most rankings improve 
except for 2_3. But, it is able to preserve the top 3 
entries of the pre-filtered column in Table 1, which 
is not possible with the original shape context.   

Next, in Figure 7, we compare them over the entire 
database by the ROCs (Receiver Operating Curves) 
constructed using the FMR (False Match Rate) a
the FNMR (False Non-Match Rate). These figures 
are computed from 588 genuine and 210 imposter 
matching attempts as in [1]. Other than the small 
range indicated in the figure, the ROC of enhanced 
shape context consistently achieves a slightly lower 
or equal joint FMR and FNMR than the original.  

4 Conclusions 
In this paper, the shape context descriptor is applie
in fingerprint matching by e
type and angle details. The
cost improves matching accuracy when compared 
to the original definition. To reduce computation, 
elliptical region filtering is proposed for removing 
spurious minutiae prior to matching. Experiments 
confirmed the improvements in accuracy and speed 
attained by the proposed method. 
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Abstract 

Improved detection of some types of forensic trace evidence has been achieved by combining narrow band 

images taken at and bracketing the spectral feature of the evidence of interest. This approach has been 

successfully applied to blood imaging where it provides improved sensitivity and selectivity towards blood and 

significant reduction in background patterning.  We have been attempting to further develop this technique by 

building a portable near real time imaging system which can rapidly capture two images simultaneously, perform 

the necessary image processing, and display the result within a time frame that would made it practical enough to 

be used to search for traces of blood at a crime scene.  This has required the integration of optics, cameras, 

lighting equipment and software. Particular attention is being paid to light throughput and the ability to image at 

a variety of working distances and fields of view. This paper reports on the progress towards the completion of 

the camera system, current hurdles and limitations, and proposed future applications. 

Keywords: Forensic, Spectral imaging, Difference imaging, LEDs, 

1 Introduction 

Utilising spectral features of certain types of trace 

evidence as a means to improve their detection has 

gained popularity in forensic science [1], [2].  A 

simple (and well established) example of this is the 

use of blue light to improve the contrast of images of 

blood evidence [3].  The method can be further 

improved by arithmetically combining images taken 

at narrow wavelengths which target and bracket the 

narrow Soret absorption band exhibited by blood [4].  

Comparable results can also be obtained by 

combining two images instead of three [4], although 

these can be subject to increased background 

interference. Figure 1 shows the strong absorption 

band present in blood and the narrow bands used in 

the imaging process. 

Blood absorbance spectra 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

300 350 400 450 500 550 600 650

Wavelength nm

A
b

s
o

rb
a

n
c

e

395 bandpass filter 

415 bandpass filter 

435 bandpass filter 

Ultra-violet Blue Green Red  

Figure 1: Absorbance spectra of blood (1000x 

dilution) and the spectral sampling bands. 

 

 

In our current protocol for imaging blood, images are 

captured sequentially using a filter wheel or liquid 

crystal tuneable filter, LCTF to select the appropriate 

wavelength regions. The time required for the 

exposures requires that camera and subject be still 

relative to each other. In addition, there is also some 

delay between initial image capture and the display of 

the processed image. For these reasons our current 

system is impractical for rapidly locating blood 

evidence at crime scenes. A practical imaging system 

for the location of blood staining would need to be 

handheld, capture images simultaneously, and operate 

in the millisecond timeframe. We also wanted to be 

able to offer a similar level of flexibility to the end 

user that they have with a conventional camera, i.e. 

the ability to focus over a range of working distances 

and fields of view while maintaining acceptable 

image quality, together with short exposure times 

required for a hand held device.  To simplify the 

system, the two wavelength method was chosen for 

development.   

The simultaneous capturing of multiple images of the 

same scene is not new. Many professional video 

cameras now use three CCDs to capture the red green 

and blue components separately to provide improved 

resolution. The Dual View 
TM

 from Optical Insights 

[5] captures and filters two spatially identical images 

simultaneously and relays them side by side onto one 

sensor. This allows for quick processing but reduces 

the available sensor resolution by a factor of two and 

the relative throughputs for imaging at the two 

wavelengths must be similar because the gain and 

integration time is consistent across the sensor. This 

device has been used successfully in the fluorescence 

ratio microscopy imaging of thermo-responsive 
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neurons [6]. Astronomers have developed a camera 

system using dichroic mirrors and relay optics which 

separates an image into 15 spectral components and 

images each simultaneously on to 15 separate CCDs 

[7]. Our proposed design uses a beamsplitter to direct 

light towards two cameras simultaneously, 

eliminating the sequential capture required when 

using a single camera. Each lightpath would 

incorporate a filter at 415 nm and 435 nm respectively 

and the images would be processed in software in this 

prototype device. 

Real time imaging in the blue region is made difficult 

by the relatively low quantum efficiency of most 

commercial CCD and CMOS sensors in this region. 

For example a Qimaging Qicam scientific camera has 

an approximate quantum efficiency of 20% at 400 

nm. Compounding this problem is the relatively low 

output intensity of many standard light sources in the 

blue region and that the technique requires sampling a 

fairly narrow band of blue light which further reduces 

the available light to the sensor. This results in long 

exposure times to obtain a sufficient signal to noise 

ratio which is not practical for real-time imaging.  To 

address this problem we evaluated several different 

types of light sources for their ability to provide a 

sufficient amount of blue light.  Figure 2 shows the 

spectral distribution of five different sources of blue 

light, normalised to fit on the same axis.  

Relative spectral output of five sources of blue light  

0

0.5

1

1.5

2

2.5

350 370 390 410 430 450 470 490

Wavelength nm

S
p

e
c

tr
a

l 
O

u
tp

u
t 

a
rb

 u
n

it
s

1000W Tungsten
Halogen

Philips fluorescent
(20Watt)

LED 395nm 5mW

20000K Metal Halide
Lamp

500W Xenon 

 

Figure 2: Relative spectral output of five sources of 

blue light. 

The most intense blue light sources were the metal 

halide and xenon lamps. However both these types of 

lights required heavy power supplies and cooling 

making them impractical for our purpose. The 

fluorescent light provided good output at the required 

wavelengths and was fairly lightweight but the highly 

diffuse nature of output from the fluorescent tube 

made it difficult to focus the light. We therefore 

turned our attention to light emitting diodes, (LEDs), 

as potential light sources. LEDs are an attractive 

option for a number of reasons: they are very light 

and have low power requirements making them 

practical for a portable light source, they can be 

pulsed at higher than their nominal currents providing 

higher output intensity, and two different LED types 

can be combined in a way which allows control over 

the relative spectral output of the light source. This 

last feature is useful because the sensitivity of most 

CCDs drops fairly dramatically over the range 450-

400 nm which normally means the exposure times 

would need to be longer for the shorter wavelengths 

under standard lighting conditions. By using more 

LEDs at the lower wavelengths or by driving them at 

higher currents the spectral output of the LED light 

source can be made to counteract the difference in 

sensitivity of the camera sensor allowing for equal 

exposure times of the two cameras.   LEDs emit light 

over a fairly narrow range, typically 20-40 nm, 

therefore it was necessary to find LEDs whose peak 

spectral output was as close to our desired wavelength 

as possible.  

A design incorporating two CCD cameras, a single 

imaging lens, a beam splitter, relay optics, 

interference filters and a synchronised LED flash unit 

was settled upon. Incorporated in this way, each 

camera would rapidly capture an image of the same 

scene at different wavelengths and pass the images 

into a computer for processing and display.   

 

2 Experimental 

2.1 Equipment 

The cameras used in the prototype were a Qicam 

(Qimaging Corp, ½” 10-bit, monochrome CCD, 

Firewire, with 1360x1036 active pixels) and a Retiga 

(Qimaging Corp, ½” 12-bit, monochrome CCD, 

Firewire, with 1360x1036 active pixels) The imaging 

lens was a c-mount Pentax 16mm lens. Beamsplitter 

(part N54-824) relay optics (part N55-272) and other 

integrating components were purchased from Edmund 

Optics, and adaptors were made to complete the 

integration.  LEDs with a peak wavelength of 435 nm 

were purchased from Roithner Lasertechnik (part 

LED435-12-30) and LEDs with a peak wavelength of 

420 nm were purchased from LEDreps (part UVA-

L5N20K-xx) The image capture and processing were 

performed in V
++

 (Digital Optics) and custom 

electronics were designed to simultaneously trigger 

the two cameras and the LED flash unit.  A bracket 

was made to hold the two cameras and all of the 

optics rigidly. 

 

2.1.1 Imaging system design 

Since crime scene investigators require being able to 

photograph over a range of working distances and 

fields of view, we chose to allow imaging of areas 

from the size of a shoeprint to several square meters. 

This presented several challenges in the design of the 

optics for the system. Crucial for the design was the 

incorporation of a beamsplitter to allow for both 

cameras to see the same scene and also interference 
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filters so that each camera only sees the scene at a 

specific wavelength. Because c-mount camera lenses 

have a fixed back focal length of 12.552 mm there is 

not enough space to incorporate the beamsplitter and 

a filter between the c-mount lens and camera sensor 

without drastically altering the nature of the focused 

image. Three different optical configurations were 

therefore evaluated.  

The first design involved having two c-mount lenses 

directly attached to the cameras with filters in front of 

the lenses and a beam splitter in the front, as shown in 

Figure 3. 

 

Figure 3: Initial prototype of real-time imager 

 A second design involved having a single achromat 

as the imaging lens in front of the beamsplitter. A 

threaded barrel adjustment placed in front of the 

beamsplitter allowed for focusing of the image onto 

the two camera sensors.  The path length through the 

beam splitter, the filter holders, and the threaded 

barrel was approximately 100 mm. This required the 

focal length of the imaging lens to be at least this long 

in order to form an image. A 120 mm achromat lens 

was used to test the design.  

 

Figure 4: Trial design with single imaging lens in 

front of beamsplitter. 

A third design involved having a c-mount lens 

mounted to the beamsplitter and two 50 mm achromat 

pairs (relay lenses) refocusing the image onto the 

sensors as shown in Figure 5.   

 

Figure 5: Current design, using single objective with 

relay optics 

The three different configurations were evaluated by 

imaging a target with several cross hair patterns 

generated in Photoshop and printed onto a piece of A4 

paper.  A xenon light source was used to illuminate 

the target. The resulting individual image quality as 

well as the final processed image quality of the three 

configurations was compared to a reference image 

that was taken by a single Qicam camera with a 

Pentax lens and 435 nm interference filter on the 

front. 

 

2.1.2 Lighting 

All designs were initially evaluated using a Polilight® 

(Rofin Australia) as a light source. The Polilight uses 

a 500 W Xenon bulb which provides a significant 

amount of light in the blue (as well as the more 

harmful ultra-violet region).  Since the requirements 

for the project meant that the light source needed to 

portable as well as provide the required amount of 

light at the two wavelengths we then focussed on 

developing an LED-based lightsource. We were able 

to locate an LED with a peak wavelength at 435 nm, 

however finding an LED with a peak wavelength near 

415 nm proved to be more difficult and we were 

forced to try LEDs with a peak wavelength of 420 nm 

instead. A trial LED flash unit was constructed from 

six LEDs at a nominal wavelength of 435 nm and six 

LEDs at 420 nm mounted separately. Both types of 

LEDs could sustain a current of 100 mA over 30 ms 

with several seconds allowed for cooling. The LEDs 

were grouped together and mounted to a breadboard.  

A circuit was designed to provide the 100 mA pulse 

to the LEDs.  
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Figure 6 Image of the LED flash unit showing two 

groups of six LEDs 

 

2.1.3 System integration 

For the camera to be a practical handheld system the 

exposure times should be kept below 30 ms to avoid 

motion blur. This required careful synchronising 

between the flash and the two cameras.  The two 

cameras can be made to expose simultaneously either 

through the control software or through an external 

hardware trigger. The flash could be synchronised to 

the cameras either through an external pulse coming 

from the camera or the flash itself could trigger the 

cameras to expose through their external trigger 

option. The circuit providing the power to the flash 

unit was modified to provide the necessary pulse to 

the cameras hardware trigger.  

To test the synchronisation between the two cameras, 

a digital stopwatch with a millisecond counter was 

illuminated with sufficient light and the exposure 

times of the two cameras were set to 0.5 ms. Using 

camera configuration 1 the stop watch was imaged 

while counting up. The degree of synchronisation 

could be judged by observing the time at which the 

stopwatch had been imaged. The synchronisation 

between the LED flash and the camera was judged by 

setting the cameras to approximately 10 ms, shining 

the flash against a white piece of paper and imaging 

the result using camera configuration 1 A bright spot 

in the image was indicative of successful 

synchronisation between the flash and the two 

cameras.  

2.1.4 Image processing/software 

The image processing required mirroring the reflected 

image from the beam splitter, an automated series of 

operations to correct for image mis-registration, and a 

division of the 415 nm image by the 435 nm image in 

accordance with our two wavelength method [4]. The 

final procedure required is a contrast adjustment to 

improve visualisation. Currently the simultaneous 

image capture is performed in QCapture from 

Qimaging Corp. The mirroring, alignment and 

division are then all performed in V
++

. We are 

currently working towards having simultaneous image 

capture also performed in V++.   Once the images had 

been captured into the computer, processing time was 

approximately two to three seconds which satisfied 

our criteria for near-real-time imaging.   

The automated alignment procedure was achieved by 

imaging a printed set of cross hair targets and 

recording the x,y pixel coordinates of the cross hair 

targets in each image. The 415 nm image was chosen 

as the reference image and the 435 nm image was 

aligned to it. V
++

 is able to perform global translation, 

rotation and scale to achieve image registration. Once 

the parameters of translation rotation and scale were 

extracted they could be integrated into the image 

processing procedure with no input required from the 

user.  To avoid significant truncation when 

performing the division both images were converted 

into 32-bit floating point format. Following division 

the resulting image was multiplied by a factor of 

50000 and converted back to 16-bit format for storage 

and retrieval.   

 

 

3 Results 

3.1.1 Camera configurations 

The various camera designs were evaluated on their 

ability to provide good image quality (i.e, good 

contrast and minimal distortion relative to the 

standard image), sufficient light throughput, and 

flexibility for the end user.  The exposure time for the 

reference configuration (single camera at 435 nm) 

was 30 ms providing an average exposure level of 250 

pixel units across the image with good focus and no 

visible distortion. 

Design 1 provided the best image quality of the three 

dual camera designs as the c-mount lenses were 

directly attached to the cameras as in the reference 

configuration. The exposure time required for the 435 

nm camera was about 65 ms for the same exposure 

level indicating no significant loss of light. (An 

exposure time of twice the reference would be 

expected as the beamsplitter halves the light intensity 

for each camera) However, this design had two main 

disadvantages. First having the lenses behind the 

beam splitter housing lead to significant vignetting 

which reduced the number of useful pixels. Second, 

having to focus two lenses independently lead to mis-

registration between the two images. The mis-

registration was not consistent which meant it had to 

be dealt with on an image by image basis. This extra 

time consuming step meant the system could not be 

used for a near real time application. 

Design 2 provided better light throughput than the 

reference configuration requiring only 8 ms to reach 
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the same exposure level. However the resulting image 

quality was poorer since the image was not as sharp 

and there was distortion towards the edges of the 

image. The focus and distortion was largely corrected 

by placing an aperture between the lens and the 

camera sensor but this lead to a reduction in light 

throughput to the extent that 130 ms was required to 

reach the reference exposure level for a sharp image.  

The two cameras again showed misregistration. 

However because the two cameras were fixed relative 

to each other the misregistration remained a constant 

and could be corrected for in the image processing 

software. However the long focal length of the lens, 

necessitated by the long optical path length, resulted 

in a very narrow field of view and hence very little 

flexibility for the end user. 

Design 3 provided good image quality, and as with 

design 2 any misregistration is consistent and can 

therefore be corrected before the images were 

processed. Having a standard imaging lens at the front 

of the system also allowed for the focussing flexibility 

of the reference configuration. One disadvantage with 

this system was the decrease in light throughput in the 

system compared to the reference configuration. Thus 

the exposure was approximately 3 times longer than 

the reference to reach the same pixel brightness level. 

This is possibly due to the strongly diverging rays 

coming from the back of the c-mount lens hitting the 

walls of the beamsplitter before being collected by the 

relay lens. 

In camera configuration 1 image registration could be 

achieved through global translation, rotation, and 

scaling.  These operations were easily implemented 

and automated in V
++

. However the registration of  

images from camera configurations 2 and 3 could not 

be achieved using these operations alone. We were 

able to correct the mis-registration using the 

‘polynomial’ transformation type in MATLAB® 

Image Processing Toolbox. This transformation is not 

trivial to reproduce in the scripting language 

(Vpascal) in V
++

 which means the procedure had to be 

performed in MATLAB® initially and we are working 

towards implementing the procedure in V
++

.  

 

3.1.2 LED flash and system integration 

When testing the degree of synchronisation between 

the two cameras, the software trigger option was 

found to have a delay of about 100 ms between the 

two exposures, while the external hardware trigger 

option provided submillisecond synchronisation 

between the two cameras. We also found there to be 

good synchronisation between the flash and the 

cameras using the hardware trigger method.  

 

The capability of the current LED flash was evaluated 

using camera configuration 1 and the 420 nm and 435 

nm LEDs. The LEDs with peak wavelength of 435 

nm and pulsed at 100 mA for 30 ms provided enough 

illumination to adequately expose an area 

approximately 10 by 10 cm Unfortunately the LEDs 

with the 420 nm peak output did not have sufficient 

output at 415 nm to be viable for this project.. 

Although the area successfully illuminated by the 435 

nm LEDs is small it should be possible to illuminate 

areas large enough to be useful for crime scene 

investigators by scaling up the number of LEDs in the 

flash unit.   

   

4 Discussion 

Design 3 appears to meet many of the criteria: 

sharpness, little distortion, correctable mis-

registration. However, the decreased light throughput 

means that an improved light source is required. The 

next development will be to prepare a light source 

with increased numbers of LEDs centred at 415 nm 

and 435 nm. These LEDs will need to be mounted in 

such a way as to diffuse the output to provide smooth 

and even illumination from the two LED types. Some 

experimentation is still required to determine how 

many LEDs at each wavelength will be required to 

provide sufficient illumination. 

Work is also to be completed on fully characterising 

the nature and degree of the image misregistration and 

image distortion. It was noticed that some defocusing 

occurs towards the edges of the images in camera 

design 3. This defocusing could be reduced 

significantly by reducing the aperture; however this 

results in a reduction in light throughput through the 

system. To maintain light throughput we are 

attempting to correct the distortion through Fourier 

filtering methods. Finding a suitable balance between 

optimising the optics and lighting to capture the best 

images and correcting for distortion using software 

procedures is yet to be achieved.  

 

4.1 Conclusions and Future Work 

Our work suggests that a proof of concept near-real 

time imaging camera for blood stain detection is a 

feasible goal. We would like to able to use smaller 

and less expensive monochrome cameras, however 

given our stringent lighting requirements the quantum 

efficiency of the camera used needs to be reasonable. 

There has been a steady increase in the availability, 

variety, and power output of LEDs operating in the 

deep blue part of the spectrum during the course of 

this project. This increases our confidence that an 

LED flash with significant output in the wavelengths 

required for imaging blood can be constructed. 

Complete automation of image capture from two 

cameras and subsequent image processing is yet to be 
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achieved, partly due to limitations in our current 

software implementation.   
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Abstract 

Different methods of embedding watermarks into 3D model are proposed in this paper. The 3D model is 

transformed into a 2D matrix by first transforming the 3D rectangular coordinates of the model into cylindrical 

coordinates with constant interval in the Z axis and quantizing radial angles with the required angular change.  

2D watermarks are respectively embedded into the resulting 2D representation of 3D model in spatial and 

frequency domains for comparison.  Orthogonal watermarks are also embedding into 3D models.  JPEG-like 

compression and reduction in 3D points are used as attack processes in testing the robustness of the embedded 

watermarks. Experimental results show that the watermarks are more robust towards attacks from the same 

domain. 

Keywords: 3D model, point cloud, watermark, DCT  

 

1 Introduction 
 

Digital contents are becoming increasingly popular with 

the progresses in multimedia processing, information 

and network technologies.  The right protection of 

digital contents becomes an important issue with 

regards to the protection of intellectual properties. 

Watermarking is an effective approach to the copyright 

protection of digital contents.  Previous researches 

have shown a wide variety of methods for embedding 

watermarks into 2D images [1,2,3,4,5,6], but little have 

been done on the watermarking of 3D data, especially 

for 3D point cloud models [7,8,9], which are popular 

3D shape representations [10,11].  

 

This paper presents several methods for embedding 

watermarks into 3D point cloud models. A 3D model is 

generally represented by a number of points having 3D 

coordinates in, for example, the Cartesian coordinate 

system.  The coordinates of the original 3D data may 

sparsely span a wide range of space with no regularities 

between the points.  Hence, the 3D data are not typical 

digital data in the sense that data points are quantized in 

values of the coordinates and the amplitudes.  

Computations of such irregular 3D models may be costly.  

Therefore, digitization of the data is required to facilitate 

processing of the 3D data. As a continuation of our 

previous works, we take the inherent advantage of the 

constant interval in the depth dimension (z) in the 3D 

data [12].  The digitized 3D model is obtained by first 

transforming the model’s 3D rectangular coordinates 

into cylindrical coordinates, followed by quantizing the 

radial angles with the required angular resolution.  The 

digitized 3D model can be represented by a 2D matrix 

with constant intervals in θ and z coordinates, as 

discussed in Section 2.  In Section 3, we describe the 

details of embedding 2D watermarks into the respective 

2D representations of a 3D model in both the spatial and 

frequency domains. The extraction of 2D watermarks is 

essentially the inverse of the embedding process.  In 

Section 4, the robustness of the embedded watermarks is 

tested, using JPEG-like compression and reduction in 3D 

points as attack processes.  The imperceptibility, 

robustness, and error rates of embedding the watermarks 

are also shown and discussed. 

 

2 2D representation for the 3D Model 
 

The proposed algorithms watermark a 3D point cloud 

model in spatial and frequency domains, respectively, 

for comparison purposes. Since the data in a 3D point 

cloud model are generally given in 3D Cartesian 

coordinates.  The x and y coordinates are considered 

continuous in the sense that they are not limited to a 

finite set of data.  A digitization process is therefore 

used to quantize the coordinates to desired positions, 

such that the model’s representation becomes regular.  

Regardless of the algorithm used, coordinates of each 

voxel in the 3D model need to be digitized for 

embedding and extraction process later on. 

 

The digitization process starts by transforming 

rectangular coordinates into cylindrical coordinates with 
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constant z interval.  The transformation relationships 

are shown in Eqns.(1) and (2). 
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The θ values are quantized to the desired resolution, 

2π/m in the quantization step, where m is the number of 

points of the 3D model taken along the θ direction.  So 

that the θ coordinate of the j
th

 point is given by Eqn.(3). 
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The 3D point cloud model is then represented by the 

matrix A, given in Eqn.(4). Elements in a same row in 

matrix A have the same z coordinates, while elements in 

the same column have the same θ coordinates. For 

example, elements in i
th

 row have the same z coordinate, 

zi, and elements in j
th

 column have the same θ 

coordinate, θj.  The z and θ intervals between two 

adjacent points in the digitized 3D model are equal. 
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3 Watermarking Algorithms 
 

The algorithms for embedding the watermarks are 

respectively carried out in spatial and frequency domains 

to compare the effectiveness in different domains. A 

smaller zone for embedding the watermark in the 3D 

model is chosen by a subsampling process. 

 

3.1 Spatial Domain Algorithm 
 

In this algorithm, 2D binary images of dimensions 64 

pixels by 64 pixels, as shown in Fig. 1, are used as the 

watermarks. The sizes of the images can be varied as 

required. 

 

(a)      (b) 

Fig. 1. The 64 by 64 watermarks used in the spatial 

domain algorithm. 

 

The watermark is added directly to the chosen area in 

the digitized 3D model representation, i.e. the submatrix 

B of the matrix A, to produce the watermark embedded 

matrix A’, where B has the same size as the adopted 

watermark.  Matrix B will be saved as a key for the 

extraction of the watermark.  Matrix A’ is then 

inversely transformed to the 3D point cloud 

representation in rectangular coordinate system.  The 

3D Beethoven head model in 3D point cloud format is 

used for demonstration.  Figure 2 shows the side view 

(a) and bottom view (b) of the original model. Figure 3 

shows the side view (a) and bottom view (b) of the 

watermark embedded model. Translations in some of 

the data points can be observed by closely comparing 

the points in Fig. 3 with those in Fig. 2.  However, the 

differences are not significant. 

 

The total error between points in the 3D models before 

and after embedding is given by the differences in 

Euclidean distances between corresponding points as 

shown in Eqn.(5). 

 

' 2 ' 2

1

1
( ( ) ( )) ( ( ) ( ))

N

i
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N =

= − + −∑      (5) 

where  E is the measured error, 

N is the total number of points in the model, 

x(i) , y(i) are the coordinates before embedding, 

and 

x’(i) , y’(i) are the coordinates after embedding. 
 

  
(a) (b) 

Fig. 2. 3D Beethoven head model. 
 

        
(a) (b) 

Fig. 3. Watermark embedded 3D Beethoven model 

(spatial domain algorithm).    
 

The overall error of the overall watermark embedded 

model shown in Fig.3 has a value of 0.0410. Extraction 

128



of the watermark is readily carried out using matrix B as 

the key in the reverse procedure. 

 

3.2 Frequency Domain Algorithm 
 

This algorithm uses DCT to convert the point data in 

matrix A into frequency domain. The watermark used in 

this experiment has been reduced to 32 pixels by 32 

pixels to match the limited number of coefficients in the 

chosen frequency band of the transformed matrix A. 

 

 
 

Fig. 4. The 32 by 32 watermarks used in frequency 

domain algorithm. 

 

The watermark is embedded in the median frequency 

band of the transformed coefficient matrix, and indices 

of the embedded positions are saved for the extraction 

process.  Figure 5 shows an example of the indices 

selected in the frequency domain.  The matrix on the 

left shows the ordering of the DCT coefficients, and the 

matrix on the right shows the selected indices. 

 

    
 

Fig. 5.  The indices of the chosen frequency band.    
 

Figure 6 shows the side view (a) and bottom view (b) of 

the 3D model with watermark embedded using the 

frequency domain algorithm. Point translations in Fig. 6 

are less noticeable than those in Fig. 3.  However, the 

total error between Euclidean distances of the points has 

a greater value of 0.1213. 

 

  
(a) (b) 

 

Fig. 6. Watermark embedded 3D Beethoven model 

(frequency domain algorithm). 

4 Attack to Watermarks 
 

In this section, JPEG-like DCT compression and point 

reduction of the 3D model are used to test the resilience 

of the watermarks embedded in 3D models.  The mean 

absolute error (MAE) shown in Eqn.(6) is used compare 

the original and extracted watermarks. 
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where  a(i,j) is the pixel value of the original 

watermark at coordinate (i,j),  and 

b(i,j) is the pixel value of the extracted 

watermark at coordinate (i,j). 

 

There are two kinds of attacks used to test these two 

watermarking algorithms, resulting in a total of four 

different combined cases. 

 

4.1 Results of Point Reduction Attack 
 

A. Spatial domain algorithm 

The total number of points in the original 3D model is 

41866.  The test reduces the number of points and 

calculates the MAE for each extracted result. Table 1 

shows the results for the two watermarks using spatial 

domain algorithm. The corresponding extracted 

watermarks are shown in Figs. 7(a)-(d). The watermarks 

become invisible when the points are reduced to about 

half as shown in Fig. 7(d). 

 

Point number MAE 

35000 0.0470 (a) 

30000 0.0789 (b) 

25000 0.1138 (c) 

20000 0.1548 (d)     
Table 1. MAE of watermark extracted using spatial 

domain algorithm with point reduction. 

 

    

(a) (b) (c) (d) 

Fig. 7. Watermarks extracted using spatial domain 

algorithm with point reduction. 

 

B. Frequency domain algorithm 

The size of watermark used here is 32 by 32 as shown 

in Fig. 4. The 32 by 32 entries in the median frequency 

band of the DCT transformed A matrix are chosen to 

embed the 32 by 32 watermark.  Again, the number of 

points is reduced and the MAE is calculated for each 
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extracted result. Table 2 shows the results for the two 

watermarks using the frequency domain algorithm. The 

corresponding extracted watermarks are shown in Figs. 

8(a)-(c).  Similarly, the watermarks become invisible 

when the number of points is reduced to about half as 

shown in Fig. 8(c).  The extracted watermark shown in 

Fig. 8(c) appears to be worse than in Fig. 7(c). 

 

Point number MAE 

35000 0.0176 (a) 

30000 0.0654 (b) 

25000 0.1338 (c) 

 

Table 2.  MAE of watermark extracted using 

frequency domain algorithm with point reduction.    
 

 

   

(a) (b) (c) 

Fig. 8. Watermarks extracted using spatial domain 

algorithm with point reduction. 

 

4.2 Results of Compression Attack 
 

A. Spatial domain algorithm 

Different compression rates are applied to the 

watermark embedded matrix A. The MAE of 

watermarks in the decompressed 3D models are 

calculated. Table 3 shows the results for the spatial 

domain algorithm. The corresponding extracted 

watermarks are shown in Figs. 9(a)-(c). The watermarks 

are still visible even when the compression rate is about 

26 as shown in Fig. 9(d). 

 
Compression rate MAE 

14.6 0.0417(a) 

17.5 0.0596(b) 

21.5 0.0696(c) 

26 0.0947(d) 

 

Table 3. MAE of watermark extracted using spatial 

domain algorithm with compression. 

 

                 
(a) (b) (c) (d) 

Fig. 9. Watermarks extracted using spatial domain 

algorithm with compression.     
 

B.  Frequency domain algorithm  

The different compression rates are applied to the DCT 

matrix A, with watermarks embedded in frequency 

domain.  The MAE of the extracted watermarks are 

calculated and shown in Table 4. Corresponding 

watermarks extracted are shown in Figs. 10(a)-(d).  

The watermarks are still visible even when the 

compression rate is about 75 as shown in Fig. 10(d). 

The result shown in Fig. 10(d) appears to be better than 

that of Fig. 9(d). 

 
Compression rate MAE 

24.8 0.0586 (a) 

40.9 0.0664 (b) 

54.6 0.0745 (c) 

74.5 0.1055 (d) 

 

Table 4.  MAE of watermark extracted using 

frequency domain algorithm with compression. 

 

     
(a) (b) (c) (d) 

Fig. 10. Watermarks extracted using frequency domain 

algorithm with compression. 

 

4.3 Results of Orthogonal Watermarks 
 

Two watermarks with orthogonal property as shown in 

Fig. 1 are applied simultaneously to the 3D model in 

spatial domain. Results of applying the previous two 

kinds of attacks are given below. 

 

A. Point reduction Attack 

 

The corresponding watermarks extracted after point 

reduction attack are shown in Figs. 11(a)-(h). Table 5 

shows the results for the two watermarks using spatial 

domain algorithm. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 11. Watermarks extracted using spatial domain 

algorithm with point reduction. 
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Point number MAE with type 

(a) watermark  

MAE with type 

(b) watermark 

20000 0.1493 0.1516 

25000 0.1089 0.1123 

30000 0.0707 0.0769 

35000 0.0401 0.0481 

 

Table 5. MAE of watermark extracted using spatial 

domain algorithm with point reduction. 

 

B. Compression Attack 

 

Similarly, watermarks extracted after compression 

attacks are shown in Figs. 12(a)-(h). Table 6 shows the 

results for the two watermarks. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 12. Watermarks extracted using spatial domain 

algorithm with compression. 

 

Compression 

rate 

MAE with type 

(a) watermark  

MAE with type 

(b) watermark 

14.6 0.0452 0.056 

17.5 0.0545 0.0625 

21.5 0.0625 0.0725 

26 0.0757 0.0857 

 

Table 6. MAE of watermark extracted using spatial 

domain algorithm with compression.  
5 Conclusion and Discussion 
 

This paper proposes several methods for embedding 2D 

watermarks into 3D point cloud models.  The proposed 

methods are applied and compared in both the spatial 

and frequency domains.  Reduction of data points and 

lossy compression are used as attacks to test the 

resilience of the embedding approaches.  Experimental 

results show that the watermarks embedded in spatial 

domain have stronger resilience to attack processes 

carried out in the spatial domain, and the watermarks 

embedded in frequency domain are more robust towards 

attack processes in the frequency domain. Further work 

using 3D watermarks and other watermarks selected 

subject to the properties of the 3D model will be 

conducted in the future.  
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Abstract

A method is  presented for the detection and classification of  license plates  in  real  time. The classifier  and 
detector both use a Space Displacement Neural  Network which can efficiently be applied to images and is 
trained using gradient-based learning. The detector has an error rate of less than one percent for individual 
characters and can find multiple plates in a single image. The classifier has an error rate of less than two percent. 
The complete system runs at more than 15 frames per second. 

Keywords: License Plate Recognition, Convolutional Networks, Space Displacement Neural Network.

1 Introduction

The  automatic  reading  of  license  plates  (Automatic 
License Plate Recognition or ALPR) is an important 
task  for  traffic  control  and  security.  There  are  a 
number of commercial products available for ALPR, 
these are mostly based on standard optical character 
recognition techniques.  This  paper  presents  a  novel 
method  using  a  type  of  neural  network  for  both 
detection and recognition of the plate.

ALPR  involves  three  main  tasks,  plate  detection, 
character segmentation and character recognition[1]. 

Plate detection is the process of finding a plate in an 
image. This is often done by searching for rectangular 
regions using standard  image processing  techniques 
[2][3].

Character segmentation involves finding a bounding 
box for each character in the plate. This is commonly 
done  using  techniques  such  as  heuristic  over 
segmentation[4].

Character  recognition  involves  classifying  the 
segmented  plate  region to  provide  a  probability  for 
each  possible  character  class.  This  is  usually  done 
using standard pattern recognition techniques such as 
Neural Networks or Support Vector Machines.

Figure 1 shows a typical image of a vehicle and plate.

2 Training and Test Sets

In order to train the classifiers, over 4500 images of 
vehicles were obtained with plates at different angles 
and scales. The images were obtained over many days 
to  give  different  types  of  illumination.  From these 
images, 4800 12x22 pixel images of individual plate 
characters  were  hand-segmented  and  labelled.  For 
plate  detection,  random  background  images  were 
added to the set and the characters were shifted plus 

or minus one pixel from the centre to give 9 copies of 
each character  and a  total  of  86,000 images.  These 
images were split into 2 parts, 60,000 for the training 
set and 26,000 for a test set.  The test set contained 
only  plates  from images that  did  not  appear  in  the 
training set. Figure 2 shows a small part of the test set. 

Figure 1: Typical Image

For classification, the character images were shifted 
up  and  down by  one  pixel  to  give  14,400  images. 
These were split into an 8000 image training set and a 
6400 image test set. 

3 Architecture

The architecture  is  based on a  convolutional  neural 
network,  this  architecture  is  used  by  the  best 
performing classifier  for  hand written  characters[5]. 
In  tests  on  the  MNIST  database  (hand  drawn 
numerals)  convolutional  networks  achieve an error 
rate  of  0.4%,  a  Support  Vector  Machine(SVM) 
achieves  1.4%  and  a  2  layer  Multi-Layer 
Perceptron(MLP)  achieves  1.6%.  Convolutional 
networks  have  also  been  used  for  face  and  object 
recognition[6][7]  but  never  for  licence  plate 
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recognition. A convolutional network is made from a 
number of layers which either perform convolution, 
subsampling  or  are  fully  connected.  Between  each 
layer  is  a  sigmoid  function  to  provide  the  non-
linearity necessary for training. For the MNIST task, 
the input image is a 32x32 pixel grey scale image. Six 
5x5 convolutions are applied to this image to generate 
six 28x28 pixel feature maps. These are subsampled 
to give six 14x14 pixel maps. These maps are then 
convolved  with  62  5x5  convolutions  and  summed 
through a partial  mapping to give 16 10x10 feature 
maps.  The feature maps are subsampled to give 16 
5x5 maps. These maps are fully connected to a set of 
120  units  which  are  fully  connected  to  10  output 
units, one for each class. For complete details of this 
architecture see[8]. 

Figure 2: Part of the Test Set.

A significant advantage of the convolutional approach 
over other methods is that it allows the network to be 
applied  to  large  images  very  efficiently.  When  a 
convolutional network is used in this way it is called a 
Space Displacement Neural Network (SDNN) and is 
similar to the Time Delay Neural Network (TDNN) 
used  for  speech  recognition.  Figure  3  shows  the 
architecture of a typical SDNN used for classification. 
The input is an image and the output is a map for each 
class  showing  the  location  of  all  the  pixels  in  the 
image assigned to that  class.  A classifier  such as  a 
SVM or MLP needs to be applied to an area around 

each  pixel in the image separately. This makes these 
techniques  impractical  for  real  time  processing  of 
video  images  without  additional  hardware  support 
(for example FPGAs).

3.1 Detection architecture

A plate detector needs to be fast and robust, in this 
case the goal  was to achieve over 97% accuracy at 
over 10 frames per second. For the detector we used a 
convolutional  network  with  five  1x5  convolutions 
followed by five 5x1 convolutions followed by a 2x2 
subsampling  and  then  five  4x9  convolutions  which 
are summed to give a single output map. The use of 
one  dimensional  convolutions  means  that  training 
effectively  finds  two  separable  masks  to  cover  the 
input region. The one dimensional  convolutions can 
be implemented very efficiently. 

The output map was filtered using an integral image 
to find the sum at every point in the image of a 40x6 
area. This is  used to remove noise and increase the 
detection accuracy.

3.2 Classifier Architecture

The  classifier  needs  to  discriminate  between  36 
characters  (numbers  0-9  and  letters  A-Z).  For  the 
classifier, we used five 5x5 convolutions followed by 
52 5x5 convolutions. This gives 14 maps to which are 
applied  a  2x2  subsampling  followed  by  1064  2x7 
convolutions to create 76 maps. These 76 maps form 
the  input  to  a  fully  connected  network  with  36 
outputs, one for each class.

4 Training

Both  classifiers  were  trained  using  gradient-based 
learning. The Mean Square Error was used as a cost 
function  and  stochastic  learning  with  the  diagonal 
Levenberg-Marquardt method was used for training. 
These  methods  have  been  described  extensively 
elsewhere[8][9].  Training  was  performed  using 
Lush[10],  an  interpreted,  LISP-like  language  with 
support  for  gradient-based learning.  Training of  the 
both  the  detector  and  classifier  took  approximately 
two hours.

Figure 3: Typical convolutional network architecture for classification.
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5 Implementation

The detector and classifier were implemented in C++ 
using Opencv (an open source machine vision library) 
for some of the image processing functions and for 
image acquisition. The code is cross platform and was 
developed using an x86-64 Linux distribution. All the 
operations  were  performed  using  single  precision 
floating point. Profiling of the code shows that over 
90%  of  time  is  spent  performing  convolutions.  No 
attempt was made to optimise the convolution code, 
however,  this  could  be  achieved  using  vector 
instructions  such  as  SSE or  by  converting  multiple 
convolutions  into  matrix  multiplications  and  using 
optimised BLAS libraries[11].  In  order  to  speed up 
the system, a first pass was made over the image and 
a pair  of integral images constructed containing the 
sum and sum of squares for the area above and to the 
left of each point. From this, the variance in an area 
can  be  efficiently  calculated.  Areas  with  a  small 
variance  will  not  be  part  of  a  plate  and  these  are 
marked and not included in any of the convolutions. 
In a  practical  system, background subtraction could 
also  be  used  to  mark  areas  as  not  being  part  of  a 
vehicle.   

  

Figure 4: Detection output map for Figure 1.

6 Results

The  combined  detector  and  classifier  were 
implemented on a dual core 64 bit Opteron 170 Linux 
workstation running at 2GHz. The classifier alone ran 
at 18 frames per second while the combined system 
ran at 15 frames per second.

6.1 Detection Results

After training of the detector, the training set had an 
error rate of 0.83% and the test set an error rate of 
0.91%. Using a more complex architecture the error 
rate  could  be  reduced  but  this  would  reduce  the 
overall  speed  of  the  system.  To give  a  comparison 
with other  methods a  Support  Vector  Machine  was 
trained using the same data and achieved an error rate 
of 3% on the  training and test data.

Figure 4 shows the output map for the image shown 
in Figure 1. It can be seen that the location of the plate 

is clearly indicated and that the six character locations 
are clearly  visible  as  blobs.  There are  a  number of 
false detections but these are all isolated and can be 
easily filtered. Figure 5 shows the filtered output map 
corresponding to Figure 4. The false detections have 
been  completely  removed  and  the  plate  centre  is 
clearly  visible  as a  maximum in the filtered output 
map. When there are multiple plates in an image the 
output  map  contains  more  than  one  maximum and 
these can be investigated in turn.  Some images,  for 
example a vehicle with lettering on the front or side, 
give false maximums for these areas. Combining the 
detector  with the  classifier  should easily  be able  to 
rule  such  areas  out  as  plates.  For  the  prototype 
system, we used the maximum nearest the bottom of 
the image as the candidate plate location. Since each 
vehicle will be seen by the system a number of times 
and only a single lane of traffic is visible, each plate 
will  appear nearest  the bottom of an image at  least 
once. For images covering multiple lanes of traffic is 
will be necessary to investigate more than one of the 
maximums.

  

Figure 5: Filtered output map for Figure 1.

6.2 Classifier Results

After training, the classifier had an error of 0.3% on 
the  training set  and  1.86% on the  test  set.  Table  1 
shows the results for each character. Some characters 
such as O, X, I, U and V are not common on New 
Zealand Plates and the classifier has not seen enough 
training examples to classify these well. A number of 
different fonts are used on New Zealand plates and 
this  means  that  the  training  set  includes  some 
mislabelled patterns. The fact that the training set is 
classified  better  than  the  test  set  suggests  that  the 
classifier is over fitting and the training set is not a 
large enough sample of plate characters.

Figure 6: Classifier Output Map

135



Training set Test set

Character Errors %Errors Errors %Errors

0 3/291 1.03% 11/234 4.70%

1 0/450 0.00% 5/348 1.43%

2 0/430 0.00% 1/329 0.30%

3 3/480 0.62% 1/363 0.27%

4 0/465 0.00% 1/369 0.27%

5 0/472 0.00% 5/398 1.25%

6 1/407 0.24% 4/334 1.19%

7 0/409 0.00% 3/356 0.84%

8 0/440 0.00% 5/361 1.38%

9 0/406 0.00% 6/347 1.72%

a 0/649 0.00% 2/533 0.37%

b 0/295 0.00% 2/236 0.84%

c 0/319 0.00% 2/251 0.79%

d 0/202 0.00% 2/182 1.09%

e 0/124 0.00% 2/98 2.04%

f 0/118 0.00% 3/116 2.58%

g 0/100 0.00% 2/71 2.81%

h 0/137 0.00% 0/88 0.00%

i 7/16 43.75% 8/11 72.72%

j 0/99 0.00% 3/75 0.00%

k 1/87 1.14% 2/66 3.03%

l 0/95 0.00% 0/76 0.00%

m 3/123 2.43% 3/87 3.44%

n 0/113 0.00% 0/97 0.00%

o 2/56 3.57% 18/43 41.86%

p 0/134 0.00% 0/112 0.00%

q 0/106 0.00% 14/104 13.46%

r 0/115 0.00% 2/95 2.10%

s 0/114 0.00% 0/72 0.00%

t 2/128 1.56% 0/85 0.00%

u 1/96 1.04% 5/78 6.41%

v 1/1 100.00% 2/2 100.00%

w 0/172 0.00% 0/92 0.00%

x 0/50 0.00% 2/43 4.65%

y 0/172 0.00% 1/116 0.86%

z 0/156 0.00% 2/132 1.51%

Total 24/8000 0.30% 119/6400 1.86%

Table 1: Classification Results

The classifier was applied to a rectangular area found 
by the detector. Figure 6 shows the output map for the 
plate detected in Figure 1. In order to obtain the actual 
plate number, liner regression can be used to find the 
line along which the plate characters are most likely 
to lie. From this, the Viterbi algorithm can be used to 
find  the   most  likely  character  locations  and  their 
classifications.

7 Conclusion

Convolutional  neural  networks  are  well  researched 
classifiers.  They  have  properties  that  make  them 
suitable  for  the  efficient   detection  of  objects  in 
images.  Using  one  dimensional  convolution  masks 
and a quick test for variance  makes this method even 
faster.  This  paper  has  shown  that  a  Space 

Displacement  Neural  Network  can  be  used  for 
practical detection and classification of license plates. 
Further  work  is  necessary  to  improve  the 
classification accuracy and to extract the plate number 
from the classifier output map.
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Abstract
With the explosion of digital media, image authenticity becomes a vital issue in our information society.
In this research, we propose a statistical model for natural images that is built upon multiscale differential
features. Images are decomposed by filtering with the Gaussian derivatives of up to second order.
Observations reveal that the micro-patterns in the derivative images may contribute to better texture
characterization. We therefore propose a new feature, called Local Contrast Patterns (LCP), which
extracts multiple complex patterns through estimating the joint difference distribution of the image
derivatives at local regions. A compact statistical description is obtained by stacking the first and
second order moments from the multiscale LCP. Fisher linear discriminant classifier is then adopted
to discriminate between tampered and authentic natural images. We demonstrated the efficacy of the
approach through experiments that showed impressive performance compared to the conventional wavelet
statistics with a splicing data set from DVMM, Columbia University.
Keywords: Local contrast patterns, statistical moments, image tampering, classification.

1 Introduction

With the advances in the Information Technology,
digital cameras and photo-editing software are be-
coming ubiquitous. Now it is easy to manipu-
late digital images and make them difficult to dis-
tinguish from the authentic photographs. Images
are commonly manipulated by cutting and pasting
some regions or objects from one place to another.
If the manipulated objects are relatively large in
size, simple histogram analysis may provide clues
for tamper detection. On the other hand, tamper-
ing smaller regions or objects (e.g., human faces,
trees , flowers etc.) may pose a great challenge in
finding reliable solutions. However, there may be
some statistical regularities that distinguish natu-
ral images from all possible images. Some exam-
ples of statistical models are those based on power
spectra [1], [2], [3], Markov random fields [4], [5] or
wavelets [6], [7].

Multichannel filtering techniques was proven ex-
tremely useful in image compression, image coding,
noise removal, and texture analysis. One impor-
tant reason is that such decomposition preserves
statistical regularities that can be exploited. In
this paper, we describe a statistical model for natu-
ral images that is built upon a multiscale decompo-
sition by Gaussian and its derivative kernels. The
model consists of simple statistics (mean, standard
deviation) that capture the inherent regularities in
the natural images. We then demonstrated how

this model differentiates between natural and un-
natural (manipulated) images.

The rest of the paper is organized as follows: In
section 2, we introduce the concept of Local Con-
trast Patterns that are based on multiscale de-
composition of images. Section 3 describes the
adopted classification principle by Fisher Linear
Discriminant(FLD). In section 4 , we include the
experimental results, while section 5 concludes the
paper.

2 Multiscale Decomposition and the
Proposed Contrast Patterns

Local image surface at a point p can be approx-
imated by spatial derivatives around that point.
The validity of this characterization stems from
the Taylor series expansion. If I(p) is an image
intensity at p(= x, y), the value at p + ∆p can be
estimated by

I(p+∆p) = I(p)+∆px

∂I(p)

∂x
+∆py

∂I(p)

∂y
+..., (1)

which states that the derivatives at p can estimate
the surface in its neighborhood. Therefore, it can
be argued that spatial derivatives characterize the
shape of the local surface. They also capture useful
statistical information about the image. The first
derivatives represent the gradient or ”edgeness” of
the intensity and the second derivatives can be
used to represent bars (or blobs).
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Figure 1: Block diagram of the proposed approach.

Since image tampering operation may alter nat-
ural intensity surfaces and its associated statisti-
cal properties, we may expect spatial derivatives
and/or their associated moments may differentiate
between the natural and manipulated surfaces. A
simple block diagram of our approach is shown in
Fig. 1. We will illustrate our approach in the
following subsections.

2.1 Multiscale Decomposition

Multiscale decomposition is essential because one
may not know a priori about size, shape, and num-
ber of the patterns that exist in the original image.
This decomposition can be performed by filtering
with the Gaussian and its derivatives at various
inner scales as advocated by Koenderink et al. [8].
The linear Gaussian scale-space L : Ω ⊆ R2 £
R+ 7→ R of a 2D image I : Ω ⊆ R2 7→ R is given
by:

L(x, y;σ2) =

∫ ∫
Ω

I(ξ, η)G(x¡ ξ, y ¡ η)dξdη

= G(x, y;σ2) ∗ I(x, y), (2)

where L(x, y; 0) = I(x, y), σ2 is a non-negative real
number called the scale parameter, ∗ is the convo-
lution operator and G : R2 7→ R is the Gaussian
kernel function:

G(x, y;σ2) =
1

2πσ2
exp−x2

+y2

2σ2 . (3)

Even though an image, I(x, y) may not be dif-
ferentiable initially, the corresponding scale-space,
L(x, y;σ2), σ2 > 0 is infinitely differentiable with
respect to (x, y) as long as I(x, y) is bounded. The
partial derivative of a scale-space can be obtained
by convolving the original image, I(x, y), with the
partial derivative of the Gaussian kernel function
G(x, y;σ2):

Lxmyn(x, y;σ2) = ∂xm∂yn(G(x, y;σ2) ∗ I(x, y))
= (∂xm∂ynG(x, y;σ2)) ∗ I(x, y),

(4)

where ∂xm∂yn is a shorthand for ∂m+n

∂xm ∂yn
. For

sth scale, the derivatives can be represented by
Ls

xmyn(x, y;σ2
s).

The selection of filter scales is an unsolved problem.
It depends on the sizes of the patterns that exist
in images. However, natural images often contain
many such patterns of variable sizes. In our study,
we heuristically choose half octave spacing, that is

σs = (
√

2)
s
σstart, (5)

where s = 0, 1, ...., smax. We choose (0.85, 1.0)
for σstart and (3, 7) for smax depending on data
sets. The filter kernel-size (FS) is chosen by FSs =

(d4σse)2.
How many orders of derivatives are suffice? The
answer lies with the texture content and pattern
complexity of images. However, Ravela [9] pointed
out that the first two orders are the most com-
pact features from the information content point
of view. We will therefore adopted the first two
orders of image derivatives in our study.

2.2 Proposed Contrast Patterns

With the various partial derivatives in hand, the
job is now to formulate feature to be extracted.
In a recent image retrieval study [10], we observed
that the micro-patterns that exist in the derivative
responses can characterize texture well. Micro-
patterns in an image, regarded as Local Contrast
Patterns (LCP), can be estimated by the joint-
difference distribution of the derivative(partial)
values in local neighborhood regions. For a small
neighborhood window Nw(i.e., b £ b pixels), with
center at (x,y), LCP is defined as:

LCP s
m,n(x, y;σ2

s) =
∑

(k,l)∈Nw

w(k, l) £

u(Ls
xmyn(k + x, l + y;σ2

s)

¡Ls
xmyn(x, y;σ2

s)), (6)

where

u(z) =

{
1 if z ≥ 0
0 otherwise.

Here Ls
xmyn(x, y;σ2

s) is the response image, and
w(k, l) is the corresponding weights in the window.
For a typical window size (i.e., 3 £ 3), the following
binary weights may be used.
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w(k, l) =

 1 2 4
8 0 16
32 64 128

 .

Note that the LCP value ranges between 0 and 255.
For color images, the proposed LCP feature may
be computed from Y-component in YIQ transfor-
mation [11] by

Y = 0.299 £R+ 0.587 £G+ 0.114 £B, (7)

where RGB corresponds to color components in
the original image. For the f th derivatives and sth

scale, LCP histogram may be defined by

hf
lcp(i;σs) =

ni

N
, (8)

where ni and N are the frequency of ith LCP value
and total pixels in LCP s

m,n(x, y;σ2
s). The first two

statistical moments of contrast patterns are used
as texture features for image tampering detection.

mf
1 (σs) =

255∑
i=0

i£ hf
lcp(i;σs) (9)

mf
2 (σs) =

255∑
i=0

(i¡m1(σs))
2 £ hf

lcp(k;σs).(10)

2.3 Statistical Signature

We constructed statistical signatures by stacking
first and second moments from each of partial
derivatives of images. Recently, Revela [9]
proposed several differential features, (e.g.,
gradient magnitude (GM), gradient angle (GA),
laplacian (LAP), local orientation (LO), isophote
curvature (IC), flowline curvature (FC), brightness
curvatures (BC), and shape Index(SI)) for image
retrieval and recognition. Since these derived
features may extract some artifacts of tampering,
we will investigate their performance in our study.
If we consider all derivatives and their derived
features into three groups g1, g2, and g3, the
statistical signature can be obtained by:

Fg1 =

[
mg1

1 (σ0),m
g1
2 (σ0).....

....mg1
1 (σsmax),mg1

2 (σsmax)

]
, (11)

Fg2 =

[
mg2

1 (σ0),m
g2
2 (σ0).....

....mg2
1 (σsmax),mg2

2 (σsmax)

]
, (12)

Fg3 =

[
mg3

1 (σ0),m
g3
2 (σ0).....

....mg3
1 (σsmax),mg3

2 (σsmax)

]
, (13)

where g1 ∈ {Ls
xmyn(x, y;σ2

s)}, g2 ∈ {LO,BC, SI},
and g3 ∈ {GM,GA,LAP}. Note that we

computed first two moments as statistical
measures from each feature. These moments may
also be computed in local regions without micro-
pattern information (MPI). However an empirical
study with a data set having texture-texture
interface showed poor performance without MPI.
Table 1 shows the clear advantages of our approach
in terms of the average classification accuracy.

Table 1: Average classification accuracy(training
and testing) for the data sets with TT interface.

Features Average class. acc.(%)
Without MPI With MPI
Rtr Rts Rtr Rts

Fg1 77.96 65.23 98.60 66.21
Fg2 91.33 58.90 92.62 60.03
Fg3 88.95 55.12 89.21 61.92

With micro-patterns, two observations were noted
from the table.

• The average classification accuracy becomes
larger for almost all features with micro-
patterns information.

• The proposed LCP (Fg1) attains higher accu-
racy compared to existing features (Fg2, Fg3).

Recently, Farid et al. [12] proposed wavelet based
higher order statistics for tamper detection. We
will therefore use Daubechies D4 based decompo-
sition with first and second order moments, called
wavelet statistics(WS), in our comparative study.

3 Classification

We adopt Fisher Linear Discriminant(FLD) anal-
ysis in our study. For simplicity a two-class FLD is
described. Denote column vectors ~xi, i = 1, ..., Nx

and ~yj , j = 1, ..., Ny as training sets from each
of the two classes. The within cluster means are
defined as :

~µx =
1

Nx

Nx∑
i=1

~xi, and ~µy =
1

Ny

Ny∑
j=1

~yj . (14)

The between-class mean is defined as:

~µ =
1

Nx +Ny

 Nx∑
i=1

~xi +

Ny∑
j=1

~yj

 . (15)

The within-cluster scatter matrix is defined as:

Sw = MxM
T
x +MyM

T
y , (16)

where, the ith column of matrix Mx contains the
zero meaned ith exemplar given by ~xi ¡ ~µx. Simi-
larly, the jth column of matrixMy contains ~yj¡ ~µy.
The between-class scatter matrix is defined as
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Sb = Nx( ~µx ¡ ~µ)( ~µx ¡ ~µ)T

+Ny( ~µy ¡ ~µ)( ~µy ¡ ~µ)T . (17)

Let ~e be the maximal generalized eigenvalue-
eigenvector of Sb and Sw (i.e., Sb~e = λSw~e).
The training exemplars ~xi and ~yj are projected
onto the one dimensional linear subspace defined
by ~e (i.e., ~xi

T~e and ~yj
T~e). This projection

simultaneously reduces the within-class scatter
while increasing the between-class scatter. Once
the FLD projection axis is determined from
the training set, a novel exemplar, ~z, from the
testing set is classified by first projecting onto the
same subspace, ~zT~e and then by computing the
smallest Euclidean distance between it and the
precomputed mean projections of two training
sets.

4 Experiments

4.1 Image Data Sets

We collected fairly complex data set from DVMM,
Columbia Univ., [13]. It has 933 authentic and 912
spliced image blocks of size 128 £ 128 pixels. In
our study, we used 336 authentic and 283 spliced
images with various object interfaces as shown in
Table 2.

Table 2: Data sets for authentic and spliced
images.

Name of Nos. Name of Nos.
Authentic Spliced
Data Sets Data sets
Au-T 126 Sp-T 126
Au-SS-H 50 Sp-SS-H 45
Au-TS-V 100 Sp-TS-V 45
Au-TT-H 60 Sp-TT-H 67
Sub-total 336 Sub-total 283

The image blocks are extracted from images in
CalPhotos image set [14]. As the images are contri-
butions from photographers, we consider them as
authentic. The authentic category consists of im-
age blocks of an entirely homogeneous textured or
smooth region and those having an object bound-
ary separating two textured regions, two smooth
regions, or a textured region and a smooth region.
The location and orientation of the boundaries are
random.

On the other hand, the spliced category contains
the same subcategories as the authentic one. The
subcategory with entire homogeneous texture is
obtained from the corresponding authentic set by
copying horizontal or vertical strips of 20 pixels
from one location to another within the same im-
ages. For the subcategories with object bound-
aries, image blocks are obtained from images with

Figure 2: Some samples for authentic images.

spliced objects. Figs. 2 and 3 show some sample
images from the authentic and spliced categories.
Professional tampered images were made by two
steps: (i)splicing, and (ii) post-processing. How-
ever, current data sets (except T set) contain many
challenging object-interfaces that may be difficult
to distinguish by our eyes.

Figure 3: Some samples for splicing images.
(row:1) single texture copy-paste tampering,
(row:2) SS-H, smooth-smooth interface in hor.
dir., (row:3) TT-H, texture-texture interface in
hor. dir., and (row:4) TS-V, texture-smooth
interface in ver. dir.

4.2 Results

We performed experiments with four spliced
data sets: single texture(T), multi-texture sets
with smooth-smooth (SS), texture-smooth(TS),
and texture-texture(TT) object-interfaces. In
each case, classification accuracies corresponding
to three different splits of training/testing sets
were averaged. Three training sets were fixed
sequentially to 25%, 50%, and 75% of the images
in each splicing set, while the rests in each case
were used as testing sets. We used 8 filter scales
for the T data set and 4 scales for other data sets
(SS, TS, TT) with 1/2 octave spacing. Tables 3
and figure 4 show classification performance for
the proposed and existing features. They confirm
that the proposed LCP (Fg1) achieves good
average accuracy for both training and testing
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Table 3: Average Classification accuracy for the authentic and spliced data sets, i.e., SS-H, TS-V, TT-H
and T sets.

Features Classification acc. (%) Average class. acc. (%) Object interface
Training Testing Training Testing type

Rautr Rsptr Rauts Rspts

(Rautr +Rsptr )

2

(Rauts+Rspts )

2

Fg1 83.29 84.53 52.43 54.31 83.91 53.37 single testure
Fg2 74.63 70.93 51.04 60.06 72.78 55.55 with strip
Fg3 98.24 99.01 38.03 48.16 98.62 43.09 copy-pasting
WS 68.01 64.68 62.84 44.09 66.34 53.46
Fg1 97.36 97.05 65.81 68.14 97.20 66.97 SS interface
Fg2 85.23 79.38 46.58 53.97 82.30 50.27 in horizontal
Fg3 73.39 76.66 55.12 50.21 75.02 52.66 direction
WS 99.12 98.03 58.11 68.46 98.57 63.28
Fg1 95.55 99.01 68.04 60.84 97.28 64.44 TS interface
Fg2 88.00 94.16 71.92 33.63 91.08 52.77 in vertical
Fg3 91.11 96.07 80.40 50.87 93.59 65.63 direction
WS 88.88 90.75 74.27 62.34 89.81 68.30
Fg1 98.51 98.69 67.73 64.70 98.60 66.21 TT interface
Fg2 94.07 91.17 67.67 53.59 92.62 60.63 in horizontal
Fg3 88.88 89.54 65.69 58.16 89.21 61.92 direction
WS 92.59 91.83 56.40 65.03 92.21 60.71

sets, specifically for data sets with TT interface.
Table 4 and figure 5 show the mean accuracy
over entire database (T, SS, TS, TT). It shows
the following performance order (descending): (i)
Fg1, (ii) WS, (iii) Fg3, (iv) Fg2. Below are the
observations of our classification experiments:

1. Direct derivative based features (Fg1) appear
better than the derived features from them.

2. Among derived features, edge information
statistics (Fg3) are more effective than
curvature based statistics (Fg2).

Table 4: Mean classification accuracy over the
entire set for the authentic and spliced images

Features Mean class. acc. (%)
Training Testing

Fg1 94.24 62.74
Fg2 84.69 54.80
Fg3 89.11 55.82
WS 86.73 61.43

4.3 Discussion

In our multiscale approach, the value for the ini-
tial scale is selected in trial and error basis, while
scale progression is heuristically fixed to 1/2 oc-
tave spacing. While it may be possible to obtain
better results, we have yet to explore optimization
techniques for the effective selection of initial scale
and scale progression law.

(a)

(b)

Figure 4: Average classification accuracy for both
training and testing sets. Average classification
accuracy(%) for the (a) training and (b) testing
sets.

We used 3 £ 3 neighborhood in order to extract
micro-pattern information. Other neighborhood
sizes may also be useful. Optimal feature selection
and their combining strategy need to be explored
to see if there is any improved outcome.
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Figure 5: Mean classification accuracy over the
entire database.

5 Conclusion

We propose Local Contrast Patterns (LCP) that
are based on the joint difference distribution of im-
age derivatives or their derived features. Promising
outcomes were obtained by applying the proposed
features with Fisher linear discriminant analysis.
While it may be possible to obtain improved re-
sults, we have yet to explore the scale discretization
law with an appropriate value for the initial scale.
Selective edge and curvature based features have
to be integrated for better classification results.
Finally, experiments with a larger database may
well justify the feature strength.
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Abstract
Interactive styling of virtual hair is an important research field since it is essential for creating realistic looking
human avatars for use in virtual worlds, computer games and movie special effects. Virtual hair models can
contain thousands of hair strands and hence it is important to develop techniques which enable a designer to
efficiently modify the hair in a realistic fashion. In this paper we present a hair styling toolset which uses wisps
to represent basic units of hair strands and an improved statistical model for hair wisp generation. The toolset
provides a convenient way for users to do operations such as create, edit, delete, copy and paste and hence
facilitates the quick creation of hair styles while allowing sufficient control for adding individualistic styling
details. The styling process is simplified by using a local coordinate system for hair strands in order to define
preferred styling (brushing) directions.

Keywords: hair modelling, interaction techniques, spline curves, key strands

1 Introduction
Computer generated realistic virtual humans are
required in applications such as the movie industry
(CGI – computer generated imagery), computer
games, and as avatars for virtual worlds. An important
factor for achieving a realistic human appearance is
the development of a realistic hair model.
Psychological studies have shown that hair is a
determining factor of a person’s first impression when
meeting his or her counterpart [1]. Therefore, the
styling of virtual hair is an active field of research in
Computer Graphics. Hair styling is challenging since
the complex behaviour of each hair strand and the
interactions among the hair strands during animation
and styling must be controlled in a physically realistic
way.

In order to develop efficient styling tools it is
important to discuss different approaches for
modelling and rendering hair. Popular approaches to
model hair are based on polygonal surfaces, noise-
based approaches, volumetric textures, strand-based
models, wisp-based models, particle models, and
models based on fluid flows or vector fields.

Parke introduced a fast and simple way to model hair
which uses simple texture mapped polygonal surfaces
to capture the shape and appearance of hair [2]. Many
applications nowadays still use this approach due to
its simplicity. However, because the surface
representation does not model the complex geometry
of hair strands the specular lighting effects are not
correct and the resulting rendered images lack
realism.

Perlin proposed a way to synthesize images of
visually complex objects including hair by
hypertextures [3]. This noise-based modelling
approach cannot capture the movement of individual
hair strands. Hence this approach is most suitable for
short hair where forces such as gravity and friction
between hair strands are small such that the hair
hardly moves.

In 1989 a volumetric texture hair model was proposed
by Kajiya and Kay [4]. The authors introduced
“Texels”, which are 3-dimensional arrays of
parameters approximating visual properties of a
collection of micro surfaces. The most important
parameter stored in a Texel is the tangent vector, used
to calculate the light reflection by an anisotropic
reflection model [4]. Instead of using geometries to
model hair strands, Kajiya and Kay use texels to
represent hair strands and map them onto the surface
of a 3D object. The technique works well for short,
furry hair since the corresponding texels are simple
and can be generated automatically. However, it is not
clear how texels can be easily generated for
representing more complex hair styles and how this
representation could be used to enable interactive
styling.

Strand-based models represent every hair strand
explicitly. Because of the large amount of hair strands
on a head the strands are most frequently represented
by connected line segments rather than connected
cylinders in order to reduce the consumption of
computing resources when modelling hair [5, 6]. This
kind of model is suitable for modelling long animated
hair strands with a simple style, but it is not practical
for modelling complex hairstyles due to the large
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number of strands which must be moved. It is
extremely difficult to achieve animation of complex
hairstyles because of the complex behaviour and large
number of hair strands. Modelling complex hairstyles
using a strand-based model is therefore difficult to
achieve in real-time.

The key idea of wisp-based models is to group hair
strands into wisps and to define their shape and
animation using so-called key strands. The idea is
based on the observation that adjacent hair strands
tend to form wisps due to static attraction and
artificial styling products. Daldegan et al. model the
underlying head using triangle meshes and use three
key hair strands, one at each vertex of a triangle, to
interpolate the hair strands of a wisp [7]. Yang et al.
use generalized cylinders to represent hair wisps [8].
Plante et al. proposed an animation method to deal
with the interactions among wisps and to simulate
complex hair motions [9]. The above three models
have the advantage that they make it easy to control
hair styling. However, the methods are not effective
for controlling complex hairstyles such as curly hair.
In 2002 Kim and Neumann proposed a multi-
resolution hair modelling system, which can handle
fairly complex hairstyles [10]. The model makes it
possible to define the behaviour of hair over the entire
range from hair wisps down to individual hair strands.
Different hair styles can be created rapidly using
high-level editing tools such as curling, scaling and
copy/paste operations. Subsequently Choe and Ko
introduced a statistical wisp model to generate a wide
range of human hairstyles [11]. The authors simulate
hair deformation by applying physical properties of
hair such as gravity and collisions detection and
response. The model is capable of handling a wide
range of human hair styles but is unsuitable for
simulating hair animation due to a lack of real-time
performance of their modelling algorithm and failing
in collision detection in some cases.

Particles, fluid flow, and vector field models for hair
were motivated by the observation that slightly curled
hair and fluid flows have similar properties in terms
of smoothness and continuity. Stam proposed a
particle-based hair model, which simulates a hair
strand as a trajectory of a particle shot from the head
[12]. Hadap and Thalmann considered hair as fluid
flow [13], and Yu proposed a hair model using user
controllable vector fields [14]. These approaches
provide users an easy way to define and modify
simple hairstyles, but fail to handle complex ones.

In conclusion we can say that wisp-based models are
the most flexible hair models. Additional advantages
are their capacity to create a wide range of different
hair styles, control details of a hair style, and support
high-level operations such as copy/paste between
wisps when designing a hair style. Disadvantages of
this approach are the large amount of time needed to
handle the interactions between hair strands such as
collision detection and difficulties in simulating

convincing hair animation. However, for many
applications with less animation such as hair styling,
these advantages outweigh the disadvantages, and we
therefore will use a wisp-based model in our research.

2 A Toolset for Hair Styling
This section first introduces our hair model and then
describes the main components of the hair styling
toolset and its capabilities.

Our hair model is static and is based on the wisp-
based model proposed by Choe and Ko [11]. In order
to place our hair strands we use a head model
represented by a high resolution triangle mesh. The
head model with the scalp region coloured brown is
shown in figure 1.

Figure 1: A head model represented by a triangle
mesh. The scalp region is coloured brown.

Inspired by Kim and Neumann’s interactive hair
modelling system [10] we added tools to enable users
to manipulate wisps. Hair strands can be grown on the
scalp shown in figure 1. Since a scalp can have
thousands or tens of thousands of hair strands we need
a system to easily control groups of hair strands. The
user is able to group several triangles on which to
grow a wisp. The size of a wisp (its number of
strands) is dependent on the number of selected
triangles. The smallest wisp is defined by a single
triangle. This level of detail is sufficient for defining a
wide variety of hair styles since the triangles are small
compared to the scalp’s area.

Figure 2: A key strand defining a wisp for a group of
four triangles on the scalp. The dark area on the scalp
defines the selected triangles. The blue square points
are the control points on the key strand.

The geometry of a wisp is controlled using a so-called
key strand. A key strand defines the geometry for all
strands of a wisp which are then obtained by
translating the key strand appropriately. The number
of strands for a scalp region depends on the area of
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the triangles representing it. We use Catmull-Rom
splines [15] to represent hair strands since they are
smooth (C1 continuous) and because they interpolate
their control points which makes designing a
particular hair style more intuitive. An example of a
key strand for a group of four selected triangles of the
scalp is shown in figure 2.

Figure 3: An overview of the components of our hair
styling toolset.

The components of our hair styling toolset are
illustrated in figure 3. The key strand selection
component enables users to choose triangles to grow a
wisp or to select an existing wisp for editing. After a
group of triangles has been selected it is recorded
together with the location of its current key strand.
The location of the key strand is determined as the
centre of the first triangle of the selected group of
triangles (see section 3). The selection of scalp
triangles and strand control points has been
implemented with the OpenGL “select” mechanism.
This enables us to detect whether the projection of a
graphical primitive onto the view plane overlaps with
a hit region surrounding the mouse location in which
case we select the front most primitive.

The key strand generation component enables users to
generate one key strand for a selected group of
triangles. Users are able to interactively grow a key
strand by adding new control points and to modify the
3D shape of a key strand by moving its control points.

Figure 4: The user interface for changing the 3D
positions of a key strand’s control points. The red
arrow indicates the currently active direction in which
the control point can move forward and backward.
The yellow arrows indicate the non-active directions.

Users can change the size of a wisp in the key strand
edit component by changing the triangles defining the
area on which the strands of this wisp grow. In

addition users can delete an existing wisp and they
can change the 3D shape of a wisp by moving, adding
or deleting control points of the key hair strand.

The interface for changing the 3D coordinates of the
control points of a key strand is illustrated in figure 4.
Since the mouse movements on the screen are in 2D
we have to map this into a suitable 3D motion. A
common solution in modelling applications is to
restrict movements to the coordinate directions,
parallel to the view plane or within a user defined
plane. We found that in hair styling the preferred hair
movement direction depends on a particular style, e.g.
“brushing” hair backwards, lifting it up, pulling it
down or curling it. We therefore define for each key
strand a local coordinate system of styling directions.
The coordinate system is represented by three
orthogonal arrows and the currently active styling
direction is indicated by a red arrow. A new styling
direction is obtained by choosing one of the non-
active arrows or by changing the local coordinate
systems as explained below. Suitable default
directions for the local coordinate system at a control
point are the curve tangent at that point, the surface
normal at the scalp point closest to the control point
and the vector perpendicular to these two vectors.

1 2 3

4 5 6

Figure 5: Examples of how the local coordinate
system at a control point is changed. The images 1, 2,
and 3 show the active arrow being rotated clockwise
around the arrow pointing towards the viewer. The
images 4, 5, and 6 show the active arrow being
rotated clockwise around the bottom yellow arrow.

Since the most suitable styling directions depend on a
particular hair style we allow users to adjust the local
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coordinate system. Users can modify the local
coordinate system by rotating the active arrow around
one of the non-active arrows as demonstrated in
figure 5.

High-level copy/paste and mirror operations between
wisps are provided by the key strand copy/paste and
mirror component. After selecting the triangles for a
wisp, the geometries of the key strand can be copied
or mirrored from an existing wisp’s key strand by
clicking on it as illustrated in figure 6.

The source wisp The copied wisp

The source wisp The mirrored wisp

Figure 6: The key strand of the irregularly shaped
triangle group in the top right image is an exact copy
of the key strand (source wisp) in the top left image.
The red key strand in the bottom right image is a
mirror version of the key strand in the bottom left
image.

The wisp generation component is able to generate all
hair strands determined by their key strands and to
distribute all hair strands over the scalp uniformly.
The geometry of strands is determined using the
assumption that the hair strands within one wisp are
parallel to each other. The distribution of the hair
strands is based on the hair density.

The hair strands within a wisp tend to be similar,
although the shapes of the hair strands differ from
each other. Choe and Ko observed that the degree of
similarity can be controlled by a length distribution,
radius distribution and strand variation [11]. The
length distribution determines the length variance

between the key strand and a member strand within a
wisp. The radius distribution controls the distance
between the key strand and a member strand within a
wisp. Finally the strand distribution gives the shape
variation of each strand compared to the key strand.
In our implementation we use a length distribution to
control the length of each strand and a novel distance
distribution, described in section 3, to control the
distance between the key strand and a member strand
inside of a wisp. We also implemented a strand
distribution but found that the hair styles using it were
indistinguishable from the ones using just length and
distance variations.

Figure 7 demonstrates how a wisp is generated from a
key strand.

A key strand The generated wisp

Figure 7: A key strand (left) and the wisp generated
from it (right).

The preview hair component gives users a fast
overview of the hair style so that users will be able to
adjust the wisps of the hair style quickly.

Using our toolset users can create a wide variety of
hair styles within a relatively short period of time.
Furthermore details of a particular hair style can be
changed easily with the toolset. The toolset is
designed such that it can be extended effortlessly in
future, e.g. by allowing individually coloured wisps
simulating coloured streaks of hair.

3 Implementation
The toolset was implemented in C/C++ using the
OpenGL library. The most important part of the hair
generation component is the creation of hair strands
within a wisp according to the key strand.

The shapes of the member strands within a wisp are
determined by their key strand. In our implementation
we first use the assumption that the hair strands within
one wisp are parallel to each other, and then use a
length and distance distribution to make individual
member strands different from each other. Both of
these distributions are based on the Gaussian
distribution.
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For the length distribution we define the mean as 95%
of the length of the key strand which is computed
using a simple first order integration method. The
variance of the strands’ lengths is user defined
depending on the desired hair style. We apply a
Gaussian distribution to calculate the length of each
member hair strand within a wisp but limit the
maximum variation to 5% of the key strand. Hence all
hairs within the wisp are within 90-100% of the key
strand’s length and the distribution of the strands’
lengths depends on the desired hairstyle (clean-cut
look vs. fringy look).

In order to define the distribution of the distances
between a key strand and the strands of the
corresponding wisp we first define the strands’ root
positions using a uniform distribution of points over a
triangle such that the density of hair is constant over
the scalp. We then define for each control point an
offset vector which linearly increases in length for
each subsequent control point. The initial offset
vector is randomly selected using a uniform
distribution over a sphere. In order to maintain the
overall shape of the strand the offset vector is defined
with respect to a torsion minimising reference frame
for the spline curve representing the strand [16].

Note that our implementation offers several
advantages over Choe and Ko’s one [11], who use
random offsets for each control point. This can lead to
slightly wavy strands even if the original key strand is
uniformly curved. Furthermore by defining the
maximum length of the initial offset vector we can
produce very smooth hair where the strands are
virtually parallel and very fuzzy hair where the
distance between hair strands increases at the end of a
wisp.

Figure 8: The original key strand (left) and the
resulting member strand (right).

Figure 8 illustrates this process. The key strand on the
right is reproduced at the new root position. We then
define a random offset vector for the first control
point subject to a maximum length indicated by the
circle in the figure. The offset vector’s length linearly
increases for subsequent control points. Applying it
with respect to the key strand’s reference frame
generates a new curve of similar appearance.

In order to render hair strands we approximate the
Catmull-Rom spline representing them with polylines.

This is achieved by computing curve points at equally
spaced parameter values using the Catmull-Rom
spline equation

2
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where P  is a 3D vertex on the spline segment 21PP ,

3210 ,,, PPPP  are the control points for that segment,
and ]1,0[∈t  is the curve parameter.

4 Results
Our hair styling toolset is capable of creating a variety
of moderately complex styles. Depending on the
complexity of a new hair style it can take up to
several hours for a user without modelling experience
to create it. Adjusting the key strands is the most time
consuming step when making a specific style. Two
examples of completed hair styles created by us are
shown in figure 9.

Figure 9: A curly short hair style (left) and a smooth
medium length hair style (right) created with our hair
styling toolset.

Our hair styling toolset can model real hair styles
effectively as demonstrated in figure 10.

Figure 10: Similar hair style generated by the
computer (right) and a real human style (left) obtained
from [17].

In addition we tested our tool with non-expert users
and found that most functions such as wisp
copy/paste, mirror, and preview are quite intuitive.
However users found that they need to explicitly
design the wisp/wisp interactions and it is a little bit
difficult to define the directions of key strands. The
current version of our toolkit does not perform
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collision detection between strands/wisps and does
not use an explicit physical model and it is therefore
difficult to model braided hairstyles.

5 Conclusion
Although the hair styling process can require a couple
of hours we found that our toolset enables users to
create a variety of hair styles efficiently and
effectively. The toolset provides not only high-level
functionality such as copy/paste and mirroring of
wisps, but also low-level modifications such as
changing the number and positions of a key strand’s
control points in order to modify the shape of a wisp.
This was achieved using a novel interaction tool
which uses a local-coordinate system for defining
“styling directions”.

We have introduced a new statistical method to
generate strands from a key strand which has the
advantage that it maintains consistency of style within
a wisp and that it enables users to model smooth,
fuzzy and fringy hair. With our density based hair
distribution facility the roots of hair strands are
distributed evenly over the scalp.

Rendering is performed in real-time using GPU
accelerated algorithms and the whole modelling
process is interactive.
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Abstract 
Recently, urban modelling with LIDAR (Light Detection and Ranging) data has received much attention and 
much progress has been made in this area. However, building modelling with terrestrial laser scanned data is still 
a difficult problem in environments containing multiple structures and vegetation. In this paper, we focus on 
classifying 3D LIDAR data into man-made structures, terrain and vegetation. The proposed algorithm combines 
the extraction of distinct features from the point clouds with a discriminative graphical probabilistic model 
(Conditional Random Field) for classification. We validated our method with urban data acquired from a 
terrestrial Riegl laser scanner and the result showed that it performs better than a Bayesian classifier. 

Keywords: Classification, point clouds, LIDAR, terrestrial, vegetation removal, Conditional Random Field 

1 Introduction 
Accurate 3D urban modelling from LIDAR (Light 
Detection and Ranging) data is in demand with the 
growing number of applications such as regional 
planning, virtual reality, precise navigation and 
disaster management. With the great amount of time 
and work required to reconstruct large scale urban 
models manually, automatic surface modelling from 
the urban data is an important research area. 

Common methods employed in automatic surface 
reconstruction directly use triangle meshes[1]. 
However, direct triangulation carries no information 
on the modelled structures. Moreover, occlusions, 
noise, varying densities, multiple structures and the 
level of complexity in the data acquired from the real 
world environment make urban modelling a difficult 
and challenging problem. 

In addition, structures that exist in urban data include 
solid objects, such as terrain and buildings, and 
porous objects, such as vegetation, that require 
different processing approaches. Solid objects need to 
be represented with polygonal meshes with no holes 
and data spikes (or better still, geometric primitives 
such as boxes and cylinders), whereas vegetation can 
be represented by point clouds (with data reduction, 
possibly at reduced resolution) or may be replaced 
with generic models. Therefore a useful first stage is 
to separate vegetation and terrain from the building 
structures. 

Automatic segmentation of vegetation is not new in 
the literature on urban model data classification. 
However, most approaches are only useful for 
airborne LIDAR (Light Detecting and Ranging) data 
which are 2D (or 2.5D) where filtering via changes in 
the height difference is possible.  

With a Riegl LMS-Z420i terrestrial laser scanner, we 
need a classification technique that deals with 3D 
data. In this paper, we focused on discrimination 
between vegetation, terrain and man-made structure 
with the terrestrial LIDAR data. The classification 
result from our framework shows an accuracy of 80% 
to 90% depending on different data sets.  

2 Previous Work 

2.1 Covariance as a Region Descriptor 
The first step in data classification is to extract 
features that will hopefully capture the relevant 
relationships among observations and to label training 
sequences for the learning model. One of the popular 
features exploited in recent work is the estimated 
covariance along the least dominant principal 
direction of a number of neighbouring data, for 
identifying locally planar points.  

For instance, in [2], Stamos and Allen determined the 
planarity of each point by thresholding the eigenvalue 
corresponding to the covariance matrix of k 
neighbouring data for each point. However, this 
approach is not applicable to our data containing 
multiple structures with different sampling rates. 
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Instead of a fixed window size, Unnikrishnan and 
Hebert [3] computed the minimum eigenvalue of the 
covariance of voxel, which is a cube containing point 
clouds with size calculated with AMISE optimal 
bandwidth. This solves the problem of fixed scale, 
however as both approaches classify data with a 
selected threshold for the value of minimum 
eigenvalue, the threshold has to be trained for 
different data sets.  In addition, the data in one voxel 
are all classified into one class, therefore in the case 
where a voxel contains more than one class of data, 
some of the data, if not all, will be misclassified. 

Instead of using the AMISE optimal bandwidth, 
Lalonde et al. [4] implemented an adaptive scalable 
neighbourhood size for the calculation of the 
covariance. Using 3D scale theory developed by 
Mitra et al. in [5], the method is capable of shrinking 
the size of k neighbours at high curvature data points, 
and expanding the k value in planar regions.  

Lalonde et al. used all three eigenvalues for the 
purpose of classifications and derived a saliency 
feature vector using the relationship between the 
eigenvalues (details in Section 3). 

2.2 Other Local Feature Descriptors 
Other than using covariance as a local descriptor, 
features such as: intensity [6], height [6-9], surface 
curvature [9], spin image [7], normals [8] and colour 
[10] are often combined together or treated 
independently as feature descriptors. The height of the 
data and the surface normal vectors are useful to 
discriminate data with similar geometry structure 
(such as terrain and wall). 

The surface normal vector which can be estimated 
from the raw laser data is a good representation of 
texture. Hoppe et al [11] proposed estimating a 
normal at each point by computing the normal to the 
least square plane fitted to the k nearest points. 
Similar to the estimation of covariance, in order to 
estimate a normal (in spite of varying point density, 
multi-structure and occluded input data), an adaptive 
support region size is required. The approach applied 
in [4] can be used in the estimation of surface 
normals.  

Triangulation is a common method employed for the 
purpose of surface normal estimation. However, 
direct triangulation is not suitable for noisy outdoor 
laser data. To overcome this limitation, Dey and 
Goswami proposed the Big Delaunay triangulation 
method that uses Delaunay balls which remain 
relatively big [12], and therefore are capable of 
estimating accurate surface normals in noisy data. 
Comparison of its performance with the numerical 
plane fitting methods for surface normal estimations 
can be found in [13]. 

2.3 Learning Model  
Given the extracted features, supervised-learning 
models can be trained to recognize which data type 
the point clouds belonged to. For instance, instead of 
using a manually fixed threshold [2, 3], Lalonde et al 
[4] learned the distribution of the saliency feature 
with Bayesian classification by fitting a Gaussian 
Mixture Model using the Expectation Maximization 
algorithm on hand labeled data.  

In contrast with [4] which classified point clouds in 
real time, we start to process data after all data 
acquisition in one area has completed. As a result we 
have the advantage of having the relationship of 
complete neighbouring data for each point. Instead of 
locally classifying each point, a more appropriate 
approach would be using both global and local 
information, as spatial relationships exists among the 
input data. Moreover, local classification often leads 
to isolated false positives and missing false negatives.  

A generative model or a discriminative model can be 
used for sequential classification problems. Popular 
generative models include: Bayes classifier, Hidden 
Markov Models and Maximum Entropy Markov 
Models. These models define a joint probability 
distribution of the observation and labelling 
sequences p(X,Y). Another popular approach includes 
discriminative models such as CRFs[14] and Markov 
Random Fields which specify the probability of a 
label given an observation sequence p(Y|X). By 
modelling the conditional probability distribution 
instead of the joint probability distribution, the 
discriminative models do not need to enumerate all 
possible observation sequences which may not be 
feasible [14]. 
Using both generative and discriminative models, 
Wolf et al. [15] classified 3D points into navigable 
and non-navigable regions with Hidden Markov 
models locally followed by global segmentation with 
Markov Random Fields. Only concrete walkways are 
classified as navigable regions and others (including 
grass) as non-navigable regions. The feature used is 
the difference in the altitude of the point compared to 
the altitude of its neighbouring points.  

With more complicated object classes, Anguelov et al. 
[7] segmented 3D scan data into four features - 
ground, tree, building and shrubbery with an 
associative Markov network (AMN) that allows 
effective inference using graph-cuts [16]. The ‘plane’ 
features include the first two principal components of 
the 100 points in a cube of radius 0.5 meter, followed 
by computing the percentage of points lying in the 
various sub-cubes which are partitioned from the 
original cube that represent the plane feature. The 
‘tree’ feature is based on a column around each point 
by computing the percentage of points that lie in a 
cylinder of radius 0.25 meters. As for ‘shrubbery’, 
Anguelov use an indicator feature of the height 
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threshold at 2m from the floor. The experimental 
evaluation shows that AMN predicted 93% correctly 
where as an SVM predicted 68% correctly. 

Using AMNs, Triebel et al. [17] classified point 
clouds into window, wall and gutter. The features 
employed include: the cosine of angles between the 
local normal vectors, distribution of neighbours and 
the normalised height of the points. The results 
confirmed that the AMN outperforms a generative 
model - Bayes classifier. 

3 Our Approach 
We believe an accurate and robust classifier should 
include the extraction of distinct features and the 
selection of an effective training model for accurate 
classification of the acquired urban data. We 
employed conditional random fields (CRF) [14] to 
discriminate between planar object and cluttered 
object.  

The feature vectors in our approach include the 
logarithm of the Lalonde’s saliency features [4], the 
normal vector and the normalised height. The 
classification works by first extracting vegetation 
(based solely on logarithm of saliencies) then 
discriminates between building and terrain (as shown 
in figure 1).  

 
Figure 1: Extracted features for classification 

3.1 Saliency Features 
Similar to [4], we compute saliency features that 
capture the spatial distribution of points in a local 
region (which consist of the k nearest points) to 
differentiate between planar (man-made objects and 
terrain) and cluttered data (tree and shrubbery). 

The saliency features are derived from the 
eigenvalues of the covariance matrix of k nearest 
neighbours for each data point, where the size of k 
can be varied to address the effect of sampling density 
difference.  

Let λ1>λ2>λ3 be the eigenvalues of the covariance 
matrix of the k nearest neighbours. In case of clutter, 
λ1≈λ2≈λ3 and there is no dominant direction. For 
points on surfaces λ1,λ2>>λ3 and for linear structures 
λ1>>λ2,λ3. With the relationship between the 
eigenvalues, the saliency feature can be defined as a 
linear combination of eigenvalues in the 3-vector [4]:  
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We experimented with the saliency features (as shown 
in figure 2) of the data acquired, and we found that by 
taking the logarithm of the saliency features (as 
shown in figure 3), the classification result is 
improved (to account for the eigenvalue being 
sometimes very small). 

In order to determine the size of the local 
neighbourhood, we implemented the iterative 
procedure explained in [4] and [5] to compute the 
scalable neighbourhood size. The number of k nearest 
neighbours depends on the curvature, density and 
noise of the data points. 

 
Figure 2: Saliency features of cluttered data 
(vegetation) and planar data (man-made structure and 
terrain) 

 
Figure 3: Logarithm of saliency features of cluttered 
data (vegetation) and planar data (man-made structure 
and terrain) 

The classified planar data points are further 
segmented into man-made structure data and terrain 
data (figure 1). The saliency features explained before 
is not very useful in differentiate these two classes 
due to the geometry of the both classes are very 
similar. The most distinct features found in our 
experiment are the normalised height and the angle 
between the normal vector and the vertical vector.  

The normal vector is obtained by computing the 
normal to the least square fitted plane of the k nearest 

Stage 2

Stage 1 

Height and normals 

Logarithm of Saliencies 

Urban Data

Vegetation Planar Data 

Buildings Terrain
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points with the support region as calculated for the 
saliency features. For a point p, the fitting plane 

cxnT = is obtained by minimizing the error term 
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with the constraint 

1=nnT [11]. The normals computed by fitting 
planes are unoriented. However the distinct difference 
between terrain and buildings are such that the 
normals of terrain are more vertical and those of 
buildings are more horizontal, with the assumptions 
that the terrain is mostly flat, and the terrestrial laser 
scanner is unlikely to capture the rooftop of the 
buildings. Therefore the angle θ between the normal 
vector and the vertical vector is used as the 
observation feature instead of the normal vectors. 

 ])010[arccos( •= nθ  (2) 

3.2 Conditional Random Field 

CRFs [14] is an undirected graphical model with 
which promising results have been shown in text 
processing [14, 18], image segmentation [19, 20], 
DNA sequence prediction [21], table and diagram 
structure extraction from documents [22, 23]. We 
implemented a 1D CRF as the training model and the 
classification at the sparse density areas are improved.  

A special case of CRF is a linear-chain: Let x=x1, 
…,xT be the sequence of the observed logarithm of 
saliency features (or height and angle θ) where the 3D 
data is raster scanned. Let Y be a set of states, each 
corresponding to a label l∈L (for example, planar and 
cluttered; terrain and building). Let y=y1,…,yT  be the 
sequence of labels in Y given the observable input 
sequence. The linear-chain CRF with parameters 

,...}{λ=Λ  defines the conditional probability for a 
state sequence given an observable sequence to be: 
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where Zx is the normalization constant over all state 
sequences, that makes the probability of all state 
sequences sum to one; ),,,( 1 ixyyf iik −  is a feature 
function which is often binary valued for categorical 
classes (such as in text applications), but in our 
application with ordinal observations, the feature 
function is real-valued; λk is a learned weight 
associated with feature fk.. The feature function is 
defined over all the local data points feature (for 
example, the logarithm of saliency features) 
observation sequence x, the current state yi and the 
preceding (spatially) state yi-1.  

CRFs learn by finding the weight vector ,...}{λ=Λ to 
maximize the log-likelihood. With a Gaussian prior 

with variance 2
kσ , the log-likelihood is penalized as 

follows: 
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where the second summation provides smoothing to 
avoid over-fitting [24]. The scaled conjugate gradient 
optimization algorithm is used for the maximization.  

Given the observation sequence x, inference in CRF is 
to find a state sequence y’ which is the most likely 
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Since exact inference can be intractable in such 
models, approximate inference using belief 
propagation is performed for finding y*.  

We manually labelled around two million points of 
training saliency features for the stage 1 classification 
and fifty thousand training height and angle θ features 
for the stage 2 (see section 3.1). Although the urban 
area are mostly constructed on flat surfaces, the 
terrain which includes grass and concrete pathway can 
be sloping, or the orientation of the laser scanner may 
not be normal to the sea level. This means that setting 
a simple angle and height threshold for the local 
classification of terrain and building is insufficient. 
Therefore we trained a CRF for the segmentation of 
planar data into terrain and man-made objects (stage 
2) that is similar to classification in stage 1. The 
features in the observation sequence are the angle 
between the normal vector and the vertical vector, and 
the normalised height.  

4 Results 
The result from our approach is compared with 
segmentation through a Bayesian classifier by training 
a GMM using the EM algorithm [4] with the 
logarithm of saliency features as input observation. 
The likelihood of a new point x belonging to class Cg 
is given by:  
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where   
ng is the number of components of the Gaussian 
mixture in the g-th class, 
  f(x) = {log(λ1); log(λ2 – λ1); log(λ3 – λ1)}, 
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The predicted class is obtained with: 
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The result is generated with the optimal number of 
Gaussians ng needed to fit the saliency feature 
distribution, where ng = 3 (two for planar data and one 
for cluttered). 

The selected results are shown in figure 4 to 9. We 
can see that the predictions of the CRF (figure 6 to 9) 
are much smoother: for example the trees near the 
building and the terrain with sparse density are 
predicted correctly. We attribute the misclassification 
at the wall corners being the edge effect in the chosen 
feature [4] and we hope to improve this with an edge 
filter. 

 

Figure 4: Sample result 1 with GMM (three 
Gaussians: red and blue for planar data class and 
green for cluttered data class) 

 

Figure 5: Sample result 2 with GMM (three 
Gaussians: red and blue for planar data class and 
green for cluttered data class) 

 

Figure 6: Sample result 1 of CRF with logarithm of 
saliency features 

The result by fitting a Gaussian Mixture Model using 
Expectation Maximization algorithm yields a 

classification accuracy of 60% to 70%. The major 
problem is that the values of the eigenvalues can vary 
in different support region size and density but the 
relationship among the eigenvalues remains for 
different data types. With a Conditional Random  

 

Figure 7: Sample result 1 of CRF with further terrain 
and building segmentation 

 

Figure 8: Sample result 2 of CRF with logarithm of 
saliency features 

 

 

Figure 9: Sample result 2 of CRF with further terrain 
and building segmentation 

Field as the training model, the result is promising: 
the misclassifications at the sparse density area are 
improved by 10% to 20%. 

5 Conclusion 
We have presented a method to perform automatic 3D 
data segmentation for terrain and building extraction 
in a vegetated environment. To summarize, our 
method uses a CRF trained on features extracted from 
the LIDAR data. The features include the normal 
vectors, normalised height and saliency features. 

This approach is validated using data from a 
terrestrial Riegl laser scanner. On-going work 
includes point clustering via checking each point 
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against its neighbours for co-normality and co-
planarity. We are also interested in implementing a 
CRF with adaptive k neighbouring points where the 
weight for neighbouring points can be adjusted based 
on the normals and the distance of the neighbouring 
points, and possibly introduce adaptive data reduction 
with the 3D scale theory. 
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Abstract
Meshless deformation based on shape matching is a new technique for simulating deformable objects
which handles point-based objects and does not need connectivity information. The technique has been
first presented in 2005 and is of interest to all fields which require fast, stable simulations which do
not need to be physically correct. In particular the technique seems very suitable for use in virtual
surgery applications and highly interactive real-time environments such as computer games. However, in
contrast to traditional physically simulations, virtual environments require more complex and intuitive
real-time interaction paradigms in order to increase the look and feel of the simulation and the immersive
experience. We introduce techniques for picking, pushing and cutting objects simulated using meshless
deformation based on shape matching. All interactions can be performed in real time, are unconditionally
stable, easy to integrate into 3D rendering and game engines, and are easy-to-use and intuitive.

Keywords: deformable modeling, real-time simulation, interaction techniques, shape matching, virtual
environments

1 Introduction

Advances in graphics hardware and rendering tech-
niques have made it possible to develop realistic
real-time interactive virtual environments. Typical
examples are computer games, applications in ar-
chitecture and urban design and to some extend vi-
sualisation applications in science, engineering and
medicine. Despite these advances most of these
applications still use models based on rigid-body
physics due to their simplicity, easy control, and
the existence of readily available fast simulation
libraries such as ODE [1].

In 2005 meshless deformation based on shape
matching was introduced as a new technique for
simulating deformable objects. The technique
does not require connectivity information for
objects, is fast, unconditionally stable, and has
low memory requirements. Consequently the
technique might be very suitable for use in
virtual surgery applications and highly interactive
real-time environments such as computer games.

In this paper we introduce efficient interaction
techniques, i.e. picking, pushing and cutting,
for use with objects simulated using meshless
deformation based on shape matching. The
techniques can also be applied to other simulation
methods but are particularly suitable for
meshless deformation because when correctly
implemented the technique is unconditionally

stable. Furthermore since meshless deformation
does not require connectivity information we
do not have to worry about the geometry (e.g.
triangle aspect ratio) of the mesh representing
a deformable object, and we can use models
represented by point clouds. Consequently all
interaction techniques can be executed in real time
and can be easily integrated into a traditional 3D
rendering or game engine.

Section 2 introduces the meshless deformation
technique in more detail, section 3 describes the
interaction techniques available in the application
we have developed. Finally, section 4 summarises
our results, and section 5 concludes.

2 Meshless Deformation

“Meshless Deformations Based on Shape Match-
ing” is a recently developed technique for dynam-
ically simulating deformable objects [2]. The un-
derling model is geometrically, as opposed to phys-
ically, motivated. It is unconditionally stable, does
not require any pre-processing, and is simple to
compute.

2.1 The Technique

Meshless deformation treats each object as a point
cloud, or set of points, with no connectivity infor-
mation required. To understand the basic idea,
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Figure 1: First, the original shape x0

i
is matched

to the deformed shape xi. Then, the deformed
points xi are pulled towards the matched shape gi

(adapted from [2]).

let the initial configuration of points be x0

i
, and

the deformed configuration of points at some later
time be xi. As a set of unconnected particles, each
xi responds to gravity and collisions, but no force
acts to retain the overall object’s shape. Meshless
deformation’s solution is to take the initial con-
figuration x0

i
, then move and rotate it as closely

as possible onto the actual configuration xi (see
Figure 1). The rotated version of the initial con-
figuration is now the set of goal positions gi which
minimise the least squares distance to actual po-
sitions. Each particle is pulled towards its goal
position after each time step, retaining the object’s
initial shape.

The fundamental equation that finds the optimal
transformation from x0

i
to gi is that of “absolute

orientation”: given coordinates of a set of points
as measured in two different Cartesian coordinate
systems, find the optimal transformation between
them [3]. To find this optimal transformation, the
following sum is minimised.

∑

i

wi

(
R(x0

i
− t0) + t − xi

)2

where R is a pure rotation matrix. In meshless
deformation, t0 is the centre of mass of the ini-
tial configuration, and t is the centre of mass of
the actual configuration. Müller et al. extend this
equation by adding linear and quadratic matching;
R is replaced by a linear deformation matrix A,
or a quadratic deformation matrix Ã. Thus, the
goal positions can be not only a rotated version of
the initial configuration, but a stretched, sheared,
bent and twisted version. To produce a tendency
towards the original undeformed state in linear and
quadratic matching, R is combined with A or Ã

to produce a final deformation matrix F.

F = βÃ + (1 − β)R

where β is a user defined constant between 0 and
1. Low β indicates a tendency mostly towards
the rigid matched state, while high β indicates a
tendency towards the quadratic match. The last

important constant is α, which defines the propor-
tional distance the points move towards their goal
positions gi every time step. When α = 1, each
point moves precisely to its goal position.

In summary, meshless deformation effectively
transforms the original object by a matrix
representing stretch, shear, bend and twist to
find the closest match to the deformed object,
then pulls the deformed object towards the goal
positions represented by the transformed object.

2.2 Clusters

The primary disadvantage of meshless deformation
is that goal positions are calculated by transform-
ing the object with at best a quadratic deforma-
tion matrix, hence only 27 deformation modes are
possible. Physical expressiveness may seem high,
but significant limitations become apparent for ob-
jects more complicated than cubes and beach balls.
These limitations are with respect to higher order
deformation and local deformation. Consider two
common objects as examples. A slithering snake
might have two bends in it, which requires at least
cubic deformations during animation, so it cannot
be deformed with global quadratic equations. As a
second example consider a sweatshirt with a hood.
When using global deformations raising or lowering
the hood is impossible to perform without bending
the entire object. Note that quadratic equations
do not have a compact support, i.e. are non-zero
virtually everywhere.

To extend meshless deformation for local and
higher order deformation, Müller et al. divide the
set of particles into overlapping clusters, each
with its own deformation modes and matrix. An
entity consisting of multiple interacting clusters
has a much greater range of deformation than
an entity consisting of only one cluster. The
shortcomings of the original implementation and
our improvements for obtaining more physically
realistic simulations are discussed in [4].

2.3 Evaluation

The advantages of meshless deformation are clear:
it is fast and very easy to set up and tweak. The
primary disadvantage of meshless deformation is
that modes of deformation are quite limited. Clus-
tering increases freedom, but is generally only well
suited to objects with a small number of subparts,
each of which deform at most quadratically. The
only way to model more complex objects like cloth
is to divide them into many fine grained clusters.
But this is extremely inefficient and not very accu-
rate – methods like mass-spring systems would be
more suitable.
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3 Interaction Techniques

In order to make a virtual world more realistic it
is necessary to enable the user to interact with
objects in a believable manner. Simulating both
the look and feel of materials increases realism and
the immersive experience. Furthermore advanced
interactions are required for many applications
such as virtual surgery simulations. In this section
we introduce techniques for picking, constraining,
pushing and cutting objects simulated using
meshless deformation based on shape matching.

3.1 Picking

The main function of the picking mode is to grab
objects and manipulate them with a spring force.
The user can press the left mouse button to grab
an object vertex, then drag the mouse around to
control the direction of the spring force acting on
that vertex. The spring force acts towards the
position of the cursor represented by a red sphere.
When the user moves the mouse, the red sphere
moves along a plane facing the user. The mouse
wheel can move the red sphere away from (mouse
wheel up) or towards (mouse wheel down) the user.
This moves the red sphere’s plane of movement
away from or towards the user, while keeping the
plane’s normal unchanged.

While dragging a spring force around, the user
can release the left mouse button to stop the force
and release the spring. Alternatively, the user can
click the right mouse button to lock the force (i.e.
the red sphere) in place. The user can then move
around, change modes, or create a new spring
force, while the original spring force remains in
position. This makes it easy to “fix” an object
in a deformed position. An example is shown in
figure 2. To remove a locked in spring force, the
user can click and drag on the red sphere to regain
control of it then release the left mouse button, or
press a key to remove all spring forces from every
object.

3.2 Pushing

The main function of the pushing mode is to move
objects by pushing them. A solid sphere follows
the user’s cursor in the same manner as the red
sphere of the active spring force does in the picking
mode above. Any objects colliding with the sphere
undergo collision response forces. This is designed
to mimic the user pushing objects around with his
hand.

Figure 2: A deformed model of a trout fixed using
two locked pick points.

3.3 Cutting

The main function of the cutting mode is to cut
objects into separate pieces. The cursor turns into
two cylinders designed to mimic a cutting instru-
ment, e.g. a pair of scissors. To cut an object,
the user moves the “scissors” to the appropriate
position relative to the object, then holds down
the left mouse button to begin the cutting pro-
cess. The two “blades” of the scissors move closer
together, and when they meet, every object the
scissors intersect is severed along the plane of the
scissors, creating two new separate objects.

To change the orientation of the scissors, the user
can move the scissors towards him (mouse wheel
down), away from him (mouse wheel up), or he
can rotate the scissors about the y axis by holding
down shift and dragging the left mouse button up
or down.

3.3.1 Cutting Implementation

The cutting tool splits an object along a plane
defined by the orientation of the scissors-shaped
cursor. This simplifies the general cutting problem
somewhat, as (a) we do not have to deal with
partial cuts, and (b) the internal surface revealed
by the cuts is always planar.

First, we define a sever operation which, taking
an object o and a cutting plane c, removes all
of o in c’s positive halfspace and neatly seals up
the exposed cross-section. The cut operation then
consists of two sever operations: sever(o, c) and
sever(oclone,−c), where oclone is a clone of o and
−c is c with normal reversed.

The first step of sever is to separate o’s trian-
gles into categories. Triangles with v1, v2, v3
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in the positive halfspace of the cutting plane are
discarded. Triangles with v1, v2, v3 all in the
negative halfspace of the cutting plane are kept.
The remaining triangles straddle the cutting plane,
and are cut along c to obtain a clean edge. These
triangles have either exactly one or exactly two
vertices in c’s negative halfspace. The former kind
are shortened to produce the clean edge; the latter
kind are cut to form two subtriangles (see Fig-
ure 3).

Figure 3: Triangles are made flush with the cutting
plane’s surface by creating two smaller triangles (a)
or by shortening triangle edges (b).

Figure 4: Triangulation for a cut down the centre
of an object shown as overlay (left) and around a
diagonal cutting plane.

When this process is carried out over every tri-
angle, a neat edge aligned with the cutting plane
is produced. Figure 4 shows the results for an
axis-aligned cutting plane (left) and for a diagonal
cutting plane (right).

The next step is to seal the exposed cross-section.
A surface is created by triangulating the newly
created vertices touching the cutting plane with
a Delaunay triangulation algorithm (see Figure 5).
The triangles tend to be irregularly shaped because
only vertices around the edge of the surface are
fed into the algorithm. With no vertices in the
centre, each triangle needs to span edge to edge.
An improvement to our method would add new
vertices inside the edges before running the De-
launay triangulation algorithm, resulting in more
consistently sized and shaped triangles.

After triangulation is performed, the object is
tetrahedralised and divided into clusters again.

Figure 5: After a cut, the exposed internal hole is
sealed up with a Delaunay triangulation.

Another possibility would be to keep what was left
of the old tetrahedrons and clusters, but possible
cluster degeneracy would need to be dealt with.

3.3.2 Problems

A requirement of the Delaunay triangulation algo-
rithm is that the input is free of duplicate vertices
(i.e. vertices with near identical positions). To
achieve this, we simply create a separate list of
duplicated cutting surface vertices, ensuring every
new vertex added to the list has a unique posi-
tion. The Delaunay triangulation is performed on
this separate list. The edges of the surface pro-
duced, consisting of duplicate vertices, are thus
sharp. This is desirable in must cutting applica-
tions. A rough cut could be easily achieved by
displacing vertices along the cutting plane with a
noise-based fractal function.

Since we use a 2D Delaunay triangulation
algorithm we converted the 3D coordinates of the
vertices of the cutting plane into 2D coordinates
within this plane. The triangle vertex indices
resulting from the algorithm can then be used
to index the original 3D vertices. Unfortunately
the particular implementation we used required
that the input 2D points be sorted in order of
increasing x. To preserve the mapping from 2D
to 3D we created a data structure consisting of a
2D coordinate and an index into the 3D vertices’
array, where the 3D vertex indexed is mapped
to the 2D coordinate. The array of these data
structures is then sorted into order of increasing
x. The triangle resulting from the Delaunay
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triangulation index into this array, from which we
can extract the correct index into the 3D vertex
array.

3.4 Collision

Several types of methods are available for detecting
and responding to collisions between deformable
objects. These include bounded volume hierar-
chies, stochastic methods, distance fields, spatial
subdivision, and image-space techniques [5].

Our application uses spatial hashing [6] and pene-
tration depth estimation [7] techniques. We found
that collision detection was a performance bottle-
neck however. No “best way” to perform collision
detection for deformable objects has been decided
on yet, and future research will improve this area.

4 Results

We have implemented a meshless deformation al-
gorithm based on shape matching and developed a
test bed for simulation applications and interaction
techniques [4] based on the Ogre 3D graphics en-
gine [8]. The user can pick, push or cut deformable
objects in real-time. Simple objects with limited
modes of deformation are simulated best. Objects
composed of simple subcomponents are simulated
well with clusters. Objects with a very high num-
ber of deformation modes, such as cloth, can not
be simulated efficiently [9].

Usability. We found that all interaction techniques
were intuitive and easy to use and that
they significantly increased user satisfaction
(enjoyment) when interacting with the virtual
environment. This is a strong indication that
the implemented techniques are a useful addition
to highly-interactive immersive environments
although more formal tests are necessary to
confirm this observation. The pick application
works best for objects which deform globally, such
as the trout shown in figure 2, whereas simulating
locally deformable objects requires us to use
multiple clusters as demonstrated in figure 6.
The cutting tool proved particularly popular with
users and significantly increased the look and feel
of interacting with 3D objects (see figure 7).

Ease of implementation. We found meshless defor-
mation relatively easy to implement and integrate
into the 3D rendering engine Ogre. There are only
two main differences between current 3D engines
and what is required for deformable object simu-
lation. Firstly, rigid objects have static sharable
meshes, while deformable objects require updates
to individual vertex positions every time step on

Figure 6: Behaviour of a 5 × 5 cluster skin patch
in response to a user pick.

Figure 7: Cutting an object: (a) before cut, (b)
during cut, (c) two resulting halves have rolled
apart, (d) after further cuts.

their own mesh instance. Secondly, collision detec-
tion and response is a much slower, more difficult
task for deformable objects.

Performance. Our environment is comparatively
fast: We can simulate dozens of simple 32 tetrahe-
dron objects with collisions in real-time and uncon-
ditional stability (see figure 8). Significantly better
results could be achieved by optimising our algo-
rithms and/or implementing them on the GPU.

Tweakability. The “gooeyness” and stiffness of
each object can be easily modified using the α

and β parameters. Further collision-response
parameters can also be tweaked. The strength
of surface area preservation can be specified with
a force response curve. Volume preservation is
automatic, but can be adapted to use a force
response curve as well.

Disadvantages. The primary disadvantage of our
environment is the lack of robust local deformation.
For complex virtual surgery applications which of-
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Figure 8: Large scale simulation of deformable
objects.

ten require plausible localised deformation of an
arbitrary region, our environment is less suitable.
Also, even when simulation is visually plausible, it
is usually not physically accurate.

5 Conclusion

We have implemented an improved algorithm for
meshless deformation based on shape matching
and we have presented several novel techniques
to interact with these objects in a realistic and
intuitive way. All interactions are performed in
real time, are unconditionally stable and easy to
integrate into 3D rendering and game engines.
Informal user studies suggested that all interaction
techniques significantly increase user satisfaction
(enjoyment) when interacting with the virtual
environment. Cutting could also easily be adapted
to serve as a fracturing implementation.

Disadvantages are that performing local deforma-
tions requires models with sufficiently small clus-
ters which is often not efficient. Also more im-
provements are necessary in order to apply our
techniques to large scale objects and scenes. The
cut operation so far can only perform full cuts and
does not support local incisions which would be
useful for a virtual surgery application or games
where the player might want to slash an opponent.

In summary we believe that the implemented
techniques are a useful addition to many highly-
interactive immersive environments where speed
and a more immersive feel are required but
physical accuracy is not important.

6 Future Work

When cutting an object many new triangles are
created along the cutting plane. Currently we give

each new triangle unique vertices which can result
in an uneven look when using different vertex nor-
mals. In future we intend to utilise a hash table for
vertices and normals similar to the one introduced
by Wyvill et al. [10].
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Abstract
The 3D reconstruction of terrain overflown by an unmanned air vehicle (UAV) has applications in
mapping and area surveillance. As part of DSTO Australia’s Automated Battle-Space Initiative (ABSI),
DSTO, Tenix and Adelaide University are jointly working on a DSTO sponsored project to develop
hardware and software systems to perform 3D terrain reconstruction from an aerial platform. This
reconstruction can be achieved using a combination of GPS, attitude, optical and laser range finding
sensors. However the reconstruction quality is dependent on compensating for sensor pose errors caused
by platform vibration. This paper presents our ongoing work to develop a cost minimisation technique
for 3D reconstruction that improves alignment using constraints from both the scanning laser range
finder and registration terms derived from imagery from a co-located optical camera. Simulated and real
ground test results are presented to support the approach developed so far.

Keywords: 3D modelling, terrain reconstruction, ladar, image registration, sensor fusion

1 Introduction

The 3D reconstruction of terrain overflown by an
aircraft or small unmanned air vehicle (UAV) such
as that illustrated in figure 1, has applications in
mapping, target identification, and navigation. As
part of DSTO Australia’s Automated Battle-Space
Initiative (ABSI), DSTO, Tenix and Adelaide
University are jointly working on a DSTO funded
project to develop hardware and software systems
to perform 3D terrain reconstruction using a
sensor payload mounted on a small low-cost
unmanned air-vehicle.

Terrain reconstruction in 3D can be achieved in a
number of ways. In the scenario discussed here,
a Tenix designed sensor payload mounted on a
UAV combining a GPS receiver, attitude sensor, a
scanning laser range finder (Ladar) and an optical
camera has been developed. The payload of co-
located sensors is flown over the area of interest to
produce a strip of GPS, attitude and ladar data
which is then processed to form a 3D terrain esti-
mate.

This combination of sensors enables individual
range estimates to be directly converted to 3D
spatial points by fusing the sensor data and
applying simple geometric constraints. In short,
the ladar range measurement r(t) at time t to 3D
coordinate mapping X(t) can be written as:

Figure 1: An Australian built Aerosonde UAV
mounted for a car assisted launch. The sensor
payload (currently under construction by Tenix
Defence) is designed to fit in the front section of
the fuselage.

X(t) = Rs(t)RlRu(t)

⎡⎣ r(t)
0
0

⎤⎦ + Pu(t) (1)

where Ru(t) and Pu(t) are the rotation matrix and
position vector for the UAV’s pose in space, Rl

describes the rotation of the ladar sensor relative
to the UAV (known a-priori), and Rs(t) is the
rotation defining the direction of scan of the ladar
sensor relative to Rl at time t. Thus given time
stamped estimates of r,Ru, Rs and Pu from the
GPS, attitude and ladar sensors a 3D terrain esti-
mate can be constructed. An illustration is given
in figure 2.
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Figure 2: An illustration of the UAV geometries.

One problem with this simple geometric estima-
tion of 3D points is that the quality of the recon-
struction will be highly dependent on the level of
errors in the estimates of Ru and Pu describing the
UAV’s pose, caused by platform vibration, sensor
drift and timing errors during sensor fusion. For
example vibrations in the UAV platform may cause
errors in attitude estimation and hence result in
discontinuities in the reconstructed surface, whilst
sensor drift will produce low-frequency distortions
in the reconstructed surface.

One possible solution to factoring out attitude sen-
sors errors is to take advantage of a co-located a
camera sensor on board the UAV compare the ob-
served scene motion to the motion estimates from
the attitude and GPS sensors. In principle, if the
ladar alignment is correct changes in ladar align-
ment should be mirrored by observable variations
in the optical registration of the camera images
from frame to frame.

In this paper, we present a summary of our
progress towards developing an alignment scheme
based on this observation which balances ladar
scan registration constraints with those imposed
by the observable change in UAV pose detected by
a co-located camera. We begin by describing the
underlying approach used by our work for ladar
alignment without camera cues. This approach is
motivated by the work of Thrun[1] and uses a cost
minimisation strategy to align one ladar scan to
the next. We then described how this approach
can be extended to incorporate image registration
constraints to remove short term UAV roll and
shift errors. Results using simulated and real data
are then presented to illustrate the approach.

2 Previous Work

The general problem of aligning 3D surface data
has been examined by numerous research groups
[2, 3, 4]. Whilst these approaches look at the prob-
lem of aligning two or more 3D data sets together,
the problem considered here is not well suited to
this as the sensor platform is moving rapidly in

one direction and earlier depth scans may bear
no real relation to the depth data of the current
scan. Consequently only some form of scan-by-
scan alignment of the ladar data is feasible.

The problem of scan-by-scan alignment of ladar
data for ground vehicles has been examined pre-
viously by Rofer[4]. In [4] the scan processing in-
volves aligning the data based on histograms of
surface orientation estimates extracted from the
scan data. In the case of environments comprised
of large flat surfaces the histograms will contain
peaks that should agree from scan to scan if the
data is properly aligned.

Another more relevant solution applied to
helicopter platform data by Thrun[1] uses a cost
minimisation function to balance scan alignment
with the expected error characteristics of the
sensor payload. This latter technique is the
motivation behind the method presented in this
paper. Here the technique has been extended to
incorporate information coming from a co-located
image sensor.

3 Reconstruction and Alignment

In Thrun[1], ladar scans collected using an
unmanned helicopter moving at a steady velocity
were re-aligned by registering the ladar scan
in all 6 degrees of freedom using a negative
log-likelihood cost function. One difficulty with
the alignment step is that errors in UAV heading
and pitch cannot be readily detected and resolved
using the ladar data alone and consequently full
3D alignment is extremely difficult.

The approach taken here is a partial simplifica-
tion of [1] which projects the current and previous
scans onto a common 2D plane perpendicular to
the direction of travel. If the flight is essentially a
straight line this projection simplifies the geometry
without significant loss of data. The 2D alignment
problem is then solved using an appropriate cost
function (see 3.1) that applies the required in plane
rotation and shifts to align the new scan to the
previous one. The aligned scan is then projected
back into 3D space and the process repeated with
the next scan.

3.1 Ladar-Only Reconstruction

Let Zt represent the vector of 3D reconstruction
estimates X(1)

t , X
(2)
t , X

(3)
t , . . . , X

(n)
t for the current

scan of the laser range finder (ladar) and let Zt−1

represent the previous scan data (assumed to be
correctly aligned). If f is a transformation function
which applies a given alignment correction c to a
given ladar scan Z, the optimal alignment between
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two scans at times t and t + 1 should minimise
the following condition with respect to some set of
corrections ct: ∑

(Zt−1 − f(Zt, ct)) (2)

Assuming that the dominant errors are in roll, al-
titude and sideways translation of the UAV, the
Zt and Zt−1 terms can be approximated by Z ′

t

and Z ′
t−1 where Z ′ denotes the 2D projection of

the two scans onto a plane perpendicular to the
current direction of travel. In this case f reduces
to a linear-conformal transformation and two shift
terms (described by ct).

This constraint by itself is not sufficient to pro-
duce a stable solution to the alignment problem[1],
nor does it include any a-priori information about
the nature of the measurement errors. Ideally the
orientation of the solution should not differ signif-
icantly from the initial estimate, nor should the
correction terms vary wildly from one scan to the
next. In other words, the best solution is one
where equation (2) is minimised, whilst keeping
the magnitude of ct and (ct − ct−1) small. This
leads us to to propose the following cost function,
which is minimised with respect to the correction
term ct:

F (Z ′
t, Z

′
t−1, ct, ct−1) = cTt A

−1ct+
(ct − ct−1)TD−1(ct − ct−1)+(
min(α,Z ′

t−1 − f(Z ′
t, ct))

)T
B−1(

min(α,Z ′
t−1 − f(Z ′

t, ct))
) (3)

where ct and ct−1 are the current and previous cor-
rection terms, f(Z ′

t, ct) is the projection of the cur-
rent scan Z ′

t using the alignment correction term ct
and α is a threshold on the alignment error between
the two scans. The remaining terms A, D and B
are inverse covariance matrices. These control the
allowable level of correction applied, the correction
as a function of its rate of change with time, and
the measurement errors from one scan to the next.

Overall this cost function attempts to strike a bal-
ance between alignment correction and the amount
of variation likely to be present in the overflown
terrain. The addition of the threshold term α to
the alignment cost[1] is intended to reduce the im-
pact on the cost functions of discontinuities in the
ladar data caused when a new building first enters
the ladar’s field of view.

In practice the alignment scheme described by
equation (3) relies on a good estimate of the
alignment error between one scan and the next in
the 2D projection. In Thrun[1] this is achieved by
minimising the distance of each point in the old
scan to each point in the new scan. However, this
has been found to be computationally expensive

and does not correctly handle situations where the
sample data is sparse. Instead, in the approach
taken here, the points of the new scan are re-
sampled to conform with the sample points in the
previous scan (ie. if the 2D projection is described
by a coordinate (x, z) where z is height, then the
new scan is re-sampled onto the same x values as
the previous scan using linear interpolation).

3.2 Ladar Reconstruction Incorporating
Optical Registration Cues

In the case of a co-located optical camera, any
corrections made to the ladar data must be con-
sistent with observed changes in the registration of
images from frame to frame. This has at least two
consequences:

1. Any errors in heading will show up as rota-
tional errors between the expected registration
based on GPS and attitude measurements and
the actual registration estimates computed us-
ing, say, optical flow[5].

2. Any errors in UAV roll, height or sideways
shift will be reflected in inconsistencies in the
sideways registration of the image data. For
example, a ladar correction for UAV roll ought
to be observable as a sideways shift in the
image registration data (ie. along the image
x-axis) beyond that predicted by the attitude
and GPS sensors alone.

The relationship between image registration and
ladar alignment is also summarised in figure 3.

Figure 3: An illustration of the relationship be-
tween ladar and image registration. In this work
only the roll and sideways shift relations are con-
sidered.

In the scheme being developed the first observation
is used to correct for heading estimation errors
prior to 3D estimation, and the adjusted 3D es-
timates are then aligned taking the second con-
straint into account. Incorporating the image reg-
istration constraint in 3, results in a new cost func-
tion, again minimised with respect to ct:
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F (Z ′
t, Z

′
t−1, ct, ct−1) = cTt A

−1ct+
(ct − ct−1)TD−1(ct − ct−1)+(
min(α, z′t−1 − f(z′t, ct))

)T
B−1(

min(α, z′t−1 − f(z′t, ct))
)
+

(sp
t (ct) − se

t )
TE−1(sp

t (ct) − se
t )

(4)

Here the new terms are sp
t the predicted registra-

tion x-shift at time t given the correction term ct
and expected shift se

t based on image registration.
As a result of this new term the alignment of ladar
and camera imagery must be consistent with one
another if the correction term is valid.

In practice, the estimated shift se
t can be com-

puted by registering images from the co-located
camera[5], whilst the predicted shift sp

t can be esti-
mated from the GPS and attitude sensor data prior
to minimisation given knowledge of the camera
system and assuming the correction term ct can
be converted into a change in camera pose. This is
tractable if the 2D transformation is centred on the
current camera/ladar position as the 2D rotation
can be related to camera roll and the two shift
terms to altitude and sideways shift of the UAV
position.

4 Simulation Results

The two methods of approach presented in sections
3.1 and 3.2 have been assessed using a simulated
terrain model of gable-roofed buildings. Simulated
fly-overs and the associated ladar and optical data
were then constructed and the GPS and attitude
estimates intentionally distorted to simulate vibra-
tion and sensor drift. An illustration of the sim-
ulated terrain and sample optical imagery used in
our initial tests is shown in figure 4.

4.1 Ladar-only Alignment Results

Figure 5 illustrates two typical reconstruction re-
sults before and after ladar-only alignment correc-
tion. Here the camera pose errors were in the
order of 5 degrees in heading, pitch and roll, and 3
metres in height. The simulation itself represents
a fly-over of simple rectangular buildings using a
mini-UAV at a height of around 80 metres. What
can be seen in the result is that the uncorrected
surface has a series of ripples through it related
to the sensor pose drift errors. The re-alignment
result shown in the lower part of figure 5 contains
significantly fewer of these errors. The remaining
errors in the reconstruction relate to heading errors
which cannot be compensated for by the alignment
scheme.

Figure 4: Simulated terrain model and flight
imagery used in experiments

Figure 5: Simulated Result using Ladar data alone.

4.2 Ladar and Optical Alignment

Figure 6 shows a typical comparison of reconstruc-
tion using either raw, ladar-only or ladar and cam-
era registration. Here the example has been further
complicated by the combination of short term and
long term sensor errors. In the case of the camera
and ladar reconstruction, the central region of the
result contains the grey-level image data associ-
ated with the ladar scans (the two sensors were
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intentionally given different fields of view). What
can be seen in this example is that the combina-
tion of ladar and optical imagery (lower result) has
improved the reconstruction as compared to the
ladar-only result (middle). In the case of the ladar
only result, local minima in the cost function re-
sulted in jumps in the alignment corrections which
are not present when incorporating the optical in-
formation into the cost function.

In these examples, a pinhole camera model was em-
ployed to approximate the camera and an optical
flow technique based on [5] was used to register the
images.

Figure 6: Comparison Simulation Result using
Ladar and Optical data.

5 Initial Work Using Real Data

Prior to UAV data collection trials due later this
year, the alignment scheme has been adapted to a
series of ground based trials conducted in mid-June
2006. These trials consisted of mounting the proto-
type UAV payload to a 4-wheel drive vehicle which

was then driven past a series of buildings whilst a
combination GPS, attitude, ladar and video sam-
ples where collected. The ladar scanner operates at
around 75Hz (40 samples at 1 degree increments)
and the optical, attitude and GPS sensors sample
rates were 25, 25 and 1Hz respectively. For the
purposes of reconstruction each of the above sensor
outputs was tagged with a common time-stamp.

An example reconstruction of a series of factory
sheds using this prototype equipment is given in
figure 7 with a close up in figure 8. Here the
recorded attitude data was intentionally jittered
by around 3 degrees to simulate vibration effects
and the ladar alignment scheme applied. What can
be seen in this example is that the re-alignment
has significantly improved the quality of the re-
construction.

Another example with the optical image data reg-
istered and overlaid over the 3D sample points is
shown in figure 9.

Figure 7: Real data reconstruction with jitter
added before and after alignment. The data
sequence represents a drive past a series of factory
sheds.

6 Conclusions

This paper presents a method of ladar scan align-
ment designed to reduce the effects of GPS and at-
titude sensor errors in 3D terrain reconstructions.
The proposed approach uses 2D projection of the
3D scans and a cost minimisation technique to
find suitable alignments of the ladar scans. The
approach can be further improved by taking ad-
vantage of visual cues from a co-located camera as
demonstrated by the presented examples.
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Figure 8: A close up of part of the real data
reconstruction shown in figure 7.

7 Future Work

Future work will focus on applying the ladar and
optical alignment techniques to real datasets col-
lected using a UAV platform.
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Abstract
This paper describes the determination of the 3D structure of a novel bacterial appendage, which
naturally forms helical tubular crystals. For this purpose we have, using a transmission electron
microscope, imaged such crystals when suspended in vitrified buffer and applied helical image processing
methods to arrive at the 3D reconstruction. We describe the key steps in this processing: (1)
Computation of the diffraction pattern, (2) Indexing of the diffraction pattern to determine the
“selection rule”, (3) Accumulation of the Fourier components (big G) along layer lines and correction for
the microscope contrast transfer function, (4) Calculation of the Fourier transform inversion (little g) of
big G and finally (5) Calculation of reconstructed density by Fourier-Bessel inversion. We describe the
architecture of the tubular crystals at ∼ 28Å resolution.

Keywords : helical structure, Fourier transform, diffraction pattern, Fourier-Bessel inversion

1 Introduction

Many biological macromolecules in their functional
state exist as polymers that are helical in nature.
A helical assembly is the simplest arrangement
of a repeating motif1 in 3D, and when it is
regularly arranged related by a simple rotation
and translation along an axis (Figure 1), the
assembly can be thought off as a 1D crystal
(as opposed to 2D and 3D crystals). Helical
assemblies can be imaged in a transmission
electron microscope (TEM) and image processing
can be carried out to reveal the 3D structure of
the subunit. Such an analysis from helical crystals
is particularly effective since, unlike in the case of
2D crystals, for instance of membrane proteins,
tilting of sample in the microscope is not required
and the resolution is isotropic due to the lack of a
missing cone of data.

A strain of bacteria that was isolated from
a wastewater treatment system and belongs
to the Acidovorax genus has been noted to
form biofilms. These bacteria produce a novel
appendage (∼ 55nm to ∼ 62nm diameter)
that appear as sheaths enclosing a cargo of
unknown chemical nature, frequently connected
to neighbouring bacterial cells, and appear to be

1Motif: smallest biological unit comprising the regular
assembly, e.g. a protein molecule.

involved in bacterial macro communication. These
appendages display a natural helical crystal that
is subject to helical image processing [1, 2, 3] for
revealing the 3D architecture. We have recorded
images of such tubular bacterial appendage
(TBA) by trapping these in an unperturbed state
in vitrified buffer. The objective of this work is
to determine the 3D structure by application of
classical image processing techniques.

Figure 1: Left-handed helical model [4].

The paper is organized as follows. Section 2
considers the theoretical background of the main
analysis. Section 3 presents the analyzing methods
and the experimental results. A brief discussion
of the results and conclusions follow in Section 4.
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2 Theoretical background

2.1 Diffraction pattern of a helical crystal

The first analysis of the Fourier transform of a
helical object was developed by Cochran et al.[1]
and Klug et al.[2]. The main equations of the
Fourier transform of a helical object are described
by Hawkes et al.[5]:

• The Fourier transform of a helical object can
be written as:

F (R, Φ, Z) =

∞∑
n=−∞

exp{in(Φ + π/2)}Gn(R, Z)

(1)

where

Gn(R, Z) =
1

2πin

∫ 2π

0

exp(−inΦ)F (R, Φ, Z)dΦ

(2)

• The Fourier-Bessel transform can be written
as:

gn(r, Z) =

∫ ∞

0

Gn(R, Z)Jn(2πRr)2πR dR) (3)

where Jn is a Bessel function corresponds
with layer-plane n.

• The Fourier-Bessel inversion can be written
as:

f(r, Φ, Z) =
∑∞

n=−∞ exp(inφ)∫∞
−∞ gn(r, Z) exp(−2πiZz) dZ

(4)

The diffraction pattern of a helical crystal is con-
fined to a set of “layer lines” due to the regular
repeat along the helix axis and the amplitude and
phase of spots on the layer lines are defined by
Bessel Functions of various orders. The recipro-
cal spacing of a given layer line corresponds to
the inverse of an integral multiple of the repeat
distance i.e. the translation along the helix axis
that brings one motif to be in exact register with
another motif. The Fourier transform of a helical
particle consists of parallel planes (Figure 2), which
appear as layer lines in the diffraction pattern be-
cause the Fourier transform of a micrograph is a
central cross-section of the transform [3]. Thus
it is possible to reconstruct the three-dimension
structure of the tube based on a two-dimension
micrograph.

Figure 2: Three-dimensional Fourier transform of a
helical particle and the relationship between layer-
lines and layer-planes [3].

2.2 Selection rule

The indexing of the diffraction pattern entails
assignment of (n, l) values i.e. the Bessel order
contributing to the layer line and the layer line
number. The diffraction pattern can be thought
of as that corresponding to a 2D crystal (created
by opening out the helix on a plane containing
the helix axis), with the (n, l) values for the
two primary vectors (n1,0, l1,0) and (n0,1, l0,1)
necessary to index the complete lattice. This
description is also called the selection rule and
reflects the arrangement of the helix along its
length (Z-axis). Diffraction patterns of images
that agree to a given selection rule (i.e. the same
(n1,0, l1,0) and (n0,1, l0,1)) are called as belonging
to the same helical family.

2.3 Contrast transfer function

Most images in TEM are recorded at various level
of under focus to enhance the phase contrast. The
Fourier component in the computed transform of
the image is the product of the Fourier component
in the object multiplied by the so-called CTF:
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CTF (λ, g, ∆f, Cs) = −w1 sin[χ(λ, g, ∆f, Cs)]
−w2 cos[χ(λ, g, ∆f, Cs)]

(5)

with

χ(λ, g, ∆f, Cs) = πλg2(∆f − Cs)1/2λ2g2

w1 =
√

1−A2

w2 = A
(6)

where λ is the electron wavelength, g is the scat-
tering vector describing the difference between the
wave vectors of the unscattered and scattered elec-
trons, Cs is the spherical aberration coefficient of
the object lens, and A the percentage of amplitude
contrast. The defocus ∆f is given by [6]

∆f = 1/2[DF1 + DF2

+(DF1 −DF2) cos(2[αg − αast])]
(7)

where DF1 and DF2 are the two defocus values
describing the defocus in two perpendicular
directions in an image when astigmatism is
present, αast is the angel between the DF1 and
the X-axis, and αg is the angel between the
direction of the scattering vector g and the X-axis.

Contrast transfer function causes resolution-
dependent amplitude modulations and phase
reversals in the images [7]. The phase changes
more rapidly in the higher defocus images and
the amplitude oscillates faster towards the higher
resolution as shown in Figure 3.

(a)

(b)

Figure 3: CTF plots: Cs = 2.0mm, voltage =
120kV . (a) defocus=5000Å; (b) defocus=20000Å.

3 Methods

The overall steps for the image processing of the
helical tubes are described in the work-flow scheme
shown in Figure 4.

Figure 4: Work-flow.

3.1 Preliminary steps

The TBA specimens were applied on an EM
grid covered with a “holey” film. After blotting
excess solution the grid was rapidly plunged
in a cryogen (liquid ethane) using a guillotine
device. This process vitrified TBAs suspended in
a layer of buffer within the holes, while preserving
their cylindrical symmetry. Using a GATAN
cryo-holder, the TBAs were examined at −163oC
in a Tecnai12 TEM operated at 120kV and images
recorded at a nominal magnification of 30, 000.
The micrographs were examined on an optical
diffractometer to check for the optical quality.
Selected regions of a micrograph was digitised
using a Leafscan scanner at a raster step of 10µm.
The scanned image of a micrograph is shown in
Figure 5.

The region of interest of the scanned image
is selected based on two conditions. First of
all, the region can include the whole helical
tube or part of the helical tube. However, the
diameter along the tube must be constant or
very similar (for example ±5 pixels), because
the diameter affects the selection rule; also the
tube must be continuous and straight. Secondly,
the region is considered as one of interest only
if its corresponding diffraction pattern is good.
This means the diffraction pattern must have a
reasonable number of strong layer lines, which are
thin (1-pixel thick), long (at least 5-pixel long)
and symmetric as well, as shown in Figure 6.
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Figure 5: Scanned image of a micrograph. Scale
bar represents 4000 Angstroms.

(a) (b)

Figure 6: Diffraction pattern: (a) image 4815; (b)
image 5534.

3.2 Find repeat distance

The helix repeats exactly when translated a
distance c along its axis (Z-axis) [5]. The distance
c is called the repeat distance of the helical tube.
The first step of finding the repeat distance is to
do the correlation of two separate boxed areas
along the tube. Next, the rough repeat distance is
determined by the parts of the tube that display
best correlation. The rough repeat distance is
refined later.

3.3 Indexing of diffraction patterns

Indexing of diffraction patterns is the process of
fitting a lattice to the diffraction pattern, in order
to find out the selection rule. The main steps of
indexing the diffraction pattern are:

1. select two vectors for the lattice. Each vector
is the direction to a strong layer line, which
is very close to the meridian (Y-axis). There
are two possible solution of the lattice: both

vectors belong to the same quadrant or fall
into different quadrants,

2. fit the lattice on diffraction patterns: the lat-
tice intersections must overlap on one layer
line of each strong pair,

3. assign order (n, l) to each layer line. n is
the Bessel order, calculated by 2πrRM

1024 where
r is the diameter of the tube and Rm is the
distance between the layer line center and the
meridian. l is the layer line number, calculated
by yc

1024 where y is the Y-coordinate of the
layer line and c is the repeat distance. 1024 is
the size of the diffraction pattern (1024 x 1024
pixels).

The most difficult part of the indexing is to deter-
mine the parity of n, which is based on the phase
difference of the layer line pair. If the tube is very
tilted out of the plane, the phase information will
become unreliable. Also, finding the true repeat
distance is hard in some case (i.e. very low contrast
image leads to poor correlation). An example of
indexing of a diffraction pattern of a helical tube
is shown in Figure 7.

Figure 7: Indexing of image 4815.

3.4 Reconstruction process

Once the repeat distance and indexing are
ascertained the reconstruction process is carried
out using the Fourier Bessel algorithm described
in section 2.1. For this purpose we apply the
package developed by Unwin and colleagues [8]
and by Kikkawa and colleagues [9]. The process
includes layer lines extraction, averaging data sets,
refinement of repeat distance and Fourier-Bessel
inversion.
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3.4.1 Contrast transfer function correction

Contrast transfer function (CTF) correction can
improve the signal-to-noise ratio of the final
reconstruction, by correcting for phase inversion.
At the same time the background noise is filtered
by subtracting the background in the power
spectrum. The defocus parameters of the EM
images in Equation (7) can be obtained by e.g.
using the computer program CTFFIND3 [7].

3.5 Results from reconstruction

Some three-dimensional reconstructions of helical
tubes are shown in Figure 8 and Figure 9. These
include reconstructions before and after CTF
correction. The results show that CTF correction
can improve the signal-to-noise ration, because the
sub units of the structures with CTF correction
are much clearer than those of the structures
without CTF correction.

(a) (b)

(c) (d)

Figure 8: Side views of image 4815. (a), (b):
without CTF correction; (c), (d): after CTF
correction).

Since there appears to be a considerable variation
in the type of helical families, direct Fourier

(a) (b)

(c) (d)

Figure 9: Side views of image 5534. (a), (b):
without CTF correction; (c), (d): after CTF
correction).

averaging of data from many tubes was not
possible. The repeating subunit revealed at a
resolution of about 28Å appears to enclose a
molecular mass of about 250kD. Biochemistry of
the TBA shows that the major protein component
has a mass of 63kD, therefore each subunit is a
dimer2 of two protein monomers. The internal
core appears as a stalk of about 50Å radius.

There are no published 3D structure of the subunit
comprising the helical bacterial appendage that we
have studied. We are carrying out reconstruction
from a large number of images, many of them
belonging to distinct helical families. The accuracy
of the analysis is judged from the self consistency
of the 3D structure of individual subunit in these
reconstructions (e.g. compare subunits illustrated
in Figure 8 and Figure 9.)

2Dimer: a pair of protein molecules, each called a
monomer.

171



4 Conclusions

In this paper, we have presented an application
for the processing of low-contrast cryo-electron
micrographs of helical structures to reveal 3D
architecture of a novel bacterial appendage.
Processing of additional images and real space
averaging to improve the details of the subunit
is needed. However, our analysis has started
revealing details of this novel structure that may
help understand its biological function.
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Abstract
Projectors have been traditionally used for making fixed displays, but with the advances in projector-camera 
technology, they can be integrated to allow transformation of any surface into a display screen, leading to 
increased opportunities for interactive ubiquitous displays. In this paper, we describe our implementation of 
using infrared-pass filter camera in a front-projection environment and how people in a public area can easily 
interact with the projected animation. The computer-vision based motion tracking techniques are based on 
background subtraction and double difference algorithm. Experience with using these techniques, the result of a 
user test, some design trade-offs and lessons, and future directions are discussed.

Keywords: Public interactive display, infrared-pass filter camera, front-projection

1 Introduction
Progressively, the advent of innovative sensing and 
display technology has made large interactive displays 
ubiquitous. They are found in shopping centres,
railway stations and airports. Technology has 
encouraged the development of interactive displays to 
serve different purposes such as exchanging data, 
publishing information, and advertisement.

Computer vision can provide the basis for direct 
interaction because of its flexibilities. Since the 
complexity of general vision tasks has often been a 
barrier to widespread use in real-time applications, we 
simplify the task by using an architecture based on 
only background subtraction and double difference 
algorithm.

In this paper, we present a front-projected 
computer-vision based interactive floor system, which 
allows people to play with virtual objects projected on 
the ground. The system is set up with both projector 
and infrared camera in front of the projection surface.  
The aim of this project is to model better interaction 
by using different computer vision approaches to
detect different user motions. For example, if a person 
approaches a ball swiftly, our program should detect 
that as a strong kick and model the ball motion to fast 
acceleration.

2 Configuration
There are three most common approaches [4] to set up 
an interactive display area (figure 1).  

One is the top-down approach, where a camera and 
projector is mounted high on a shelf or ceiling.  Such 
approach has the following drawbacks.

Figure 1. Three most common approaches for setting 
up vision-based projection systems.  Projector and 
camera mounted from above (left), Rear projection 

with both camera and projector behind the projection 
surface (middle), and camera and projector mounted 

at the side of the active surface (right) [4].

 Heavy projector and camera are difficult to 
install on the ceiling and it requires special 
mounting hardware and is best left to 
professionals.

 The system and the projection surface have
limited mobility.

 Minor vibrations can create problems and is 
difficult to maintain calibration.

 Since both the projector and camera are above 
the displaying area, the user’s own body can 
occlude the projected image.
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Another approach is rear projection. Both the 
projector and camera are placed behind an opaque 
projection surface. This effectively removes occlusion 
problems but this approach also has some draw backs.

 The camera detects user motion through an 
opaque displaying surface; therefore the image 
resolution is limited.

 Such approach is not suitable for table-top 
interactive display because the result space for 
projector and camera can be quite large and 
difficult to fit under a table.

 A dedicated purpose opaque surface is required.

The third approach is suggested in PlayAnywhere.  It 
is to mount both camera and projector to the side of 
the active surface.  It can be set up and moved easily, 
but it has two potential drawbacks.

 Since the image is projected from the side to the 
projection surface, this can result in more image 
occlusions than top-down approach.

 The camera is looking at the projection surface 
from the side, so lens distortion is more obvious; 
therefore such an approach will require addition 
image processing.

Due to the expense of rear approaches and undesirable 
occlusion and distortion problems in side approach, 
our project uses the top-down approach. The projector 
is placed above the displaying area and images are 
projected to a mirror and reflected downward to the 
ground. This is because the heat may damage the 
device if the projector is facing downwards. The 
hardware setup of the projector is shown in Figure 2.

Figure 2. The projection reflects off a mirror onto the 
ground. Courtesy of LDPS NZ Ltd.

Our camera uses an infra-red (IR) low-pass filter to 
allow only infrared light pass through. Its purpose is 
to exclude projected animation and let the camera see 
only human motions. IR illumination is also used to 
illuminate the scene. A circular continuous density 
filter is applied to the IR light source to eliminate 
hotspots and obtain a more uniform illumination of 
the area.

For best performance, the animation is projected onto 
a flat surface vertical to the projection.

3 Related Work
There have been a great variety of studies on
interactive tables, walls and floors [1]. One of the 
most famous interactive displays is LiveBoard, Tivoli.  
The purpose of LiveBoard [2] is to support group 
meetings, presentations and remote collaboration.

Information can be read regardless of the viewing 
angle, and a three-button mouse like pen is used for 
interaction. Tivoli is an application program which is 
implemented using Liveboard. It can be used like a 
whiteboard; additionally, the information can be saved, 
retrieved, printed and put on multiple pages.

Our project was inspired by HoloWall and Play 
Anywhere. HoloWall [3] is a large interactive display 
which allows people to exchange information in 
group meetings. The use of infrared light and a video 
camera can recognize body movement and trigger 
interactions.

PlayAnywhere [4] is a front projection interactive 
display. It has a number of contributions to 
image-processing techniques for front-projected 
vision-based table system; including a shadow-based 
touch detecting algorithm.

Ubwall [5] is another similar project; it is a large 
display system for advertisement and director services 
in public space.  It is equipped with an RFID reader 
and an infrared motion sensor. Ubwall is adaptive that 
a user can put a RFID card on the reader, and then 
detailed and personalized information will be 
displayed.

VIDEOPLACE [6] is an artistic installation using a 
video camera that lets a user to interact with the 
environment using his/her body. ALIVE is also a 
vision-based interactive environments. A user can 
manipulate virtual objects by means of their own 
silhouette, so the interaction is indirect as compared to 
the HoloWall.

4 Video Processing
There are mainly three steps to achieve how the video 
taken by infrared camera is processed to interact with 
animation. Firstly, the camera needs to detect human 
and their motions within the projected area. Secondly, 
the matrices of camera frames that record human body 
shapes and motions need to be mapped with the 
projection. Finally, animated objects need to move or 
change in a way that reacts according to human 
motions. 

4.1 Human Detection
Here we test two alternative foreground segmentation 
models. One is only subtracting human shapes from 
background image. The other one is further detecting 
human motions by double difference subtraction. The
optimal solution depends on content and style of the 
animation.
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4.1.1 Background Subtraction

To obtain human shapes from the scene, background 
subtraction is implemented. The default model 
averages the first few frames as a background image.
This background image can be updated at any time by 
saving a new image. Since the camera filters all but 
infrared lights, it is set up so that no thermal objects
are within the camera’s view while such an image is 
acquired. 

When a player steps into the projected area, he is
shown inside the camera’s angle of view. A thermal 
video of the player is taken by the camera. Each frame 
of the video is compared to background image using 
pixel-to-pixel subtraction, and the results are recorded 
into a matrix represented by a two dimensional array. 
This matrix does not only indicate if a particular pixel 
has changed from background image, but also keeps 
track of how adjacent pixels have changed. By 
counting up number of consecutively changed pixels 
and recording the value into the matrix, the camera is 
able to detect how fast the thermal object is moving 
and in what direction. The animated object can later 
react to the player according to the speed at which the 
person approaches.

4.1.2 Double Difference Subtraction

Another time differential algorithm, double difference, 
is used to extract moving points from image 
sequences. In this method, object motions with 
respect to previous positions are computed based on 
the hypothesis that some object points overlap in two 
consecutive frames [7]. Instead of subtracting 
background from current image, we calculate the 
pixel difference between current frame and last frame 
as well as the pixel difference between last frame and 
second last frame. A logical AND is then applied to 
these two differences, and the result is stored into an 
image matrix for later use [7]. Equations (1), (2) and 
(3) show this process:

PD1 = I1(x, y) – I2(x, y)        (1)

PD2 = I2(x, y) – I3(x, y)        (2)

DD1 = PD1 AND PD2         (3)

If the newly captured image is I1 and the last two 
images are I2 and I3, for a particular pixel (x, y), 
double difference DD1 is obtained by computing two 
pixel differences PD1 and PD2 and then computing the 
conjunction of these results. 

Comparing these two methods, we find that they serve 
well for different animations. If the interaction is 
between a player and a moving object (top image in 
figure 3), such as a ball, background subtraction is 
suitable to direct the object. For example, in a soccer 
game, when the player stops kicking and stands still, 
the ball should not move into the area under his feet. 
This is manipulated by background difference, as long 
as the player is inside the camera’s view, his shape is 

recognized and the ball is always outside of it. 

Since double difference subtraction extracts moving 
points from image sequences, it is more suited to 
calculating motion vectors rather than static location.
For example, if the animation is designed to allow 
user to play with water (bottom image in figure 3), 
once the user stops moving, all ripples should 
disappear slowly and the water should be still 
everywhere. 

Figure 3. Top: a player is playing with virtual moving 
object. Bottom: players are playing with virtual water. 

Courtesy of LDPS NZ Ltd.

The other useful feature of double difference 
subtraction is that it is more robust to noise due to 
small camera movements. Since the camera may be 
hanging on the ceiling to get a top-down view, its 
angle of coverage may slightly change at times due to 
vibrations of the building. While using background 
subtraction, most of the time the background image is 
fixed. It may not be possible to aquire a background 
image only whenever it changes1. If double difference 
algorithm is used instead, there is no permanent 
background image since motion detection involves 
with only most recent frames.

4.2 Mappings between Video and 
Animation

After human or their motions have been detected from 
camera’s angle of view, which is same as the 

                                                
1 Although we are using infrared camera, the background 
image may slightly change over time due to camera 
movement or change of thermal devices, such as lighting 
and heating systems.
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projected area, next step is mapping between video 
frame sequences and animation. Here we map the 
animation onto images. 

Corners of each animated object are located. Their 
values of x-axis and y-axis at any certain time are 
translated into the image captured at the same time by 
multiplying x-axis ratio and y-axis ratio respectively. 
The translated results are then used to construct an 
area of the object inside camera’s view, so overlaps 
between this area and detected human motions can be 
checked later. For example, if we have a rectangle
animated object and the positions of its four corners 
are represented as (MinX, MinY), (MaxX, MinY), 
(MaxX, MaxY) and (MinX, MaxY), we then use 
equation (4), (5), (6) and (7) to calculate the object’s 
position in camera image:

CamMinX = MinX * RatioX    (4)

CamMaxX = MaxX * RatioX    (5)

CamMinY = MinY * RatioY    (6)

CamMaxY = MaxY * RatioY    (7)

RatioX = CamViewWidth / AnimationWidth (8)

RatioY = CamViewLength / AnimationLength (9)

Figure 4. Top: the original image. Bottom: the 
outward distorted image. [10]

While mapping the animation onto images, there is a 
lens distortion problem. The image points, especially 
those close to edges of the image, are displaced 
outward from the optical center. Figure 4 compares an 
original image and a distorted image. This radical 
distortion is the most significant distortion, whose 
effects vary with distance from the optical center of 

the lens [9]. To correct lens distortion, the model 
described in OpenCV documentation can be used [8], 
[9]:

x’ = x/z             (10)

y’ = y/z             (11)

x’’ = x’(1+k1r2+k2r4)+2p1x’y’+p2(r2+2x’2)  (12)

y’’ = y’(1+k1r2+k2r4)+2p2x’y’+p1(r2+2y’2)  (13)

r2 = x’2 + y’2         (14)

u = fxx’’ + cx          (15)

v = fyy’’ + cy         (16)

where x, y and z are coordinates of a 3D point in a 
world coordinate space, u and v are coordinates of a 
pixel in the image plane, fx, fy, cx and cy are 
calibration parameters, and k1, k2, p1 and p2 are the 
radial and tangential distortion coefficients.

4.3 Animation Updates
To move an animated object according to user’s 
motion, or precisely speaking, to adapt the position of 
a displaying object, each pixel in its region has to be 
tested in order to modify movement parameters. If the 
recorded difference image overlaps with this region, 
x-axis movement parameter and y-axis movement 
parameter are cumulated respectively according to the 
direction of detected motion, that is, vertical or 
horizontal. A negative parameter indicates that the 
object is moving left or up, whereas a positive 
parameter causes the object to move right or down. 
This is decided by the position of where the overlap 
has happened.
Speed of movements is controlled by three values. 
The first value is that in each cell of the difference 
array where it was calculated accumulatively such 
that the deeper a detected shape or motion enters the 
object’s region, the higher a value is. The movement 
parameter is multiplied by this value at each pixel so 
that differences between faster moves and slower 
moves can be demonstrated. The second value is a
variable, called acceleration factor, which also 
modifies the moving animated object’s velocity. It is 
used in a similar manner. By multiplying this factor, 
movement parameters can accelerate the object in a 
flexible way. The last value is a deceleration rate, 
which ensures that objects decelerate correctly when 
there is no more external force on it.
Note that all these animation movement parameters 
are set for only passive objects that do not move 
themselves, such as a soccer ball. For active objects, 
such as cartoon characters, they can move freely 
within the scene once they have been “touched” as 
long as they do not go inside where the player is 
standing.
The other issue is that whenever an animated object, 
either active or passive, reaches the edge of animation 
area, it does not go beyond that edge. 
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5 Result and Discussion

5.1 Result Evaluation
In order to evaluate the usability of the system, we 
designed a user study where we asked a number of 
participants to perform a simple task, which is moving 
a ball from the centre toward different directions in 
the field as shown in figure 5.  

Figure 5. A simulation of usability test.

Two experiments have been carried out with different 
ball radii. The radius to screen width ratio was 1/32 in 
the first test and 1/16 in the second. For the first test, 
the accelerate factor was 0.5 and the deceleration 
factor was 0.8. For the second test, 0.2 was used for
acceleration and 0.7 for deceleration. The goal of this 
experiment was to find out the relationship between 
virtual object size and its interaction performance.

Figure 6 shows the number of successful attempts in 
each direction with different radii. The figure suggests 
that radius size is proportional to detection accuracy. 
The larger the size of radius, the better the detection
is. Program with the larger radius provides better 
detection in most directions.

Number of Successful Attempts of Moving 
The Ball toward Different Directions 
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Figure 6. Number of successful attempts of moving 
the ball toward different directions

Comparing to previous works, which use only one 
detection algorithm, our system can target wider 
range of applications because we have two detection 
methods: background subtraction and double 
difference subtraction. As mentioned in section 4.1.2, 
they serve well for different type of motions.

We have noticed that most of the prior researches use 
at least two cameras for detection: one camera takes 
infrared images, and the other takes normal images of 
the real world [11], [12]. In Contrast, our system used 
only one infrared camera. It may be less robust for 

detecting the exact contact of real and virtual objects 
because infrared images do not always provide a clear 
contour of human body. However detection in our 
system maybe faster because we use simpler detection
approaches in which only one input camera is taken
into account.

In our approach, the animated object is always 
approximated by a rectangular bounding box. The 
drawback is that there will always be a distance 
inaccuracy between the player and the animated 
object under the situation shown in Figure 7. We have 
carried out an experiment on the interaction between a 
soccer ball and a detected object.

Figure 7. Distance inaccuracy of our approach.

From the experiment, we found the maximum 
distance inaccuracy occur when the moving object 
approached the soccer ball diagonally and coincided
with the bounding box. When setting the ball radius to 
twenty units, the maximum distance inaccuracy MDI 
is about 8.2843 units. The calculation of MDI is 
shown in equation (17):

rrMDI  22  (17)

5.2 Pros and Cons
The use of infrared-pass filter camera allows 
separation of animations and human motions. As a 
result, animations do not affect the performance of 
computer-vision based tracking. Unlike rear 
projection systems, our system does not require 
dedicated surfaces for projection; animation can be 
projected on to any plain flat surface. Our computer 
vision based tracking is based on background 
subtraction models; therefore multiple objects can be 
detected at the same time. This suggests that it has the 
potential to cater for multiplayer requirements.

One potential problem of using an infrared-pass filter 
camera for tracking is that it is difficult to distinguish 
different body parts of a person. For example, if a 
user tries to kick a ball, but in camera’s view, his head 
touched the ball first, the ball would be moved 
differently from user’s intention. One drawback of 
infrared-filtered camera is that it can reduce contrast; 
it may not provide as sharp a silhouette edge as a 
normal camera without added filter. Therefore it may 
be difficult to detect the exact shape of the body in
contact with animated objects and based on that, 
model correct movements.
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6 Conclusion
Our system combines front-projection and 
infrared-pass filter camera to build an interactive 
display system. Users can interact with different 
animations by moving their body parts inside the 
camera’s view. Background subtraction or double 
difference algorithm is then used to detect these users. 
Difference images are mapped with the display so that
animated objects can react according to users’
movements.

7 Future work
Depending on the angle of the lens, the video may 
have significant distortion caused by camera lens. By 
using image processing, the input image and projected 
image can be further aligned to improve tracking 
performance.

If the infrared camera is set in a place where thermal 
conditions change over time, various adaptive 
background subtraction techniques may be applied in 
order to guarantee the quality of background 
difference image [13].
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Abstract
We propose a SAR image simulating method developed to help SAR image analysis and training. The
main features of the simulation method are the capability of wide area simulation and relatively low
computational costs. The cost efficiency is achieved by using a hybrid method that assigns radar cross
section values thematically where it is necessary to do so. However, the method allows for more detailed
modelling of classes if possible. In this case, a regression model has been used to estimate the underlying
radar cross for the exotic forest class, as a function of forest stand species and stand age. Speckle is
simulated by a multivariate gamma distribution, with multi-variate parameters estimated from reference
AIRSAR imagery. Finally, the radar noise floor is simulated by an additive Gaussian process.

Keywords: SAR, radar, simulation, multi-polarisation

1 Introduction

Synthetic aperture radar (SAR) is useful for many
applications in environmental remote sensing,
including topographic mapping, and land cover
mapping. Multi-polarisation SAR is particularly
useful since this form of data provides additional
degrees of freedom for use in a classification, or
in a multi-variate regression model [1]. However,
multi-polarisation SAR images require a great
deal of experience for correct interpretation, since
the appearance of these images is very different
from multi-spectral optical imagery, such as that
available from the Landsat or SPOT satellite
series. Furthermore, the appearance of the multi-
polarisation SAR image changes significantly
with the observation conditions, such as the
incidence angle, and the interaction between these
observational conditions and the local topography.

Simulated SAR imagery is designed to bridge the
gap between the future availability of real data,
and a user’s desire to understand what the data
will look like before committing resources to a fu-
ture data source. Simulation has a particular ad-
vantage in the case of space-borne SAR systems,
since the time required to develop an application
using such data sources can be long, perhaps mea-
sured in years.

If simulation is not used, users may need to wait
for the launch of the SAR system to gain access
to suitable test data, in which case valuable opera-
tional time may be lost. Simulation can also reduce
the cost of an initial study, since many different
imaging scenarios may be investigated, while the

purchase of real imagery for these different scenar-
ios may be prohibitively expensive.

Practical SAR image simulation represents a com-
promise between the need to provide a product
that is detailed enough to reproduce the basic func-
tionality required by the user community, but not
so detailed that the user is unlikely to ever use the
intricate functionality that is included. Thus, the
type of simulation that is undertaken is closely tied
to the likely end-user application.

In the present case, the simulated imagery is re-
quired for an assessment of SAR imagery to sepa-
rate mature forest stands from cleared or harvested
forest stands. This problem arises in commercial
forest inventory work, as well as carbon accounting
activities in respect of international agreements,
such the Kyoto agreement.

Previous research work by us has established
that single-polarisation SAR imagery in the
C- (5.6 cm) and L-band (24 cm) wavelengths
is unable to separate mature from cleared
forest stands, for the dominant species used
in commercial forestry in New Zealand (Pinus
radiata), while multi-polarisation SAR imagery
at C- and L-band can be processed to separate
mature from cleared forest stands, provided that
certain processing steps are carried out [1]. The
simulation effort described here is intended to
allow users to become familiar with the various
products that are expected to be available from
future operational SAR systems, and which could
be used in forest clear-cut work. The availability
of this simulated imagery is likely to direct future
research effort.
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2 Simulation methodology

There are many examples of simulation method-
ologies for multi-polarisation SAR imagery in the
literature. In essence, however, the available meth-
ods fall between the extremes defined by two cat-
egories. First, those methods that model the de-
tected radar cross section (RCS) from a detailed
description of the elements of the target and the
interactions between those elements at a very de-
tailed level (the RCS forward prediction method).
Second, those methods that model the RCS using a
categorical description of the target, and a simple
assignment of RCS based on the target category
(the RCS thematic assignment method).

Forward prediction methods [2, 3, 4] provide a
comprehensive account of the target RCS, but the
models can be computationally demanding, and
very difficult to parametrise. Thematic assignment
models generally produce RCS estimates derived
from a land-cover classified image, along with
known or published accounts of the RCS and
polarisation-ratio for different vegetation types
[5, 6]. A variant of this approach is to acquire a
single-polarisation SAR image of one polarisation
close in time to the land-cover classification,
and derive the RCS for other polarisations from
published accounts [7] of the ratio of RCS for
different polarisations. For example, Buckley [8]
has simulated Radarsat-2 imagery by using a
Landsat-Thematic-Mapper-derived classification
to provide a thematic base, as well as polarisation
ratios tabulated in the literature for vegetation
types similar to those found in the area, and a
Radarsat-1 image of the area collected almost
simultaneously with one of the Landsat images.

Thematic assignment models are considerably eas-
ier to implement than forward prediction models,
and may be most suitable if the relationship be-
tween the RCS from different polarisations is de-
scribed simply, such as by a ratio or by a shift
in level. However, if the polarisation interaction
is more complicated, then this simple methodol-
ogy is unlikely to produce a fair representation of
the target RCS behaviour. However, there is a
strong incentive to keep the model as simple as
possible, since it is very easy to produce a model
that is computationally intractable, or difficult to
parametrise.

In this paper, the important targets are shrubland
and forest, and it can be shown that there is a
strong interaction between the RCS of the differ-
ent polarisations [1]. However, the correlation is
not perfect (i.e the multivariate RCS is not de-
generate), and there is a differential polarisation
response with stand age that can be exploited to es-

timate biophysical parameters associated with the
forest [1]. Thus, correct simulation of this type of
target requires parametric information, in addition
to the thematic class to which the target is assumed
to belong.

For this present simulation effort, the test area is
large (on the order of millions of hectares), so there
is little hope of being able to model the detailed
RCS relationships for every pixel in every thematic
class. A more practical approach is to use the
RCS thematic assignment method where the class
is less relevant to the end-user application, but
adopt a more rigorous method of RCS modelling
in areas of production forest. Although the RCS
modelling in these forest areas is not as rigorous as
those used in the RCS forward prediction models,
the complexity is sufficient to reproduce the main
characteristics of the interactions that occur as the
forest stand ages.

The basic idea of multi-polarisation SAR simu-
lation described here is that the image space is
partitioned by a non-overlapping spatial classifi-
cation of targets. A model is then defined for
each unique target class, and the parameters for
each model are defined on a pixel-by-pixel basis.
The class model, and its associated parameters,
define the underlying target RCS for each required
polarisation. For some classes, no parameters are
required, either because they are not available, are
not important to the end-user application, or are
simple enough to be assigned simple values. For ex-
ample, it is reasonable to assume that water bodies
and smooth road surfaces should have a zero-value
RCS. By contrast, grasslands may be assigned a
nominal RCS value, since detailed parametric char-
acterisation of the RCS is not available.

An important consideration in respect of multi-
polarisation imagery is the fluctuation associated
with the coherent SAR illumination (speckle),
which is combined with the underlying RCS to
form the measured RCS. For the number of looks
usually employed with commercial SAR imagery
(1–4 looks), speckle can usefully be modelled as
gamma-distributed for each polarisation RCS,
but the joint distribution is more difficult to
describe in practise, since it depends strongly
on the target, especially for those targets with
significant spatial texture (e.g forest). In the
SAR simulation method described here, these
interactions are simplified by generating the
speckle as a multivariate gamma distribution
[10] with the variance-covariance matrix either
measured from reference multi-polarisation
imagery, assigned from tabulated values from the
literature, or assigned by theoretical considerations
(as appropriate for the class).
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In addition to its point-by-point statistics, an
important feature of multi-polarisation SAR is
its spatial autocorrelation function (ACF), which
represents spatial variation in targets such as
forest, urban areas, or ocean waves [11]. Here,
an important restriction on the simulated radar
imagery is that this spatial structure is not
simulated. This is partly due to complexity,
since simulation of spatial ACFs in forest targets
are particularly complicated. However, it is
also argued that in the forestry applications
for which this simulated imagery is intended,
whole-stand classifications between mature and
clear-cut stands are desired, rather than a detailed
pixel-by-pixel classification. This simplification
of the clear-cut stand application is outlined in
somewhat more detail elsewhere [1].

Finally, it is noted that the observed RCS is
always corrupted by noise, primarily additive
receiver noise, and it is useful to have a means of
quantitative comparison between this noise and
the desired signal. For SAR, the additive noise
component is expressed as noise-equivalent radar
cross section (or noise-equivalent sigma-nought)
NEσ0. Image targets that fall below the NEσ0

are not useful, and this level is simulated as an
additive random Gaussian process. The point-
by-point simulation method is shown in figure 1,
producing the statistical estimate of the RCS in
ground-range form.

Figure 1: Schematic overview of the multi-
polarisation SAR simulation methodology.

3 Simulation example

In this section, we describe the simulation of two
recent multi-polarisation SAR systems. The first,
Radarsat-2, operates at the short wavelength of
5.6 cm, while the second operates at a medium
wavelength of 23.5 cm. Both SAR systems are
candidates for forest clear-cut mapping in New
Zealand.

3.1 Target SAR systems

The Phased Array L-band (23.5 cm wavelength)
Synthetic Aperture Radar (PALSAR) is a
SAR sensor on the Japanese Advanced Land
Observation Satellite (ALOS), launched in
January 2006. ALOS-PALSAR [12] is a
considerably-enhanced version of an earlier
Japanese satellite JERS-1, which operated from
late-1992 to October 1998. This new sensor
provides multi-polarisation imagery, a range of
target viewing angles, several different imaging
modes, and enhanced radiometric performance.

Radarsat-2 [13] is the follow-on mission to
Radarsat-1, and at the time of writing is due to
be launched from Russia’s Baikonur Cosmodrome
in Kazakhstan in March 2007. Radarsat-2 is a
C-band (5.6 cm wavelength) SAR sensor that will
be able to image at spatial resolutions ranging
from 3 to 100 metres with nominal swath widths
ranging from 10 to 500 kilometres. In addition,
Radarsat-2 will offer multi-polarization imagery,
a capability that helps in classifications of a wide
variety of targets.

Although both ALOS-PALSAR and Radarsat-2
offer single-, dual- and multi-polarisation modes
of interest to many users, in terms of this paper,
the multi-polarisation mode is of most interest.
The relevant multi-polarisation characteristics of
ALOS-PALSAR and Radarsat-2 are shown in
table 1, for indicative scene conditions.

3.2 Scene information

The test area is located in Kaingaroa Forest,
centred on latitude −38o31′, longitude 176o32′.
Kaingaroa is New Zealands largest production
forest and is the second largest planted forest in
the world, situated on the Volcanic Plateau in
New Zealands central North Island. This area
has imagery available from the NASA AIRSAR
[14] multi-wavelength, multi-polarisation aircraft
mission flown in 2000 (PACRIM-II) [15]. NASA
JPL supplied the AIRSAR imagery in compressed
Stokes matrix form [16], with nominal intensity
and phase calibration applied. Scenes are a
multiple of 10 km in length, and approximately
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Table 1: Indicative characteristics of the multi-polarisation modes of ALOS-PALSAR and Radarsat-2.

Parameter ALOS-PALSAR Radarsat-2
Product level description Level 4.1, standard quad-pol. Standard quad-pol.
Frequency (wavelength) 1.275 GHz (23.5 cm) 5.405 GHz (5.55 cm)
Noise-equivalent sigma-nought NEσ0 ≈ −23 dB −31 ± 2 dB
Number of looks (range × azimuth) 1 × 4 1 × 4
Ground sampling (cross × along-track) 30 × 30 m 25 × 28 m
Ground scene size (cross × along-track) 30 × 70 km 25–50 × 25 km
Available local incidence angle 8.9–33.7 degrees 20–41 degrees

11 km in width, with a ground resolution of
10 m. The AIRSAR imagery has relatively high
spatial resolution, a relatively high number of
effective looks, and a lower NEσ0 when compared
to the equivalent parameters for either ALOS-
PALSAR or Radarsat-2. Therefore, we expect
that simulated versions of these future spaceborne
missions represent degraded versions of the
AIRSAR imagery.

Thematic information on the test area is provided
by the Land Cover Data Base 2 (LCDB-2). LCDB-
2 is derived, in part, from satellite imagery ac-
quired in 2000/2001, and is a hierarchical devel-
opment of the classes used for LCDB-1 (imagery
acquired in 1996/1997) [17].

Parametric information within the test area was
generated from an ArcInfo GIS coverage provided
by Fletcher Challenge Forests, then owners of
Kaingaroa Forest. This GIS coverage provided
a number of attributes for each forest stand,
but for the purposes of this study, only two
parameters were used. The first was the forest
species, Radiata pine (Pinus radiata) or Douglas
fir (Pseudotsuga menziesii), while the second was
the stand age in years at the time of the AIRSAR
imagery. Areas outside the AIRSAR coverage
region had no parametric information associated
with them. The GIS coverage was converted
to raster form, thus providing a pixel-by-pixel
parametric description of the productive forest
class in the test area.

4 Results

Figure 2 shows the LCDB cover classes, forest
stand age, forest species, and AIRSAR L-band
quad-polarisation SAR components for the study
area. The GIS coverage contained forest stands
from clear-cut to age 70 years, although most
stands are less than 35 years old. For the LCDB, a
total of 22 separate classes were obtained, although
the test area is dominated by exotic forest, with
much smaller areas of pasture, indigenous forest,
and bare surfaces (towns, roads etc). Several
of the LCDB cover classes were aggregated to a

single class, such as the various water bodies, and
less-relevant distinctions between grasslands. For
all but the forest classes, the RCS was defined by
estimates provided from the literature, or from
other AIRSAR images. Some classes (e.g water,
roads) were assigned a zero-valued RCS, since
that is the most plausible figure.

As noted earlier, the regressions for RCS in the
forest class were defined in terms of the species
and the forest stand age. The regression analysis
that defined these relationships was defined from a
sample of 465 stands from Kaingaroa forest, with
403 stands in Radiata pine and 62 in Douglas fir
with an area over 10 ha. A summary of the regres-
sion analysis for C- and L-band is given in table 2.
The important result from these results is that the
RCS (dB) for a given polarisation can be estimated
with a standard error of approximately 2 dB, using
a linear relationship between log (Stand age) and
an offset allowance for the difference in species.
The correlation estimates for C- and L-band are
roughly comparable, except that for L-HH, which
is quite poor. The coefficients for the intercept
and log (Stand age) were highly significant. The
coefficient for the effect of the species was highly
significant, except for L-HH and L-VV.

Finally, the noise-floor of the simulated radar was
estimated by using the mean expected value of
NEσ0 from table 1. The final RCS statistical esti-
mates were converted to log-compressed σ0 values
in dB, as is standard in the literature.

5 Discussion

It is difficult to assess the quality of the final sim-
ulated result, for several reasons. First, the RCS
estimates are designed to be consistent with, but
not identical to the values from the AIRSAR im-
agery. This consistency is defined by the statistics
of the regression model used to relate stand age and
species to RCS value, in the case of the production
forestry class. The actual values of RCS in the
AIRSAR stand will differ by some random amount
that will vary from stand to stand. However, the
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Figure 2: Simulation study area, Kaingaroa forest, North Island, New Zealand. Left: LCDB cover classes,
colour-coded. Centre: Forest species (Green – Radiata pine, Brown – Douglas fir) with forest stand age
coded by brightness, with maximum stand age 70 years. Right: AIRSAR L-band quad-polarisation SAR
image (RGB – HH, HV, VV).

overall difference between the AIRSAR image and
the simulated values is expected to be unbiased.

Second, the RCS assignment is made on the as-
sumption that there is a one-to-one relationship
between the LCDB class and the type of scattering
that occurs within that class. However, this is
unlikely to be the case. For example, in towns, the
type of scattering will vary considerably between
different areas of the town, changing from Rayleigh
scattering to double-bounce scattering, depending
on the nature of the scene. There is little that can
be done to solve this problem, since finer thematic
classifications are not available.

Similarly, for forest stands it is possible that the
modelling used here is too simplistic to account
for changes evident in different stands. Possible
effects that may be important, but which have
not been considered are: stand density (stems per
unit area), whether pruning had been involved, and
whether other forest treatment factors have been
used. Aside from these above cautions, the RCS
estimates are in line with the broad range of values
predicted by the RCS regression procedure.

6 Conclusions

The simulation method described here is a hybrid
method that uses the simplicity of the RCS the-
matic assignment method where it is required, but
allows for more detailed modelling if possible. A
regression model of RCS has been used for the
exotic forest class, which is the important class for
this study, and this model is based on parameters
of stand species and stand age. Speckle is simu-
lated by a multivariate gamma distribution, with
multi-variate parameters estimated from reference
AIRSAR imagery. Finally, the radar noise floor is
simulated by an additive Gaussian process.
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Table 2: Summary of regression results for C- and L-band backscatter as a function of forest parameters.

p-value
Band Polarisation R2 Intercept Log(Age) Species SE (dB)

L HH 0.100 < 2e − 16 7.87E − 12 0.52 2.1
L HV 0.591 < 2e − 16 < 2e − 16 0.00248 2.0
L VV 0.403 < 2e − 16 < 2e − 16 0.962 1.9
C HH 0.386 < 2e − 16 < 2e − 16 < 2e − 16 2.1
C HV 0.528 < 2e − 16 8.37E − 13 < 2e − 16 1.4
C VV 0.356 < 2e − 16 2.31E − 12 < 2e − 16 1.9
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Abstract
In general, the noise that is present in real-world 3D surface scan data prevents accurate curvature
calculation. In this paper we show how curvature can be extracted from noisy data by applying filtering
after a noisy curvature calculation. To this end, we extend the standard Gaussian filter (as used in 2D
image processing) by taking adjacent point distances along the scanned surface into account. A brief
comparison is made between this new 2.5D Gaussian filter and a standard 2D Gaussian filter using data
from the Digital Michelangelo Project.

Keywords: Surface curvature, noisy scan data, 3D noise filtering

1 Introduction

Three dimensional objects are often digitized in
a way that results in surface point data sets [1].
In general, real-world scan data is noisy due to
inaccuracies accumulated in the scanning process1.
Curvature, being a second derivative property, is
particularly sensitive to corruption by noise.

A common approach towards solving this problem
is to smooth the point data prior to attempting
curvature calculations. This approach has a short-
coming in that surface detail can easily be lost.
Alternatively, in this paper, we firstly calculate
noisy curvatures and subsequently apply filtering
to these curvature values.

Although the standard 2D Gaussian filter can be
used in our approach, it does have the undesirable
effect of smoothing edges as well as noise. Edge
preserving variants of the 2D Gaussian filter have
been developed. The bilateral filter by Tomasi
and Manduchi [2] is a 2D filter that employs an
edge preserving term that decreases pixel weight-
ing based on pixel intensity differences.

Smoothing of the 3D shape itself is the goal of other
noise reduction filters. A curvature and Laplacian
operator based diffusion approach was introduced
by Desbrun et al. in [3]. Work by Fleishman et al.
consists of a mesh de-noising algorithm that oper-
ates on a surface predictor geometric component
of the mesh [4].

In contrast, even though the approach that is pre-
sented in this paper uses 3D surface point position

1In this paper, we will consider noise which has primarily
a Gaussian distribution.
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Figure 1: Curvature estimators: point adjacency
on the left and face normals on the right.

information, it does not alter the position of those
points.

2 Surface curvature estimators

Surface curvature is a well-defined property for
continuous smooth surfaces [5]. However, when
working with point data sets, many surface
properties can only be estimated [6], and there
exists a number of different estimators for
determining curvature [7].

In this paper, the mean curvature is estimated as
done by other authors [8]. With reference to the
left side of Figure 1, we consider a point on the
surface and, say, six adjacent points. The points
are thought to be connected by edges, and edges
enclose, in this case, six faces. We also identify
an area A(fn) associated with each face fn. On
the right side of Figure 1, we identify a surface
normal vector associated with each face from an
edge-on view point. The angle between adjacent
face normals is designated as β. Angle β is positive
if the faces form a convex surface (i.e., when viewed
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Figure 2: Mappings of orthogonal (on the left) or
hexagonal (on the right) grids into an orthogonal
grid.

from the outside) and β is negative if the faces
form a concave surface (i.e., when viewed from the
outside).

The mean curvature at the point P is estimated by

H(P ) =
3

∑ ||en||βn

4
∑A(fn)

(1)

This estimator is generally valid, without change,
in the case of adjacency point counts other than
six.

3 Curvature maps

For 2D visualization purposes it is useful to convert
the mean curvature values at surface scan points
into a (2D) curvature map [9]. If the 3D point data
has been acquired in a 3D orthogonal grid, then
the curvature mapping is straightforward (defined
by orthogonal cuts parallel to coordinate planes,
see [10]). For data that has been acquired in a
hexagonal grid, a squashed dot mapping is used
[9].

Mappings for both cases, either orthogonal or
hexagonal, are shown in Figure 2. The second
mapping has the expense of quadrupling the
number of pixels.

4 Curvature noise filtering

Consider sampling the planar surface, which has
zero curvature everywhere. Noisy sampled data
points will exhibit a symmetrical distribution of
positive and negative curvatures centered around
zero, with the limiting mean value for many points
being zero. This suggests filtering that includes a
mean calculation.

In this paper we describe and briefly compare two
different weighted mean based curvature noise fil-
tering approaches.

4.1 2D Gaussian filter

In this approach, we start by converting the noisy
curvature values into a 2D curvature map as de-
scribed briefly in Section 3. See [9] for further de-
tails on the curvature map creation process. This
conversion into 2D enables the use of standard 2D
images processing techniques.

Figure 3: Cross section of a surface fold.

Next we apply a standard 2D image processing
Gaussian filter which performs the desired smooth-
ing based on the now fixed adjacency (and dis-
tance) relationships in the curvature map. The
standard 2D Gaussian filter is implemented as a
convolution process with the terms in an (2m +
1)×(2m+1) Gaussian convolution kernel centered
at (0, 0) being determined using the formula

h(n1, n2) = hg(n1, n2)
/

m
∑

n1=−m

m
∑

n2=−m

hg

with hg(n1, n2) = e−(n2

1
+n2

2
)/2σ2

(2)

where, as usual, the standard deviation σ acts as
a pixel area smoothing factor. Note that the (n2

1 +
n2

2) term can be thought of as the adjacency dis-
tance (squared) in a fixed adjacency grid.

4.2 2.5D Gaussian filter

As a preliminary motivation, note that the 2D fil-
ter, with its innate fixed distance adjacency, has
the undesirable effect of smoothing edges which
may be present due to silhouettes, occlusions, and
surface folding in the scan. For example, Figure 3
shows a cross-section view of a surface fold in which
the distances between adjacent scan points are not
equal.

We introduce a 2.5D Gaussian filter which gives
consideration to edges. We will apply this filter to
the noisy curvature values assigned to each scan
point in the 3D domain before generating a final
2D curvature map.

In the 3D point space, we define adjacency point
neighborhood rings and assign subscripts as shown
in Figure 4 for the case of hexagonal adjacency.
Note that only the inner two rings are shown, but
that additional rings may be used. The first sub-
script identifies the ring and the second subscript
identifies each point within a ring. The concept of
neighborhood rings applies similarly to orthogonal
adjacency where, of course, the number of points
in each respective ring will be greater.

We calculate the 2.5D Gaussian filtered mean cur-
vature H̃ at each point P on the surface (indexed
in turn as P0,0) as follows:
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Figure 4: Adjacency point neighborhood rings.

H̃(P0,0) =
∑

m

∑

n

(wmnHmn)
/

∑

m

∑

n

wmn

with wmn = e−(Pmn−P0,0)2/2σ2

(3)

where the values of Hmn are the unfiltered mean
curvatures. The summations are computed over
m neighborhood rings with n points in each ring2.
Note that ||Pmn − P0,0|| is the physical (Euclid-
ean) distance from the center point to a point in
a neighborhood ring, and that the values of w can
be thought of as representing filter weights. The
standard deviation σ is smoothing factor that, in
contrast with the 2D Gaussian filter, is now based
on (estimated) surface area. The standard devi-
ation retains its usual meaning in that we would
expect, for example, the sum of the filter weights
assigned to points within a two-sigma radius to be
95.5% of the total filter weight.

We refer to this as a 2.5D filter because it is com-
puted on a 2D surface which is embedded in 3D
space. Although there is some similarity to the
standard 2D filter, note that, strictly speaking,
this is not a convolution process and we have lost
the computational efficiency of a fixed convolution
kernel.

5 Experiments

We have performed experiments using scan data
of the David statue from the Digital Michelangelo
Project [1]. This data set was acquired with hexag-
onal point adjacency and thus neighborhood rings
as illustrated in Section 4.2 were assigned for the
computations. The data contains a moderate level
of noise, with the equivalent Gaussian noise level
standard deviation being approximately equal to
the minimum scan point adjacency distance.

We concentrate on a curl of hair above David’s
right eye which only just visible at the top edge

2Including the center point P0,0 as the single element in
ring zero.

Figure 5: A photograph of Michelangelo’s David.

Figure 6: The curl: rendered mesh.

of the photograph shown in Figure 5. Figure 6 is
a reference closeup of the curl rendered as a mesh
surface [11] constructed from the raw scan data
points. The lighting direction in this rendering
has been chosen to highlight certain contours. The
holes in the scan are due to occlusion. The black
bar with ends marked A and B identifies a cut
through a folded section of the surface.

A

B

Figure 7: Cross-section of curl scan points.

Figure 7 shows a cross-section slice of the scan
points which indicates a folding edge between loca-
tions A and B. Traversing from A to B, the curva-
ture starts as slightly positive, is distinctly positive
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at the first bend, is then zero, is distinctly negative
at the second bend, and then slightly negative.

Figure 8: Curvature map: 2D filtering.

Figure 9: Curvature map: 2.5D filtering.

Figure 8 shows a shading encoded mean curvature
map of the curl with 2D filtering. Maximum
positive curvature is shading coded as white. Zero
curvature is shading coded as medium grey and
maximum negative curvature is encoded as black.
Note that, because the filtering was done after the
squashed dot mapping, there is some spread into
regions where there is otherwise insufficient point
data for curvature calculation. Figure 9 shows
a shading encoded mean curvature map of the
curl with 2.5D filtering. Equivalent values for the
smoothing factor σ were used in both filters.

In Figure 9, it does appear that, as expected, there
exists sharper transitions between black and white
at the sharp fold edges. To confirm this, we ex-
tracted pixels associated with the previously illus-

Figure 10: Extracted A-B cut pixels: 2D filter
(top), 2.5D filter (bottom).
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Figure 11: Pixel values along the A-B cut.

trated A-B cut from both the 2D and the 2.5D
filtered curvature maps. The extracted pixels are
shown in Figure 10.

We averaged the pixel values across the narrow cut
direction and then plotted the resultant values as
shown in Figure 11. In the center section of the
plot, we see that, in the 2.5D trace, 1) the max-
imum slope is greater, 2) the magnitudes of both
the positive and the negative peaks are greater,
and 3) there is a distinct zero curvature shelf.

6 Conclusion and Further Work

In the experiment presented, 2.5D filtering results
in more representative curvature at a fold edge
than does 2D filtering. Further work is anticipated
to include additional noise models (such as highly
impulsive), additional filtering methods, and addi-
tional visualization techniques.

Finally, to illustrate the total size and scale of the
scan, Figures 12 and 13 each show a curvature
map of the entire scan, one with 2D filtering and
the other with 2.5D filtering. Close examination
reveals that other regions, such as the eyelid near
the corner of the right eye, for example, appear to
benefit from improved edge preservation.
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Figure 12: David’s face: 2D filtering. Figure 13: David’s face: 2.5D filtering.
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Abstract 
In urban modelling, image occlusion can cause problems in the visualisation of the texture mapped 3D models, 
and in the analysis of point clouds. To resolve this issue, a popular strategy in image occlusion removal [1], 
given two or more input occluded images with same viewpoint, was studied and improved. Our revised 
technique is capable of removing regions in overlapped occlusions that have only been seen once. The algorithm 
can detect occlusion that is not possible to be resolved and reporting to the operator that manual intervention 
may be required by analysing the pixel values of the images at the internal and external boundaries of the 
grouped occluded regions. The performance of the algorithm was validated using the collected images from our 
calibrated camera on a Riegl laser scanner.  

Keywords: Occlusion removal, terrestrial image, urban modelling, consensus image, boundary difference

1 Introduction 
Accurate 3D surface modelling in urban areas is 
essential for a growing number of applications such as 
disaster management and environmental simulations. 
Other applications include regional planning, virtual 
reality and simulation of the propagation of radio 
waves for the cell phone industry. 

Traditionally, urban simulation models can be 
obtained by processing data from photogrammetry. 
LIDAR (Light Detecting and Ranging) data is a 
relatively new method to obtain data for urban 
models. The use of a �Multisensor� � laser scanner 
and camera, permits a much faster, more complete 
and more efficient data acquisition. The laser scanner 
provides geometry data whereas the image taken 
provides colour information for realistic texture 
mapping and is useful for further point cloud analysis. 

One of the problems in the data acquisition is 
anomalous occlusion due to moving humans and other 
objects. There exist a distinct time difference between 
the data acquisition from the laser scanner and the 
camera. This causes anomalous occlusions to occur 
where moving object does not coincide at the same 
location on both the laser scan and the image.  

To illustrate such problem, refer to the following 
scenario: as shown in figure 1, a person moved from 
A, when the laser scan was taken on the grass plane, 
to B, when the image scan was taken that may occur 
at a time before or after the laser scanning took place. 
This caused anomalous occlusions to occur, as shown 
in figure 2 where the results for the image and laser 

data were combined using the RiScan pro software 
(software from Riegl). 

 
a. at time = 0  b. at time = α1 

Figure 1 Example of where the scan artefacts occurs 

  
Figure 2 Scanned results of occlusion occurs (a) 
Human object mapped with grass (b) Human image                             
mapped onto tree trunk 

The human object captured by the laser scanner in 
position A was colour mapped with grass, which is 
the image of position A after time α. On the other 
hand, the human image taken at time α was colour 
mapped onto the tree trunk and onto the ground on 
position B. Apart from being �unrealistic�, such false 
data collection can be a problem for further analysis. 
For example, if point cloud classification is based on 
the colour property, the green human object can be 
recognised as vegetation instead. 

                                                
1α is the time taken from the laser scanning at position A 
until the laser scanning process completed plus the time 
taken for the camera image taking at position A, which is 
approximately the total laser scanning time 
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In general, there are two types of occlusions that have 
to be addressed: the occlusions in the LIDAR data and 
the occlusions in the image data. The occlusion in the 
LIDAR data can usually be solved by taking more 
than two scans in the same scan location and taking 
the greatest depth of each point, assuming the object 
moves fast enough with respect to the laser scan 
cycle. 

To resolve the occlusions in the image data, the 
methods typically used are based on the idea that if 
two or more images contain views of the same scene 
at a different time, an unoccluded image can be 
formed with median filtering. Hence for each (i,j) 
location, the final image will be assigned the median 
of the RGB values (over that location in all images). 
However, this method performs poorly in very busy 
environments where the scenes are occluded more 
than 50% of the time. Moreover, it does not take any 
continuity properties into account. Therefore some 
detected occlusion might only be partially removed. A 
more sophisticated method for image occlusion is 
needed. 

2 Previous Work 
Ulm [2] removed the obstacles like cars or trees on 
terrestrial images by manual retouching of the 
artefacts or occlusions in a single image. However, 
this is very difficult and tedious.  

Occlusions can also be eliminated via background 
modelling [3-5]. This is often used in visual tracking 
and surveillance system, where a long stream of video 
is taken from the same standpoint to initialise the 
background model with robust statistical methods 
such as the median. Wang [6] proposed a solution that 
locates all �stable subsequences� of pixel values in 
the video stream followed by choosing the most 
�reliable� subsequence with RANSAC. The initial 
background model then carries the mean value of the 
intensities over that subsequence.  

However, we require a technique that does not need a 
large stream of images and is less computationally 
expensive. Our proposed algorithm is based on 
Herley's finding [1] that shows multiple images (>2 
images) are not always necessary in solving image 
occlusion. As long as each location of the image is 
unoccluded at least once, it is possible to form an 
unoccluded image automatically. When the occlusion 
occurs there is generally a discontinuity around the 
boundary of the occlusion. The algorithm assumes 
that each connected set can be filled with data from a 
single connected set, and hence the problem is 
simplified to determining which image was the best. 
This works by comparing the similarity of the 
occlusions outer boundary in the consensus image 

with the occlusions inner boundary in all the input 
images. 

Herley�s algorithm assumes that the occlusions are all 
independent objects; one occlusion boundary cannot 
consist of occlusions from different images. However, 
this assumption is often violated in our image 
acquisition in a busy environment.  To remedy this, 
we improved the implementation in [1] to include the 
removal of occlusion when a single occlusion 
boundary requires information from more than single 
image. 

In addition to that, we included the ability to detect 
unremoved occlusion. In the case where complete 
occlusion removal is not possible (which occurred in 
parts that are occluded in all input images), the 
algorithm is capable of detecting such case and 
perhaps shape retrieval or manual retouching can be 
done to recover the image. This is important as the 
number of the images in the acquired urban image 
database is large and it can be very time consuming to 
look through all processed images to select out 
images that need to be further processed.  

3 Methodology 
Let the images I0(i,j), I1(i,j)� IN-1(i,j) be the input 
images obtained from the calibrated camera taken at 
different time with same view point. Therefore Im(i,j) 
= In(i,j) m,n unless either Im or In is occluded at that 
location or affected by illumination changes. 

The six steps of the algorithm are detailed below: 

1. Construct consensus image 

The consensus image U which carries visual 
similarity can be constructed from two or more 
images (acquiring pixel values from any two images 
that have difference less than threshold α) [1]. 
However, a simple way to remove occlusions for N-
1>2 images would be working with two images (Im 
and In) through the six steps and repeat with the 
resulting image (from Im and In) and the third image 
up to the nth image. 





 −=
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Each pixel in the two images Im and In is compared 
with a threshold α, where α is a small value to allow 
some matching error. We set α to 5 in our experiment. 
If the similarity is low, the consensus image U is 
assigned pixel value of zero. Otherwise, the consensus 
image carries the average of the pixel value in image 
Im and In.  
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The visual similarity can be measured using many 
features such as intensity, colour, gradient, contour, 
texture, or spatial layout. A popular choice for 
similarity is colour due to its simplicity; and 
robustness against scaling, rotation, partial occlusion, 
and non-rigid deformation.  

However, due to the fact that RGB colour space is 
sensitive to the change of illumination, and an outdoor 
environment can not be controlled; employing RGB 
colour space is less effective. Moreover, the images at 
the same position are taken with a time difference of 
at least one minute and illumination may change a lot. 
To curb this side-effect, similar to [7], we employed 
normalized RGB space r, g, b (where r = R/(R+G+B) 
and g = G/(R+G+B) and b=B/(R+G+B)). Figure 3b 
shows an example of the input images in the 
normalised RGB space and figure 3c shows the 
consensus image. 

 
Figure 3 Construction of consensus image 

2. Discard consensus image noise using low pass 
filtering 

The consensus image at this stage may contain a large 
amount of occluded �holes� (zero regions) due to true 
occlusions caused by moving objects and noise from 
illumination. In an outdoor environment, moving trees 
and bushes can generate a large number of small holes 
in the consensus image. Eliminating these relatively 
small occlusion �holes� at this stage will reserve more 
computation time for the more complex processing 
part.  

We employed a morphological filter which fills in the 
zero pixels that appear to be relatively small (less than 
0.01% of the total pixels). It is important to select an 
image filter that does not change the position of the 
occlusion boundary (for instance, erode or dilate 
filter), as the accuracy of the true occlusion boundary 
has much effect on the occlusion removal. Figure 3c 
shows an example of the filtering result. 

3. Form closed connected set in consensus image 

Each occlusion which appears as a connected �zero 
pixel� region in the consensus image is grouped 
together as Sp, p=1,2,�,P, where P is the number of 
occlusion region in consensus image. For instance, in 
figure 3d, the consensus image has three �holes� � 
M=3 and figure 4a shows an example of grouped 
connected zero pixels. 

Similar to [1], for each set of Sp, the internal boundary 
of each occlusion, Bmp, m=1,2,�M, where M is the 
number of input images, is defined as the set of pixels 
in the zero-connected region that has at least one 
neighbouring non-zero pixel with the value from the 
input images. Therefore, for each set of occluded 
images, there will be m×p internal boundaries. The 
green outlines in figure 4b-g are the examples of the 
internal boundary.  

 

 
Figure 4 The occlusion boundaries 
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For each set of Sp, the external boundary Ep is defined 
as the set of pixels which is not in Sp and has at least 
one neighbour in Sp. The values of the external 
boundary are taken from the consensus image (or any 
input images, as the external boundaries are the pixels 
just outside the occluded region).  

We need to provide a difference measure (step 4) for 
change across the boundaries. To do this, we calculate 
a single value for the external pixels of a single 
internal pixel. In this case we simply take the median 
of the external neighbours of an internal pixel. 

For instance, in figure 5, the internal boundary = {a, 
b, c} and the corresponding external boundary = 
{median(u,t,w), median(w,x,y,z), median(y,z)}. 

 
Figure 5 Definition of external boundary 

4. Test each set of Sp for occlusion overlap 

A big difference in pixel value at the boundary is 
most likely to indicate an occlusion. Therefore, it is 
possible to recover an occlusion from pixels from a 
image provided that a small difference is constant 
throughout the boundary pair. Otherwise, it may 
indicate that it is insufficient for each Sp to only fill 
from a single image. In this case, Sp needs to be 
broken into n parts, where n is the number of actual 
occluding objects in one connected region. For 
example, in figure 4, S1 can be filled from I1 and S2 
can be filled either from I1 or I2. On the other hand, S3 
has to be filled partly from I1 and I2. 

For each occlusion Sp, there is m external and internal 
boundary pairs. To determine where and whether the 
boundary needs to be divided, we analyse the trend of 
the difference of the boundary pairs. Let dmp be the 
difference of internal and external: 

 || pmpmp EBd −=  (2) 

In the case where Sp can be filled from single image, 
dmp will constantly be relatively small for at least one 
m (image). For example, in figure 4, d11 will be 
constantly relatively small and d21 will be constantly 
relatively large; on the other hand d13 will be partially 
relatively small (where d23 is relatively large) and 
partially relatively large (where d23 is relatively 
small), which indicates filling from single image is 
insufficient. Therefore this implies that if there is no 
zero-crossing in Dp, where Dp=dnp-dmp, the set of Sp 
can be filled from single image.  

If the number of zero-crossing in Dp is non-zero, we 
need to discover the dividing location in the occlusion 

boundary, which can be obtained from the location of 
the zero-crossing in Dp. For instance, in figure 6a, D3 
= d23-d13 is plotted (smoothed with a moving median 
filter). The negative regions indicate filling from I1 
and positive region from I2. The location where the 
boundary needs to be broken apart (shown in figure 
6b) can be discovered from the location of zero 
crossing (labelled as A and B).  

5. Fill up consensus image zero regions 

Each occlusion hole Sp which now only requires 
information from single image is filled with pixel 
values from the most suitable image.  

 
Figure 6 Boundary separation 

The selection criterion is decided based on the degree 
of discontinuity, L, for each Sp in each image. When 
an occlusion occurs, the variation of the pixel values 
at the boundary of occlusion will be relatively large. 
Therefore Sp will select the image with lowest L to fill 
in the occlusion region. 

 )(
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where k is the number of pixels in the boundary. 

Consider the example in figure 4b,c: L11 = 16 and L21 
= 49. Therefore, S1 will be filled from I1. 

6. Blend and retrieve realistic shape 

Blending [8, 9], which is often employed after image 
stitching, is required to provide a realistic final output 
in order to overcome the illumination and colour 
difference of the filled occluded region that can come 
from different images.  

In the case where the overlapped region is too big to 
be entirely recovered (which is indicated by the 
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distance between the locations of boundary division) 
the algorithm is able to identify this situation and 
employs manual retouching to recover the final 
output. For instance, in figure 6b, the distance 
between A and B is relatively large and this confirms 
that the occlusion cannot be entirely removed. For full 
automation, a shape retrieval algorithm [10] can be 
implemented. 

4 Results 
A selection of our results is shown in figure 7, 8 and 
9: 

 
Figure 7 (a) Without the boundary separation, S3 
shown in figure 4a have to be filled from one image 
with the lowest bp which is b13. (b) With boundary 
separation, the best recovered consensus image still 
contains the occlusion at the unobservable 
background region. (c)The algorithm can detect the 
insufficient of background information and prompt 
for manual retouch or shape retrieval. 

 

 

Figure 8: Input images with occlusions and result of 
the implementation (a) Input image sequence; (b) 
Consensus Image with occlusion �holes�; (c) Without 
boundary separation, the occlusions that overlapped is 
only filled from second image; (d) With boundary 
separation, all occlusions are removed automatically 
as occlusion overlapped at relatively small region. 

Due to the reason that only the immediate pixel inside 
and outside the occlusion boundary is considered, the 
construction of a consensus image is important. We 
observed that shadows (which are not entirely 
removed in the normalised RGB space) are very  
 

 

 
Figure 9: Input images with occlusions and result of 
the implementation (a) Input image sequence; (b) 
Consensus Image with occlusion �holes�; (c) Most 
occlusions are removed  

likely to cause the boundary of the real occlusion to 
be detected outside the real occlusion location. This 
will affect the level of discontinuity when determining 
which input image has the �best� region to fill from. 
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5 Conclusion 
We had improved the algorithm shown in [1] to 
include the capability of removing overlapped 
occlusions in input images and the ability to alarm 
unresolved occlusions. We tested the algorithm on the 
images collected from the calibrated digital camera of 
our laser scanner system. Most images were occluded 
with human or other objects such as cars and trolleys. 
The algorithm is capable of removing most of the 
occlusions unless the background cannot be observed 
in at least one of the images, for example when a car 
is parked throughout the entire data acquisition 
session. This is not possible to solve without 
additional background information. Relatively small 
occlusions (far from camera) with shadows are also 
more likely to be unremoved due to the inaccuracy of 
detected boundaries. Further work includes using the 
information of the pixels nearby the boundary, other 
than the immediate pixel adjacent to the boundary, to 
lower the effect of inaccurate occlusion boundary. 
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Abstract 
Our goal is to simulate interactions with a computer model of the esophagus and the stomach, built from the 
Visible Human database, and reported in previous works. The optical distortion of the endoscope was simulated 
during navigation allowing the user a quantitative assessment of distortion when he measures an injury.  Another 
improvement to our model is the inclusion of abnormal anatomy, from two types, the first one is related to the 
color features of the disease and the second is a direct modification in the triangle structure of the mesh, with the 
goal to simulate blisters and injures in the model.  The esophagus in its natural state presents radial collapsing, 
which was simulated using finite element methods. To this collapsed state we superposed the interaction of the 
triangle mesh with a model of the air pressure against the walls.  The collapsed state allows to train the user in 
the insertion of the endoscope and to assess the effects of friction between the endoscope and the walls of the 
upper gastrointestinal system. 

Keywords: SPH, optical distortion, mesh color diseases representation. 

1 Introduction 
Computer training in endoscopical procedures allows 
the specialist to interact with a virtual model and 
provides different points of view of the anatomical 
area of interest.  Such enriched navigation permits the 
specialist to have a better understanding of the whole 
volume. To complete a computational training system 
from our upper gastrointestinal model, reported in [1], 
we developed a navigation environment that permits a 
user to explore the model and to be trained on 
anomaly detection. 

Computer models for endoscopy training have already 
been reported [2]; our approach is to give the user the 
possibility of train in two areas that these models do 
not provide: the optical distortion and the insufflation 
process in the stomach.

The goal of the present work is to simulate 
interactions with a computer model of the esophagus 
and the stomach, built from the color anatomical 
slices of the Visible Human database [3].  To simulate 
interactions with the model, the esophagus is 
collapsed to obtain a natural state.  Navigation was 
also enhanced to allow the user to insufflate into the 
upper gastrointestinal track.  These and other 
improvements provide the user with a closer 
experience to reality when he is training in the 
computational environment of our system. 

2 Procedure 
Since our model is built to serve as a training system, 
the navigation must provide the closest possible 
realistic behaviour, hence, we introduced an optical 
barrel distortion [4,5] that allows to experiment the 
point of view of a real endoscope. We also simulated 
abnormal anatomies and the deformation of the High 
GI system due to an insufflation process. 

There are two main problems in this stage: the first is 
the computational burden of real-time deformation of 
the mesh, the second is related to the physical 
behavior of fluids and its representation in a 
computational environment. A problem arises when 
the process of air insufflation is introduced to our 
model: the increased time in rendering and a slow 
feedback interaction. To solve this we first divided the 
process of navigation and interaction into pre-
calculated and real-time computed features, the first 
one are modifications to the color or the structure of 
the triangle mesh; these modifications are pre-
calculated since their characteristics will remain the 
same during the time the user interacts with the 
model, the second one consists of mesh modifications 
during navigation, depending on user interaction, and 
cannot be pre-calculated. The real-time calculations 
use approximated numerical solutions, maintaining a 
fast interactive environment. The first step is to 
classify all mesh modifiers that do not need to be 
made in real time: these are color modifications and 
solid structure modifications. 
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2.1 Color Modification  
There are two main changes made over the original 
model, the first one is the introduction of color 
obtained from video-endoscopies of healthy 
esophagus to replace the original color that represents
our model, this is a necessary step in the improvement 
of the model because the original color was obtained 
from the VHP data base, where color is altered by the
postmortem condition. In the Fig. 1 presented the 
result of the color change.

The next color modifications are introduced as a 
representation of diseases produced by the constant 
exposure of the esophagus to the peptic acid. This 

disease can be detected during the endoscope 
exploration; the physician must identify the color 
pattern of the affected zone and give an accurate
measurement of the interest area 

Such diseases can be considered to be in the initial 
stages before structure alteration, examples of such 
diseases are: Gastro-esophageal Reflux Disease 
(GERD), reflux esophagitis, Barret disease and some 
ulcers. [6]

In Fig. 2 is shown the effect of the peptic acid in the 
color of the model, depending on the type of disease 
and its severity.  The intensity, hue and extension will 
change, whereas position and severity vary each time 
the model is run. 

Colors for the model were obtained from video-

Figure 1: a) Real endoscopy, b) Model of the 
esophagus mapped with the color from the VHP 
database.

Figure 1 (continuation): c) Model with the 
color mapping from the real endoscopy, d) 
another view of the model
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endoscopies form patients with a healthy condition or 
with some disease. At first, we considered the ideal 
case where the esophagus is represented by a cylinder 
and the center of this cylinder in XY plane gives us 
the position of the lens. Fig. 3 shows a visual 
representation of this cylinder.

This representation is useful for a first approach to 
color segmentation, the properties of the field of view
of the wide angle lens are used to construct the 
mapping from the 2D images to 3D vertex. We 
consider that the greater the angle of view, the object 
gets closer to the lens in the Z axis (Fig. 4).

From the Fig. 4 we obtain that θ  Z depth. As the
angle θ increases, the object gets away from the lens. 

The figure 5 is a snapshot from a video-endoscopy.   

The Fig. 5 shows a real endoscope image, where three 
problems are present:

1.- The center of the anatomical structure (esophagus 
stomach junction) and the center of the lens are not 
equal. To correct this, we introduce a difference Δx.

2.- To obtain a certain perception of depth, the 
esophagus-stomach junction is manually segmented 
and considered to be the farthest object in the image.

3.- The presence of folds is the most difficult problem
related to segmentation, because we can not 
characterize 3D folds with only one image.  

To map the color value from the images to the vertex 
table, the distance from the correct center to the 
interest pixel is calculated; all the pixels having a 
certain distance will belong to a contour with the 
same z value.

22 )()( yyxxd    

From each representative distance we obtain a list of 
pixels, whose number N would highly vary depending 
on the distance d to the center. The contour closest to 
the center would have less pixels, having this in mind, 
it is necessary to interpolate more color values 
because the N pixels are less than the number of 
vertex corresponding to the 3D model for that slice.

For each vertex the corresponding color value is 
obtained from the color value of the neighbors by 
bilinear interpolation.

The distances from the lens to the farthest object in 
the image in the z axis is obtained with the relation:

max min
max

r rD
m




Figure 3: a) Ideal representation of the 
esophagus. The blue sphere represents the 
lens position.

Figure 4: a) Segmentation of the color 
depending on the angle of view.

Figure 5: Barrett disease, the image shows
the Esophageal-Stomach Junction

Figure 2: a) Barred disease present in the 
model of the esophagus.

a
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Where m is a scale factor obtained from the size 
correction of the projection of a fix anatomical area, 
in the case of the GERD or the Barret diseases, the 
anatomical area is the “esophageal-gastric junction”:

Real size
Projection size

m 

The number of discrete distances “d” necessary to 
map all the images to the model and the distance 
between them is obtained with the relation of Dmax and 
the scale of the z coordinate of our 3D model.  

max
d

scale

DN
Z



max

d

Dd
N

 

2.2 Solid Structures
The solid structure modifications are changes in the 
esophagus produced by extended damage. In our 
model we require to build new triangular meshes and 
a 3D modeling software (Truespace 6) is used to build
the varises 3D meshes.  Fig. 6 shows a rendering 
corresponding to a high degree of varises and the 
model of one.

The second kind of modifications are calculated in 
real time, depending on the user decisions and the 
position of the lens of the endoscope, so they required 
an algorithm preventing slow feedback; it also 
integrates the optical distortion and the simulation of 
the insufflation process during navigation.  

2.3 Optical Distortion  
A barrel geometrical distortion is present in common 
endoscopes. To obtain the distortion parameters in a 
real endoscopic lens we used a grid image viewed 
trough the lens.  The two sets of points with and 
without lens are related by the following inverse 
transformation in implicit form [7]: 

The result of the iterated process is shown in Fig. 3. 
The simulation of distortion is justified when a 
measurement is made.  This modification is only 
applied during rendering where the original position 
of the vertex is not changed, and only calculated on 
visible features of the model.   

2.3 Fluid interaction  
The high gastrointestinal system is collapsed at rest, 
hence, to improve the navigation and visibility, the 
endoscopist must introduce air in order to expand the 
esophagus and stomach.  Therefore, we introduced the 

Figure 6: Superposing a mesh for varises 
over the original model.

Figure 7: Change in the field of view due to 
the introduction of the lens distortion and the 
change of the angle of view to 100°
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simulation of such insufflation process.

To model this process we implemented the Smoothed 
Particle Hydrodynamics (SPH) fluid technique [8], 
using the properties of fluid dynamics to build an 
approximate behavior of the air pressure over soft 
tissue.  Particle dynamics allows calculation of 
position and velocity of a set of particles and also to 
interpolate the properties of the air pressure in a given 
region, as well as the interaction with the boundaries. 

Fluid dynamics is the study of fluid motion in 
response to forces such as gravity and pressure [9]. 
The equations of motion for a compressible fluid are: 

  
Where ρ, v, P and u represent density, velocity, 
pressure and energy, respectively. 

The idea behind SPH is the determination of fluid 
characteristics by interpolating from a set of non-
ordered points representing the particles.  The fluid is 
partitioned into N regions with local densities defined 
by:  

  
Where mj is the mass of the particle j, and the sum is 
over all particles. The interpolation is performed 
using a smoothing kernel W which is a weighted sum 
over particles within an area defined by a smoothing 
length h. 

There are various forms of W, however the most 
advantageous (3) is:  

  

Where  q = r/h and r is the average distance between 
particles. 

We can extend the idea of the kernel in SPH to the 
interaction with the boundary, in this case we consider 
a solid triangular mesh surface to be made of particles 
with an interaction kernel associated to them [10], so 
when the particles of the fluid enter their interaction 

zone, defined by W, the pressure associated to the 
fluid particle is calculated on the vertex of the mesh. 
Fig. 8 shows the result of applying this equation.  

To simulate the wall-particle interaction, in the 
simplified cylindrical model, the propagation of the 
pressure force was calculated with the aid of finite-
element and mass-spring methods.   

3 Future Work 
The next step in the construction of the training 
system is the integration of the FEM in the full High 
Gastrointestinal model (note that in the last 
paragraphs we described the application of FEM on a 
cylindrical approximation), in order to apply SPH to 
simulating the insufflation of the model in real time.

4 Conclusions 
In order to obtain a computational training system for 
the gastrointestinal model that can be navigated in 
real time, we required an optimal combination of 
methods to simulate each of the behaviours and 
properties added so far. A first improvement was to 
pre-calculate everything that remains static during the 
navigation. The final model can be navigated with a 
high degree of interaction, since our rendering 
procedure employs a method that provided a discrete 
solution close to reality, and at the same time, fast 
enough to maintain a real-time feedback. In the case 
of optical distortion we modified the original position 
of the pixel on the screen into the corresponding 
distorted position; the distortion process is accelerated 
by pre-calculating, for each pixel, its final distorted 
position since the screen always maintains the same 
proportion. For the air dynamics we used Smoothed 

Figure 8: Insufflation process in a 
cylindrical model.
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Particle Hydrodynamics (SPH), achieving a realistic 
time response for user interactions with the model. 
Finally, when the process of insufflation is calculated, 
the walls of the esophagus expand accordingly. 
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Abstract 
This paper describes a method for acquiring the visual hull of an object with known background. The first step of 
this method is acquiring sets of silhouettes from multiple photos of the object. The second step is using these 
silhouette images to construct the 3D model of the object (visual hull of the object).  In the later part of the paper, 
the limitations of the proposed method are explored, and future possible improvements are also presented. 

Keywords: Visual hull, 3D model, silhouette, voxel, computer vision. 

1. Introduction 
More and more 3D computer graphics are used in 
modern electronic games, movies and real world 
simulations. Better realism, visual effect and simula-
tion effect allow 3D computer graphics to take more 
places over traditional 2D computer graphics. To be 
able to construct 3D models of real world objects ef-
fectively has become an important topic.  

 

Currently, there are laser-scanning systems for 3D 
shape acquisition. However, most of these systems are 
expensive. Also when they are used in acquiring 3D 
human body shape, much useful information is lost. 
Similarly, commercial marker-based motion capture 
systems are invasive and difficult to use. In applica-
tions such as security/surveillance and human-
computer interaction, these systems are not applicable 
because placing markers on the person is either im-
possible or undesirable. In contrast, there are many 
advantages of using a vision-based approach for 3D 
shape acquisition. For example, cameras are low-cost, 
easily reconfigurable and non-invasive. Moreover, 
camera images contain both shape and color (texture) 
information of the object. Therefore, one of apparent 
most promising solution is visual hull.  

 

In this paper, two popular visual hull algorithms are 
briefly explained in the section 2 (“Background”). 
The “Constructing visual hulls by voxels” section 
presents the method used for visual hull construction 
in this paper. The “Experiment Setup” section de-
scribes the requirement and setup of the method. In 
the following section “Result” provides the result of 
the experiment in a scientific manner. In the “Conclu-
sion and Future Work” section, the paper reveals the 
limitation of the method and giving directions for 
future improvement.  

. 

2. Background  
To use silhouettes to acquire 3D shape of an object 
was first introduced by Baumgart in 1974. He used 
four silhouette images to estimate the 3D shape of a 
baby doll and a toy horse in his PhD thesis. [3] Since 
then, there are various different variation of this 
method have been proposed.  
 
 
Twenty seven years later (1991), Laurentini [4] 
coined the term Visual Hull (VH). It has been used by 
researchers for over a decade to denote using silhou-
ette to acquire 3D shape of an object.  
 
There are currently many different visual hull acquisi-
tion algorithms. However, almost all of them are im-
provements of two approaches. One is two-
dimensional surface based, and the other one is three-
dimensional volume based.  

 
Figure 1: 2D surface based visual hull approach.[17] 
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A two-dimensional surface based method is normally 
performed in the following manner. From a view 
point p, there is a silhouette image Sr of the object. By 
allowing infinite rays emit from point p and passing 
through the interior points of Sp, we can obtain a 
cone-like volume Cp (visual cone). For every other 
view point p, there is a visual cone C. Intersecting all 
the visual cones, the visual hull of the object can be 
formed (CP = ∩Sp). The visual hull is represented by 
the 2D surface patches which are obtained from inter-
secting the surfaces of the visual cones. This method 
is hard to implement and not computationally ineffi-
cient. When computing high resolution visual hulls, 
the method requires some form of CSG that increas-
ing the complexity of the method more. Therefore, 
this method is rarely used in modern visual hull re-
searches.  
 

 
Figure 2: 3D volume based visual hull approach.[17] 

 
Three-dimensional volume based method is devel-
oped after two-dimensional surface method. The 
method creates a cubic volume which is formed by a 
number of small cubes. Each cube is projected to the 
silhouette images of the object. If the projection of the 
cube lies outside of the silhouette images, the cube 
will be eliminated from the volume. After much itera-
tion, the volume will form the visual hull of the object. 
This approach is relatively more efficient and accurate 
than the two-dimensional surface based approach. 
Most of recent visual hull researches are base on this 
approach, such as [5], [6], [7], [8], [9], [10]. 
 
An important fact is the silhouette based visual hulls 
can never be as accurate as the original object. This is 
due to the inability of identifying concave surface by 
silhouette.  

3. Constructing Visual Hull by Voxel  

3.1 Silhouette Extraction 
Silhouette extraction is the fundamental step of the 
visual hull construction process. Its accuracy directly 

affects the outcome of the visual hull. Therefore, us-
ing a precise silhouette extraction algorithm is vital.   
 
This paper employs a robust algorithm using histo-
gram information in the HSI color space to extract the 
silhouette of an object. The following diagram illus-
trates the process of the algorithm.  
 

Calculate the intensity difference

Greater than threshold

Calculate the color difference

Yes

End of array of pixels

No, 
repeat the process for next pixel

Process terminated

No

Yes

 
 

Figure 3: The silhouette extraction process 
 
As the diagram shown, the algorithm precedes two 
major actions on each pixel of the picture. The first 
action is finding out the intensity difference of a tem-
porary pixel in the current image and the background 
image. If the difference of the intensity is greater than 
a predefined threshold, the pixel will be set as a can-
didate of silhouette pixel. If the difference of the in-
tensity is less than the predefined threshold, the algo-
rithm will check whether there are more pixels need 
to be tested in the pixel array. So far, the process is 
still under first action. The goal of this action is ex-
tracting the difference between the known background 
image and current temporary image. However, this 
difference includes the object’s shadow.  
 
The second action of the algorithm calculates the 
color difference of previously obtained candidate 
pixel between the current image and the background 
image. If the color difference is less than a predefined 
threshold, the candidate pixel will be set as a real sil-
houette pixel, else it will be excluded. This action is 
excluding the shadow pixels which are set as part of 
silhouette in the first action. The calculation details in 
the algorithm are explained in the following two 
paragraphs. 
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As mentioned above, there are two major actions in 
this silhouette extraction algorithm. The first action 
calculates the intensity difference of a pixel by the 
following formula. 
 

BGCTDIFF III −=  
 
IDIFF indicates the difference of intensity, and ICT and 
IBG are the intensity of the current image and the in-
tensity of the background image respectively. Every 
“I” is measured as a vector. The three components of 
the vector are the values of the pixel in RGB color 
domain. Sign “ ” represents the norm of its con-
tent.  
 
The second action which calculates the color differ-
ence is performed by following formula. 
 

][cos 1

BGCT

BGCT

II
II ⋅= −θ  

 
“θ ” is the angle between the vector “ICT” and ”IBG” 
in the RGB color domain. It is a measure of the color 
difference of a pixel between the current image and 
background image. As mentioned above, ICT is the 
intensity of the current image, and IBG is the intensity 
of the background image. 
 
This silhouette extraction algorithm is relatively ro-
bust and reliable. Related experiment result is demon-
strated in the “Result” section.  

. 

3.2 Visual Hull Construction 
The visual hull construction method used in this paper 
is a three-dimensional volume based method. In the 
“Background” section, the three-dimensional volume 
based method has already been briefly explained. In 
order to understand this method in detail, the concept 
of voxel will be introduced here. A voxel is a “volume 
element” as that a pixel is a “picture element”. It is the 
smallest element in a three-dimensional volume. The 
algorithm presented in this paper eliminates the voxel 
which should not be included in the visual hull by 
processing through all the known silhouette images. 
The following pseudo demonstrate the process in de-
tail: 
 
 
1. Divide the interested space into NxNxN discrete 
voxels Vn, n = 1, ……N3.  
2. Initialize all the N3 voxels as visual hull voxels. 
3. For n = 1 to N3 { 

For j = 1 to J { 

(a) Project .Vn into the kth
 image 

plane by the projection function π-
J(Vn); 
(b) Eliminate the pixel Vn if the pro-
jected area πJ(Vn) lies completely 
outside S K

J . 
} 

    } 
4. The uneliminated voxel forms the visual hull of the 
object.  
 
 
In this algorithm, each voxel is projected from its real 
world position to the image position. The projection 
function πJ(Vn) can be decomposed to following two 
equations. 
 

orientaionM
z
xfx ×= ''  

 

orientaionM
z
yfy ×= ''  

 
“x’” and “y’” represent the coordinate of a voxel in 
a 2D silhouette image. “ f’” is the focal length of the 
camera which is used to take the silhouette images. 
“x”, “y” and “z” are the coordinate parameter of 
the voxel in the real world. The term “Morientation” is 
the current orientation of the voxel respect to the 
camera.  
 
The focal length ( f’) of the camera and orientation of 
the object all can be acquired through a camera cali-
bration process. Since camera calibration is not part of 
a visual hull acquisition algorithm, it is not discussed 
here. For further information, please refer to [18]. The 
values of “x”, “y” and “z” can be assumed, due to 
the exact size of a 3D object is not the main purpose 
of the visual hull, but shape.  
 
By knowing above parameters, after applying the al-
gorithm described in the pseudo code, the visual hull 
of an object can be formed. 

4. Experiment setup 
This section describes the required setup for the visual 
hull method proposed in this paper.  
 
4.1 Camera calibration 
The last section mentioned focal length and orienta-
tion need to be known to calculate the projected coor-
dinate of a voxel on the silhouette image. In the ex-
periment, those parameters are obtained by a camera 
calibration program developed by Danail Stoyanov 
[19]. Through the program, multiple photos of a 
chessboard are taken. These photos are inputs for ac-
quiring the camera intrinsic parameters (focal length 
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and distortion coefficient of the camera). The focal 
length is used for voxel based volume reconstruction 
step later, and the distortion coefficient is used for 
obtaining correct silhouette image. 
 
4.2 Silhouette acquisition 

 
 

Figure 4: Setup of silhouette acquisition 
 
Like the above figure shown, an object is placed on a 
home made turntable. (The turntable is underneath of 
the basketball.)  There are tow direct light source to 
ensure the result of silhouette acquisition. Multiple 
photos of the object are taken from different angles by 
rotating the turntable.  Those photos are used as in-
puts for generating silhouette images by a program 
developed for this project. 
 
4.3 Voxel reconstruction 
 
A program developed for this project uses the silhou-
ette images as input to execute the algorithm de-
scribed in the “Visual Hull Construction” section. The 
output of the program is printed into a “wrl” file. The 
file is consisted of coordinates of the visual hull in 3D 
virtual world. It can be displayed by a VRML (Virtual 
Reality Modelling Language) browser. 

5. Result 

 
 

Figure 5: Silhouette which includes the shadow of the 
basketball. 

 

 
 

Figure 5: Silhouette which excludes the shadow of the 
basketball, 

 

 
Figure 6: Visual hull of a basketball. 
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Table 1: The accuracy of the silhouette algorithm pre-
sented in this paper. 

 Intensity only Both intensity 
and color 

Accuracy (av-
erage) 

43% 98% 

This accuracy is obtained by comparing the result 
from the silhouette algorithm and manually acquired 
silhouette image. 

6. Conclusions and Future Work 
The method described in this paper is relatively easy 
to setup and computationally efficient. However, the 
usability of the method is also limited due to the ne-
cessity of method, using multiple photos from a single 
camera, which implies that this method is not able to 
acquire visual hull in real time. In future, with multi-
ple video cameras, the method can be improved to be 
used for real time visual hull acquisition. The silhou-
ette algorithm used in this project requires the system 
to have knowledge of the background. This limits the 
method to being only used for object visual hull ac-
quisition with known backgrounds. Unknown or dy-
namically changing backgrounds render object visual 
hull acquisition as not achievable with current silhou-
ette algorithms. In future, the method can adapt more 
advanced background/foreground silhouette algo-
rithms as in [1] to enable more robust visual hull ac-
quisition. At last, the visual hull construction method 
in this paper can also use an octree data structure to 
improve the overall performance.  
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Abstract

Evaluation of medical image processing algorithms proves to be a vital but difficult task because ideal
reference data is hardly available. By simulating the most significant aspects of the imaging process
realistic data can be generated from an ideal segmentation. Employing numerical measures to compare
the calculated and the underlying ideal solution an objective evaluation can consequently be performed.
The described software phantom allows to simulate multiple medical modalities with various parameters
of the imaging, distortion and deformation processes. Currently various magnetic resonance imaging
(MRI) sequences, computed tomography (CT), positron emission tomography (PET), single photon
emission tomography (SPECT) and ultrasound (US) imaging are incorporated. Using the described
numerical measures segmentation and deformation results can be automatically evaluated and compared.

Keywords: simulation, evaluation, medical imaging, software phantom, segmentation, registration

1 Introduction

Processing of images from different medical modal-
ities is a rapidly growing field. Especially auto-
matic segmentation, i.e. identifying and separating
different regions, and rigid or elastic registration,
i.e. locating corresponding points of structures in
different data sets, is a challenging task.

Due to the nature of medical imaging there is
hardly any subject specific reference data available.
With respect to resolution, signal to noise ratio,
distortion and representation of certain structures
some modalities serve as a gold standard to
which all other imaging techniques are compared.
Nevertheless the underlying true geometry of the
structures remains usually unknown because the
object under investigation is an alive patient. But
without this ideal reference data it is difficult to
objectively evaluate the quality of a manually
and/or automatically determined object shape.

There are various ways to create reference data
for evaluation – each associated with certain ad-
vantages and disadvantages. Some examples are
the well known visible human [1], the BrainWeb
project [2, 3] or physical phantoms [4].

In this article the focus will be on the method of
simulating realistic images by means of a so called
software phantom because this does not require
any real physical objects like patients or physical
phantoms to be used and allows to generate images
of different modalities easily while having control
over all modeled imaging parameters and artifacts.

Even though this general approach has been known
and used for many years it should be noted that
many of the widely used test data sets do not
represent the artifacts and noise of real imagery
sufficiently (e.g. the classical Shepp-Logan phan-
tom [5]). Therefore they do not provide a suitable
basis for quantitatively estimating the performance
of image processing algorithms under ”real world
conditions” but rather serve as a valuable tool to il-
lustrate the general behavior of the tested method.
These limitations will be tackled with the proposed
software phantom.

2 Simulation of the Imaging Process

To be able to simulate the real imaging process a
preliminary study of the involved deterministic and
stochastic physical (sensors, amplifiers. . . ) and nu-
merical (reconstruction algorithms. . . ) processes
was carried out. Additionally modality specific
differences were taken into account. To make im-
plementation and calculation time feasible some
assumptions had to be made. These include:

• object geometry can be described by regions
of different characteristic gray values/textures

• homogeneous noise processes in the whole ob-
ject and image domain

• most significant imaging processes can
be modeled by linear filtering and for-
ward/backward transformations.
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Figure 1: Processing steps of the software phan-
tom’s synthetic ”imaging chain” without spatial
transformations/distortions.

In figure 1 the identified and consequently modeled
steps of the simulation process are shown. They
will be explained in more detail in the following
sections. See also figure 2 for a illustration of the
simulation steps for a simple circular object.

2.1 Object Definition

The first step of the simulation is the definition of
the object geometry by using a segmented image.
There is no restriction on the possible shapes ex-
cept that these should be sufficiently big relative to
the image resolution to still be visible after being
distorted by the consecutive imaging steps.

At this point it is possible to add a spatial trans-
formation to the segmented image which allows to

create a series of deformed images for the evalu-
ation of registration algorithms. Currently affine,
sinusoidal and (smoothed) elastic deformations are
available in the software phantom.

Following the assumption that objects should be
differentiable and can be described by character-
istic gray value or textures the next steps assigns
these predefined gray value to the respective seg-
ment.

It should be noted that the observed gray values
in medical images not only very between subjects
and body parts for the same class of tissue but that
these usually also depend on the specific imaging
device and the parameters used. For this work
parameters from the BrainWeb project and other
clinical data were used [4] .

To be able simulate the effects of infiltrative growth
of tissues and pathologic structures (e.g. cancer)
as well as the local perfusion of radioactive tracers
(e.g. PET and SPECT) an averaging filter has
been included to simulate these diffusion processes.

In the next step different noise distributions can
be applied to the image gray values (Gaussian,
Poisson, salt and pepper, speckle) to account for
the stochastic nature of the image gray values.

2.2 Imaging and Artifacts

To create the projections of the object a Radon
transformation is applied. In combination with a
mean filter this models the limited resolution of the
sensor array. The parameter to describe this effect
is the ”full width at half maximum” (FWHM).

Before the projections are reconstructed using an
inverse Radon transformation noise can be added
to simulate the effects of distorted sensor signals
and/or quantum effects for nuclear imaging (PET
and SPECT).

Finally the output resolution can be adjusted using
interpolation and additive (unfiltered) noise can be
added to the images.

2.3 Data Export

After the simulation has finished the created data
along with the simulation parameters can be saved
as a compressed MATLAB file or DICOM data.
This allows to accurately document which data has
been used for evaluation including the specific sim-
ulation parameters and to automatically annotate
the final graphical presentation of the results.
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(a) geometry (b) gray values (c) diffusion (d) object Noise (e) Radon transf.

(f) FWHM (g) sensor noise (h) inverse transf. (i) resolution (j) additive noise

Figure 2: Simulation steps of software phantom (object diameter 25 mm; image size 50 mm × 50 mm;
gray values 20/150; diffusion filter kernel size 5 pixel; Gaussian object noise µ = 0, σ = 30; stepping angle
for Radon transformation 3, 75◦; FWHM = 2, 5 mm; Poisson sensor noise; inverse Radon transformation
with linearer interpolation and Hamming filter; spatial resolution of 1, 5 mm; Gaussian image noise
µ = 0, σ = 5).

(a) T1-MRI (b) PD-MRI (c) R-CT (d) PET

Figure 3: Simulated multimodal images of the brain.

3 Sample Simulations

In figure 3 some sample simulations for MRI, CT
and PET are shown. To visualize the effect of
the reconstruction artifacts these have been ex-
aggerated compared to more realistic simulations.
Visual evaluation by neuroradiologists showed that
the simulated images are very realistic.

4 Simulation of Ultrasound Images

Since the principle of ultrasound imaging deviates
significantly from the above modalities a separate
module has been included in the software phantom.

This module is based on the ultrasound wave prop-
agation software FIELD [6] and has been modified
accordingly to simulate medical images.

Figure 4 shows some of the steps during the ul-
trasound simulation and the resulting gray value
image.

Due to the complexity of the wave simulation the
calculation time for the shown image on a 1.2 GHz
Pentium III mobile (133 MHz front side bus, 1
GByte memory) accounted for 48 minutes. But
this simulation allows the generation of very realis-
tic image data while having control over all imaging
parameters.

5 Numerical Quality Measures

To measure the accuracy of segmentation and
registration algorithms several methods have been
proposed in the literature (see [4] for an overview).

Apart from the above mentioned problem of ref-
erence data [7] one of the major difficulties is the
application specific definition of quality or accu-
racy.

For some applications only the area or volume of
certain objects might be of interest while for others
the whole exact scene configuration is important.
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(a) scatter positions (b) scatter distribution (c) signal amplitude (d) gray value image

Figure 4: Steps of US simulation (parameters: 128 sensor elements; scan sector size 30◦; transducer
frequency 6 MHz; 30 scan lines per element; 4 scatter point per pixel on average).

To account for these different aspects various nu-
merical measures have been included in the pro-
posed method. The user may then pick the one
which is most relevant for the respective applica-
tion.

5.1 Segmentation Quality

To estimate the quality of segmentation algorithms
the following measures were included:

• absolute and relative number of misclassified
voxels (area/volume size)

• Dice- and Tanimoto-coefficient (overlap of seg-
ments)

• distance of centres of gravity (location)

• eccentricity/solidity/compactness of objects
(morphological measures)

• sensitivity/specificity (rel. number of false-
right positive-negative segmented points)

• figure of merit (FOM: average normalized dis-
tance between the reference and the calculated
segment borders; with a value of one indicat-
ing a perfect segmentation).

For a detailed explanation of the above measures
and the respective equations see [4].

In figure 5 the output of the evaluation module
for the FOM measure is shown for the results of a
multimodal segmentation algorithm.

It can be seen clearly that the best results can be
obtained for CT data and the largest error occurs
for (low resolution) SPECT data. This indicates
that the the model and/or parameters of the image
processing algorithm are not as well adapted to
the SPECT data as to the other imagery. Also it
gives a rough estimate of the ”real world” perfor-
mance and a (relative) quantitative measure when
comparing different algorithms and/or parameter
settings.

Figure 5: Display of automatically calculated
results of FOM measure for a multimodal series
of data with a segmentation algorithm (T1 and T2
are different MRI sequences, a value of FOM = 1
represents an ideal segmentation).

5.2 Registration Quality

Evaluation of registration accuracy is even more
challenging than segmentation. Especially for elas-
tic transformations deriving meaningful, i.e. intu-
itively understandable, numerical measures for dif-
ferences between the calculated and the reference
deformation fields is difficult because the transfor-
mation space is not (as much) restricted.

Affine transformations can be specified using trans-
lation, rotation, scale and shear but for elastic de-
formations the number of degrees of freedoms is
much larger.

Especially in regions with low texture information
there is usually a high registration error due to the
high uncertainty in correlation. The importance of
these regions is very application dependent – as is
the regularization being performed in these areas.
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Therefore registration error measures are usually
calculated at relevant points/regions only. Two of
the most widely used measures were implemented:

• vector difference (direction and absolute value
as a graphical representation for every point
and numerical measure with mean value and
standard deviation for certain regions),

• fiducial registration error (FRE: normalized
distance between calculated and reference lo-
cation of selected points).

Specifically in medical image processing the
fiducial registration error (FRE) gives an intuitive
measure of the calculation error for selected
target structures (fiducials) on the cost of global
information about the calculated result.

6 Results

The developed tool allows to simulate various med-
ical imaging modalities (MRI, CT, SPECT, PET,
US) taking the most important parameters and
artifacts into account. Parameterized series of data
can be easily created and be used for automatic ob-
jective evaluation of segmentation and registration
algorithms.

Numerous numerical quality measures have been
included in the software to allow a task specific
selection of the most relevant ones.

An automatically generated graphical presentation
of the parameters and values of the resulting qual-
ity measures permits a very intuitive and fast eval-
uation.

This method and the respective software has
already been used for development, optimization,
evaluation and comparison of various segmentation
and registration algorithms. It has proven to be a
very valuable tool during these stages.

All simulation parameters can be saved for later
use and documentation purposes which also allows
to compare results between different research
groups.

Due to the modular structure of the program it is
easily extensible to include further modalities and
parameters for a refined simulation and evaluation.

7 Discussion

One of the most critical points when creating ref-
erence data by simulation is the determination or
at least estimation of how realistic they really are.
This would allow a more precise estimation of ”real
world” results for a specific algorithm, rather than

the current relative performance measure within
the ”virtual world”.

To our knowledge, so far no universal solution to
this problem has been proposed in the literature.
Therefore simulation should be considered as one –
but very valuable – method amongst others to es-
timate the quality of image processing algorithms.

Also it should be noted that the general prob-
lem of contextual evaluation of segmentation and
registration quality should be addressed in future
versions as to consider application or even data
dependent evaluation schemes.

One possibility to solve this problem would be to
transform the data into a standardized anatomical
coordinate system and define task specific target
regions or structures. These important regions will
then be assigned a higher weight compared to other
structures when calculating the average (global)
quality measure.
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Abstract
An algorithm is presented for processing and analysis of differential interference contrast (DIC) microscopy
images of the retina to study the cone mosaic. The algorithm utilizes a number of characteristics of the
DIC retinal image to locate the cones to a high degree of accuracy. This information is used to analyse
the cone size distribution, the spatial distribution of cone density, and short-range order and domain
structure of the mosaic.
Keywords : retina, fovea, cone, differential interference contrast microscopy, image analysis

1 Introduction

The retina is a thin layer of neural cells that lines
the inner projection plane of the vertebrate eye.
Within the retina is a sub-layer of photoreceptor
cells (rods and cones) that are responsible for the
processing of light via patterned excitation. Posi-
tioned where the optical axis reaches the back of
the eye is a specialized region of the retina termed
the macula. At the centre of the macula, primates
possess a single, concentrated region of photore-
ceptors known as the fovea. The foveal mosaic
is comprised mostly of cones; photoreceptors that
function only in relatively bright light. The fovea
is responsible for our sharp central vision [1].

Analysis of the spatial pattern of photoreceptors in
the retina has both medical and academic research
interests. It is used to determine the regularity of a
particular retinal region of an animal species dur-
ing its development [2]. Spatial regularity studies
contribute to determining a unifying mechanism
that could underlie all mosaic patterns, and to de-
tecting degradation of mosaic quality from patho-
logic alterations including photoreceptor loss.

Previous studies on the foveal photoreceptor
topography have primarily used images by light
microscopy of histologic sections [3], and recently,
images have been obtained of in vivo samples by
adaptive optics opthalmoscopy [4]. Differential
interference contrast (DIC) microscopy is an
optical microscopy illumination technique with
the potential ability of visualising finer details of
the photoreceptor topography in isolated intact
retina. The method converts the gradients in
optical path length into amplitude differences

in the image by use of Wollaston prisms, and
imposes an apparent light direction on the
formed image [5]. DIC microscopy is an excellent
technique for obtaining optical cross sections of
unstained retinal sub-layers as it produces very
high contrast at the edges of biological structures.
DIC image resolution and clarity are unrivaled
among standard optical microscopy techniques.
However, the apparent light source direction poses
a challenge for digital analysis of DIC images.
Previous studies using DIC images of the foveal
photoreceptor mosaic have used manual analysis
techniques [6],[7].

In Section 2, an algorithm for location of the cone
boundaries and centres is described, and the accu-
racy assessed. In Section 3, results from structural
analysis of the foveal mosaic are presented. Con-
cluding remarks are made in Section 4.

2 Cone location algorithm

2.1 Preprocessing

Figure 1 is a DIC image that shows an optical
cross-section of a rod-free foveal region of a human
retina. The image is 868×606 pixels and represents
a 170µm× 120µm region of the retina. The origin
is defined to be at the bottom-left corner of the
image. From Figure 1 one notices an apparent light
source direction of 135◦.

Since the DIC microscopy image represents the
gradient of the image intensity profile along the
shear axis [5], the original intensity image can,
in principle, be obtained by integrating the DIC
image along this direction. Although we have had
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Figure 1: DIC image of the human cone mosaic.
Regions 1 & 2 are shown enlarged in Figure 3.

some success using leaky integration in images with
well separated cones, integration has not proved
effective for the tightly packed cones in the mac-
ula region. Therefore, the following algorithm was
developed to locate the cone centres directly from
the DIC image.

The original image suffers from background vari-
ation. Median filtering, with a window of dimen-
sions 1.5 times the largest cone diameter, was used
to estimate the background. This was then sub-
tracted from the original image.

2.2 Cone centres

Nearly every cone in the mosaic exhibits a regional
maximum in intensity. Regional maxima of the im-
age were isolated by performing extended maxima
extraction (EME) [8], which produces a binary im-
age consisting of just the maximal features. Missed
or multiple maxima were manually corrected. In
total, ∼ 3% of the cones required manual location
of the maxima. The centroids, mi, of the features
were then obtained so that the N cones in the
image could be indexed by its regional maximum
centroid position (• in Figure 2a). Although the
maxima index the cones in a DIC image they are
not at the centres of the cones. The next step is
therefore to determine the cone centres from the
maxima.

The mean nearest-neighbour distance, d̄NN,i, was
determined for each cone maximum. Nearest-
neighbour maxima were determined using Voronoi
neighbour identification. For a cone i,

d̄NN,i =

(
1

n

) n∑
j=1

dis(mi, mj), (1)

where n is the number of detected neighbours and
dis(mi, mj) is the distance to neighbouring max-
ima mj . The d̄NN,i values were useful for subse-
quent image analysis.

For each cone, a point was defined a distance
1
4 d̄NN,i from the detected maximum centroid
position in the direction opposite to the apparent
light source direction (+ in Figure 2a). This set
of points is a good preliminary approximation
of the cone centres. However, closer inspection
showed that only ∼ 15% of the cone centres were
identified to within 1 pixel of manually detected
centres.

2.3 Cone boundaries

The centre positions were improved by first esti-
mating the cone boundaries. Inspection of the im-
age shows that a good estimate of the cone bound-
ary can be obtained by locating the dark edges that
surround the maxima. The dark edges were first
highlighted by performing median filtering with a
2 × 2 window, and contrast enhancement by his-
togram equalization. The image was then seg-
mented into rectangular regions, each containing
∼ 100 cone maximums. This was a crucial step
so that subsequent processing could accommodate
the gradual shift in cone density across the mosaic.
A regional average of the d̄NN,i values, d̄NN,r, was
calculated from the cones present in a given region.
This number was used as a measure of the average
cone size in a region.

In each region, the image was thresholded with
a cutoff equal to the lower quartile of the pixel
intensities within the region. Residual small fea-
tures with fewer than Aopt,r edge connected pixels
were removed, leaving a binary image of just the
dark edges of the cones (Figure 2b). The optimal
area for a region was determined to be Aopt,r =

(1/10)π
(
d̄NN,r/2

)2
.

For each cone, NR radial lines with constant an-
gular separation originating from the approximate
cone centre were constructed (Figure 2b). We used
NR = 48. The first zero pixel along each radial
line from the approximate centre was taken as a
possible boundary marker (2s in figure 2b). The
distance of the marker from the centre was con-
strained to lie in the interval (0.25d̄NN,i, d̄NN,i).

The boundary markers for a cone were then as-
signed to groups according to their contiguity. Two
criteria were used to define a contiguous group;
each identified boundary marker in the group had
to lie on neighbouring radial line segments, and
each identified boundary marker had to be at a
radial distance within (0.1)d̄NN,i of the radial dis-
tance of the preceding boundary marker in that
group.

The group size, Sg, and the number of radial lines
to adjacent boundary markers anticlockwise and
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Figure 2: a) A region of the image showing a cone
with its maximum position (×) and approximated
cone centre (+). b) The extracted dark edges
used in determining a cone boundary. The initial
estimate of the cone boundary is marked with 2s.
c) A close-up of the group of boundary markers
in the box of Figure 2b. The readjusted marker
positions are shown (◦). d) The final estimate of
the cone boundary with its centroid (•).

clockwise to a group (denoted Va,g and Vc,g respec-
tively) were determined for each group. These pa-
rameters were used to ‘smooth’ the initial estimate
of the boundary. If Sg ≤ (0.05)NR, the boundary
markers, b, in the group have their radial distances
redefined as

rb = (Va,gra,g + Vc,grc,g) / (Va,g + Vc,g) (2)

where rc,g and ra,g are the distances of the adjacent
boundary markers clockwise and anticlockwise to
the group. Figure 2c illustrates this procedure for
the group of boundary markers enclosed by the
rectangular box in Figure 2b. The circles represent
the redefined positions calculated using Equation
2.

The Va,g and Vc,g values in Equation 2 remain
constant whereas ra,g and rc,g may change. The
smoothing routine is performed repeatedly until no
readjustment is performed. The resulting set of Nb

detected boundary markers provides an accurate
mapping of the cone boundary. A polygon of Nb

sides is constructed from this set and the centroid
of the polygon determined, giving the final esti-
mate of the cone centre (Figure 2d).

2.4 Accuracy of the algorithm

To determine the accuracy of the algorithm, two
regions of the mosaic were selected (Figure 1), in
which the cone centres were determined both au-
tomatically and manually. The first region con-
tains 95 cones, and the mosaic appears almost crys-
talline. The second region contains 144 cones, and
includes part of the region where the mosaic ap-
pears somewhat amorphous. 93% of the cones cen-
tres in region 1 and 95% in region 2 were within one
pixel of the manually determined positions (Figure
3). This is considered a good result for this image.

Figure 3: Comparison between manually (black
dots) and automatically (white dots) determined
cone centres. Estimated cone boundaries are also
shown.
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3 Analysis of the mosaic

3.1 Cone size and packing density

An advantage of the algorithm described above is
that it gives information on cone size and shape.
The cross-sectional area, Ai, of a cone can be esti-
mated as the area enclosed by the polygon tracing
the cone boundary, and the cone size can be esti-
mated as the diameter of a circular disc of equiv-
alent area. Figure 4 shows the histogram of cone
diameters. The average diameter was found to be
2.5µm.

Figure 4: Histogram of cone diameters.

By determining the area occupied by cones in the
mosaic, one can determine the packing density,
ρ =

∑
i Ai/A, where A is the area of the image.

A perfect hexagonal arrangement of circular cells
would correspond to ρ = 0.91. For this particular
retinal image, ρ = 0.77. The smaller value ob-
tained can be attributed to variations in the cone
size and imperfect hexagonal packing.

3.2 Cone nearest-neighbours

Identification of nearest-neighbour cones is neces-
sary for further analysis of the mosaic. Nearest-
neighbour cones are cones that have direct contact
with each other, and are clearly discernable to the
human eye. Determining the neighbourhood of
each cone was conducted in two steps.

First, the Voronoi neighbours for each cone were
identified. Due to occasional irregular arrange-
ments in the cone positions, there are cases where
genuine neighbours are not Voronoi neighbours.
Lattice lines, the connecting lines between the cen-
tres of two nearest neighbours, give an indication
of the orientation and spatial arrangement of the
cones. If nearest neighbours have been correctly
identified and the underlying array is sufficiently
regular, one expects the lattice lines to form a
triangular ‘net’.

An additional check for nearest neighbours was
performed based upon the underlying mosaic
topology. In areas where Voronoi detection was
unsuccessful, polygon shaped ‘holes’ in the net are
present (Figure 5a). The ratio of the inter-cone
distance to the average cone-to-Voronoi-neighbour
distance was used as a metric to decide which pair
of cones at the corners of these ‘holes’ are most
likely to be neighbours. Referring to Figure 5a, if

dis(B, C)

ρ(B)
+

dis(B, C)

ρ(C)
<

dis(A, D)

ρ(A)
+

dis(A, D)

ρ(D)
(3)

where ρ(X) = 1
5

∑5
i dis(X, Neighbouri), then

points B and C are identified as nearest neighbours
(Figure 5b).

Figure 5: a) The neighbours associated using
Voronoi identification. b) By comparing the met-
rics, cones B-C are more likely to be neighbours.

3.3 Spatial autocorrelation

The autocorrelogram can be used to visualise spa-
tial trends in neighbour relationships and aspects
of mosaic topography. To produce an autocorrel-
ogram, the position of each cone is sequentially
made the central reference point and relative po-
sitions of all other cones are plotted. In effect, a
unique mosaic for each cone is derived. The auto-
correlogram is the superposition all such mosaics.

Since the orientation of the lattice net is not
constant across the image, a direct calculation
will “wash-out” angular structure in the
autocorrelogram. Therefore, the local orientation
of the hexagon formed by the neighbours of cones
with six neighbours (referred to as 6n-cones)
is subtracted out before the autocorrelogram is
calculated. The autocorrelogram calculated is
shown in Figure 6 out to a distance of 20µm. The
prominence of hexagonal packing is clearly visible.

3.4 The foveal centre

Figure 7 shows a surface plot of the nearest neigh-
bour distance in each Voronoi domain after be-
ing passed through a median filter. The nearest
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Figure 6: The spatial autocorrelogram obtained by
superimposing the relative neighbourhoods of each
cone.

neighbour distance is taken as an estimate of cone
diameter. It is clear from Figure 7 that a region
containing the smallest cone sizes exists. This re-
gion is termed the foveola of the retina, the rod-free
centre of the fovea. A point of smallest cone size
was approximated by averaging the positions of
the 50 cones with smallest d̄NN,i values (the white
point below-right of Figure 7).

Figure 7: A surface plot mapping the average cone
diameter. The white point indicates the position
of the foveal centre.

A useful technique used by Pum et.al. [3] to extract
information regarding the topographic properties
in the foveal region involves calculating the so-
called “regularity ratio”. The regularity ratio is
the number of cones with 6 neighbours (6n-type
cones) divided by the sum of the number cones
with 5 neighbours (5n-type cones) and the number
of cones with 7 neighbours (7n-type cones). This
is calculated within concentric rings of increasing
distance from the foveal centre. The regularity

ratio is plotted in Figure 8 as a function of this
distance.

Figure 8: The regularity ratio versus distance from
the foveal centre.

The distance at which the regularity ratio begins
to level off signifies the onset of crystalline order.
From Figure 8, this occurs at a distance of
∼ 30µm. In the crystalline regions cones are
organized hexagonally, and so most cones are of
6n-type. The low 6n-type cone population within
the foveola region is a result of the amorphous
mosaic structure, i.e. a lack of hexagonal
organization. The 5n/7n cones are considered to
be a direct indication of non-crystalline topology.
Lattice order appears to be at a maximum in the
regions surrounding foveal centre, as reported in
[3].

3.5 Domain identification

Abrupt rotational shifts of the orientations of the
net are discernable in Figure 1. These shifts appear
to mark the boundaries between ordered mosaic
domains. Further investigation shows that 5n/7n
cone pairings are common along such boundaries
[3]. We developed an algorithm to segregate these
ordered domains and their boundaries in the mo-
saic.

A domain was defined as a group of neighbouring
6n cones which have an axial orientation within 4◦

of at least one of its nearest neighbour’s orienta-
tion. This value for a maximum neighbour orien-
tational shift was an arbitrary choice. Generally,
the rotational shift in axial orientation experienced
at a domain boundary is larger than this (∼ 10◦

[3]). A minimum domain size of 3 cones was used.
Domains consisting of one or two cones were con-
sidered to be part of an amorphous topography.

Figure 9 shows the domain structure of the retinal
mosaic. 5n, 7n and 8n cones as well as 6n cones
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which are not included in a domain are indicated
by white lattice lines. Each crystalline domain of
6n cones has black lattice lines. Lattice lines con-
necting neighbouring cones positioned either side
of a domain interface are coloured white. Lattice
lines for cones with less than 5 neighbours are not
plotted as they generally lie around the edge of the
image. A prominent region of amorphous topog-
raphy is observed in the vicinity of the identified
foveal centre.

Figure 9: The domain structure of the retinal
mosaic. The black square indicates the position
of the foveal centre.

4 Conclusions

An algorithm has been developed for automatically
determining the boundaries and locations of cones
in an image of a portion of the foveal retina ob-
tained by differential interference contrast (DIC)
microscopy. This particular kind of image required
a somewhat involved algorithm but requires min-
imal user input and performs to an accuracy of
∼ 94% compared to a manual analysis. More work
is required to test the algorithm on other retinal
DIC images in order to determine the versatility of
the methodology described here.

The cone centres obtained are useful for analysing
the mosaic structure in terms of packing density,
the distribution of cone size, short-range and long-
range order, and determination of ordered regions.
There is further potential for detailed analysis of
the disorder in the retina and other mosaic arrays.
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Abstract 
The researches that use geometrical information in computer vision are very actively developing field. One of 
the main problems in the multi-view geometry is a method of feature extraction to find corresponding points 
between successive frames. Up to now a feature point extraction which uses SIFT (Scale Invariant Feature 
Transform) is excellent among the algorithm to be known. SIFT parameters that have been used in general image 
however, did not have good performance for endoscopic images. Furthermore, we used ROBPCA (Robust 
Principal Component Analysis) to find rather good feature points in endoscopic images with the noise. 
ROBPCA-SIFT draws salient feature points from endoscopic images to find the probe postures and reconstruct 
3D structures. The purpose of this study is to extract 3D information by using prevailing endoscope as it is 
without any modification (i.e., not by using so called stereo endoscope).  

Keywords: feature extraction, SIFT, ROBPCA, endoscopic image, fundamental matrix. 

1 Introduction 
Inferring 3D structure information from a sequence of 
endoscopic images is important for CAD (Computer 
Aided Diagnostic) system. For this purpose, three 
steps of processing are performed. First, feature 
extraction is needed for matching problem. Matching 
problem is worked out by clustering. Second, 
calculate the fundamental matrix using the well 
corresponding points. Finally, the 3D projective 
reconstruction is computed from the fundamental 
matrix. The main goal of this paper is extraction of 
accurate and reliable feature points on noised 
endoscopic images. Search for Harris affine invariant 
point detector [1] and SIFT (Scale Invariant Feature 
Transform) [2]. These methods are reliable in general 
images. 

2 Extraction Feature Points in 
Endoscopic Image 

Feature points should be extracted for well matching 
between images. Two major approaches for feature 
extraction for natural views are area based methods 
and feature base methods. These methods have both 
advantages and disadvantages depend on application. 
Unfortunately, both methods are not relevant for the 
endoscopic images, because the scales of target object 
change between images. An hybrid method called 
SIFT (Scale Invariant Feature Transform) was 

required  to extract scale invariant or close to affine 
invariant features. SIFT method showed excellent 
performance when compared with alternative methods 
(Harris Affine invariant point detector etc.) for 
general images. 

2.1 Harris Affine Invariant Point 
Detector 

Consider Harris affine invariant point detector for 
extraction feature points in endoscopic images. This 
method is described in [1]. The method operates well 
in general images, but not appropriate method for 
endoscopic images. 

 
(a) 
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(b) 

Figure 1: Feature points using Harris affine invariant 
point detector in endoscopic images. (a) first image. 

(b) second image. 
The reason can be explained as follow. We got 61 
feature points in Fig.1 (a) and 57 feature points in 
Fig.1 (b). As we can see clearly in Fig.1, the possible 
matching points are not enough sufficient in order to 
extract some postures information between the two 
images. Also, we have another problem that feature 
points are not exact, because the lighting conditions 
when take picture may different. These phenomena 
give serious influence when we solve the matching 
problem. Consequently the method is not appropriate 
and we may necessary some scale invariant 
techniques. 

2.2 Scale Invariant Feature Transform 
(SIFT) 

SIFT, as described in [2]. This method operates well 
like the Harris affine invariant point detector in 
general images. However, the algorithm with 
parameter (contrast threshold) value to be induced 
does not operate well for endoscopic images. 

 
(a) 

 
(b) 

 Figure 2: Feature points using SIFT in endoscopic 
images. (a) first image. (b) second image. 

We got 18 feature points with a contrast threshold of 
0.02 in Fig.1 (a) and 13 feature points with a contrast 
threshold of 0.02 in Fig.1 (b). So we may need to 
change the value. To change the parameter we look 
into the algorithm to modify a parameter value. SIFT 
consists of four major stages: (1) scale-space extrema 
detection; (2) keypoint localization; (3) orientation 
assignment; (4) keypoint descriptor. A contrast 
threshold among the parameters is the second stage 
among these stages. The function value at the 
extremum, D( ), is useful for rejecting unstable 
extrema with low contrast. Definition of D( ) is 
showed in the equation (1). D is the difference-of-
Gaussian function. We use the histogram of the 
|D( )| to get sufficient feature points.  

X̂
X̂

X̂

                  1 ˆˆ( )
2

TD
D D

∂
Χ = +

∂Χ
X  (1) 

 
(a) 
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(b) 

Figure 3: Feature points using SIFT with changed 
parameter value in endoscopic images. (a) first image. 

(b) second image. 

Then, we got 560 feature points with a contrast 
threshold of 0.0031 in Fig.1 (a) and 509 feature points 
with a contrast threshold of 0.0032 in Fig.1 (b). The 
goal of this section is extraction of feature points that 
controlled by contrast threshold among the parameters 
for applying SIFT method in endoscopic images. 
Experimental study shows that resulting feature points 
for endoscopic images can have good distribution and 
meaningful control number of feature points than 
traditional methods. The good distribution of the 
feature points result in good characteristic of the 
fundamental matrix. 

3 CLAPCA-SIFT and ROBPCA-SIFT 
The purpose to use classical PCA or ROBPCA is 
reduction of dimensions of the descriptor that is 
described in [2]. 

3.1 CLAPCA-SIFT 
PCA-SIFT, as described in [5]. However, this method 
does not operate well in our application. It is because 
the gradient values of local patches of our images 
does not change much, this means we can not 
distinguish the patches.  

Let's call CLAPCA-SIFT to distinguish with PCA-
SIFT. This method does not use the descriptor 
described in [5]. CLAPCA-SIFT combines classical 
PCA and the descriptor described in [2]. This method 
is used to reduce 128 elements to small number. We 
use 20 components or 10 components in experiments 
with endoscopic images. 

3.2 ROBPCA-SIFT 
ROBPCA, as described in [7]. This algorithm 
combines projection pursuit in high dimensions and 

MCD (Minimum Covariance Determinant) in low 
dimensions. ROBPCA consists of three major stages: 

 Stage 1. We start by reducing the data space 
to the affine subspace spanned by the n  
observations. 

 Stage 2. We try to find the h  ‘least 
outlying’ data points. 

n<

 Stage 3. We robustly estimate the scatter 
matrix of the data points in  using the 

MCD estimator. 
0,n kX ∗

0 1, , 1ˆ( 1 )n k n r n r kX X Pμ∗ ′= −
1 0,

 (2) 

This method offers robust principal components. 
ROBPCA-SIFT combines ROBPCA and the 
descriptor described in [2] as CLAPCA-SIFT. 

4 Fundamental Matrix and 3D 
Projective Reconstruction 

We need to calculate the fundamental matrix for the 
3D projective reconstruction. From the fundamental 
matrix some very useful geometric information can be 
extracted. For example, the postures (i.e., rotation 
matrices and translation vectors) of the sequence of 
endoscopic images. The fundamental matrix satisfies 
the condition that for any fair of corresponding points 
x x′↔  in the two images. 

0Tx Fx′ =  (3) 

The fundamental matrix is that we found to minimize 
the geometric errors. The geometric error ( ,d d′ ) is 
showed in Fig.4. 

 
 Figure 4: Minimization of geometric error ( ,d d′). 

We seek the points  and  that minimize the 
function 

x̂ x̂′

22 )ˆ,()ˆ,(),( xxdxxdxxC ′′+=′  subject to 0Tx Fx′ =  (4) 

where ( , )d ∗ ∗  is the Euclidean distance between the 
points. The camera matrices for each of endoscopic 
image sequences are computed from the fundamental 
matrix. And then the 3D structure x̂  is obtained by a 
triangulation method. The fundamental matrix and 3D 
projective reconstruction are explained in detail in [9]. 
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5 Experiments and Results 
We use Gaussian noise (mean: 0, variance: 0.005) for 
a performance comparison. We added the noise to 
second image and used at the experiment. 

 
(a) 

 
(b) 

Figure 5: The endoscopic second image. (a) added 
the Gaussian noise. (b) feature points of (a). 

We got 298 feature points with a contrast threshold of 
0.0065 in Fig.5 (b).  
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(b) 

Figure 6: Geometric errors using SIFT in endoscopic 
image. (a) without the noise. (b) with the noise. 

We got about 140 corresponding points in endoscopic 
image without the noise and about 15 corresponding 
points in endoscopic image with the noise. SIFT has 
the accuracy of half pixel. This value is becomes the 
criteria to evaluate the performance of the algorithm. 
Fig.6 shows that SIFT method operates well in 
endoscopic image without the noise, but does not 
operates well in endoscopic image with noise. 
Because mean of geometric errors is smaller than 
0.5pixel in Fig.6 (a) but mean of geometric errors is 
bigger than 0.5pixel in Fig.6 (b). Specially, max of 
geometric errors has very big value in Fig.6 (b). 
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 (b) CLAPCA-SIFT10 

Figure 7: Geometric errors in endoscopic image 
without the noise. (a) using CLAPCA-SIFT (with 20 

components). (b) using CLAPCA-SIFT (with 10 
components). 
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Mean of geometric errors are smaller than 0.5pixel 
and max of geometric errors is small in Fig.7. Both 
CLAPCA-SIFT20 and CLAPCA-SIFT10 operate well 
such as SIFT in endoscopic image without the noise. 
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 (b) CLAPCA-SIFT10 

Figure 8: Geometric errors in endoscopic image with 
the noise. (a) using CLAPCA-SIFT (with 20 

components). (b) using CLAPCA-SIFT (with 10 
components). 

However, mean of geometric errors is bigger than 
0.5pixel and max of geometric errors is big in Fig.8. 
CLAPCA-SIFT20 and CLAPCA-SIFT10 does not 
operate well in endoscopic image with the noise. 
CLAPCA-SIFT is unreliable in endoscopic image 
with the noise. 
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Figure 9: Geometric errors in endoscopic image 
without the noise. (a) using ROBPCA-SIFT (with 20 

components). (b) using ROBPCA-SIFT (with 10 
components). 

Mean of geometric errors is smaller than 0.5pixel and 
max of geometric errors is small in Fig.9. ROBPCA-
SIFT20 and ROBPCA-SIFT10 operate well such as 
SIFT or CLAPCA-SIFT in endoscopic image without 
the noise.  
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(b) ROBPCA-SIFT10 

Figure 10: Geometric error in endoscopic image with 
the noise. (a) using ROBPCA-SIFT (with 20 

components). (b) using ROBPCA-SIFT (with 10 
components). 

Mean of geometric errors is smaller than 0.5pixel and 
max of geometric errors is not too big in Fig.10 (a). 
But mean of geometric errors is not smaller than 
0.5pixel and max of geometric errors is big in some 
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cases in Fig.10 (b). ROBPCA-SIFT20 operates well 
but ROBPCA-SIFT10 does not operate well in 
endoscopic image with the noise. ROBPCA-SIFT20 
is reliable in endoscopic image with the noise. 

6 Conclusions 
The advantage of the method that was introduced in 
section.3 is to reduce the dimension. SIFT, CLAPCA-
SIFT, and ROBPCA-SIFT are reliable in endoscopic 
image with the noise. Using 10 principal components 
out of 128 components may enough in endoscopic 
image without the noise. However, the case which 
uses ROBPCA-SIFT is more reliable than the case 
which uses SIFT or CLAPCA-SIFT in noised 
endoscopic images. Using 10 principal components 
out of 128 components may not enough in noised 
endoscopic image. ROBPCA-SIFT20 is most reliable. 
The fundamental matrix that encodes the exterior 
parameters of the camera is computed by using 
RANSAC and the 3D projective reconstruction is 
accomplished from only the endoscopic images. 

From this research, we claim that there are some 
products for stereo endoscope. However the 3D 
information can be extracted reliably by using the 
prevailing endoscope with the idea of this paper. 
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Abstract
We describe a robust segmentation technique and a set of features for characterizing nuclear figures in
single channel images of DNA stained cell nuclei. The features are specifically designed to differentiate
between mitotic figures. They characterize size, shape, symmetry, directionality, and intensity
distribution for each figure. We show that they can be flexibly combined to classify nuclei into seven
different phenotype classes. The number of classes and how the features are combined in those classes
depends on resolution limitations and investigator choices.

Keywords: nuclear phenotypes, mitotic figures, fluorescence microscopy

1 Introduction

High Content Imaging and the advancements
made in image analysis research are expanding the
techniques available to both quantify and classify
cellular phenotypes. This is of great importance
in the quest to characterize genes with unknown
functions as well as to analyze the effects of small
molecules (drug candidates) and to establish cell
signalling pathways. Often, this kind of analysis is
still performed by visually interpreting (scoring or
classifying) large numbers of microscopy images
and/or their contents [1, 2, 3, 4]. The importance
of better (more specific) and faster image analysis
methods for this kind of research is emphasized
in for example [5], a recent review about using
RNAi to establish the functionality of unknown
genes. In [6, 7, 8] examples of automated image
analysis solutions to certain kinds of cellular and
subcellular compartment phenotyping can be
found. There are a number of reasons or factors
to why automated image analysis solutions aren’t
more widely used; complex images (multi-channel,
3D, time series), specific questions where the tools
available in general packages aren’t enough, poor
knowledge of what tools are available and how to
use them, user unfriendly software etc.

We have been interested in using automated image
analysis to study drug effects on cell cycle regula-
tion and how this relates to the ensuing nuclear
phenotypes. This is similar to the work presented
in [2] but using only single channel images. The
benefit of using only one channel to analyse the

phenotypes is that it leaves two or three chan-
nels available on many of the High-content imaging
instruments and microscopes for investigators to
query their own particular problems. In figure 1,
normal as well as some abnormal nuclear pheno-
types within the cell-cycle are shown. A mitotic
cycle (the sequence of steps in cell division) starts
with a normal nucleus (a). The DNA is duplicated
and during the metaphase it is concentrated along
a line (b). During the telophase and anaphase
the two copies of the DNA are pulled towards two
opposite poles (c, d), and during cytokinesis the
cell splits into two daughter cells and the DNA
spreads out in the nuclei to its normal state (e, a).
The abnormal nuclear figure (f) shows an apoptotic
(programmed cell death) nucleus. A nucleus can in
fact turn apoptotic at any stage of the cell cycle.
The two abnormal nuclear figures (g, h) show a
monastral nucleus and a tripolar mitotic nucleus,
respectively.

The goal of the research presented here is to es-
tablish a core set of image measures that can be
used to accurately classify a nucleus into seven
distinct phenotypes for a given experimental pro-
cedure. The procedure should also be easily ap-
plied, with minimal modification of parameters, to
similar image sets generated using a different high-
throughput imaging platform, cell type, objective
and/or staining.

There are several approaches to tackling this prob-
lem, all with different advantages and disadvan-
tages. One popular method is to extract a large
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number (often in the order of 100’s) of generic
texture and shape measurements from an extensive
training set of images containing the phenotypes
of interest, see for example [6, 7]. A classifier can
then be derived through any of the standard data
mining approaches (such as neural networks, linear
or non-linear statistical classifiers) to classify these
measurements into the training class phenotypes.
This approach has the advantage that no custom
image analysis development is required. However,
the use of a large number of measures has two
disadvantages: it is difficult for the biologist to
understand the significance of the individual mea-
sures; and a large training set must be used to
avoid over-fitting the classifier to the training set
and thus limiting its performance on new images.

Our approach is to custom design an image analy-
sis algorithm to extract a small set of measures to
recognise specific nuclear phenotypes. The algo-
rithm design is based on two factors: prior knowl-
edge of the nuclear shapes to be recognised, derived
from an understanding of the biology; and a small
set of training images to validate the measures.
There are several benefits of this approach. One
is that it is easier for a biologist to understand the
significance of each of the measures. As a conse-
quence, it is possible to make simple combinations
of these measures to create classification rules for
each nuclear shape without the need for extensive
data mining. It is even possible to generate mea-
sures to detect phenotypes for which there are no
training samples. For instance, a feature designed
to measure the number of poles of a metaphase
nucleus can detect the normal 2-pole figure and
abnormal 3-pole figure, see figure 1 (g, h), for which
we have training samples, but it can also be ex-
pected to detect 4-pole nuclear figures for which
we have no examples.

In Section 2 we explain the method used to seg-
ment all cell nuclei. We then present the binary
and intensity based features designed to differenti-
ate between different nuclear phenotypes. In Sec-
tion 4 we combine the features to separate between
seven different nuclear phenotypes.

2 Pre-processing and Segmentation

A small (3× 3) gaussian filter was used to smooth
the images which were then background corrected
using a top hat filtering with a structuring element
larger than the largest expected nuclear width.
The image was thereafter thresholded using a
method that finds a global (image-wide) threshold
by utilising the gradient strength information,
similar to [9]. A bivariate histogram of the
gradients (approximated by applying a set of
Sobel operators) and the grey-levels is calculated.

The average gradient strength for each grey-level
is interpreted as a histogram. The grey-level that
corresponds to an input quantile parameter serves
as the threshold.

Touching nuclei were next separated using an inter-
nal distance transform (DT) [10] and a watershed
transform [11], a very common approach in cell
nuclei segmentation.

The global threshold segmentation gives good
boundaries for the majority of the nuclei in the
image but not for the particularly bright ones,
such as the mitotic phenotypes (which are brighter
due to condensed DNA). For these objects (with
high internal average intensity and/or intensity
variation), a local (per-nucleus) threshold at their
median grey-value was used to ensure that the
shape of mitotic figure was accurately detected.
Objects that were too dark (out of focus) or too
small (noise or cell debris) to be of interest were
discarded at this stage.

3 Feature Extraction

A number of standard features were combined and
some more specific ones were developed to charac-
terise some common nuclear phenotypes important
for monitoring cell cycle regulation. Nuclei of nor-
mal and non-dividing cells vary quite a bit in shape
and size but are in general somewhat ellipsoidal,
figure 1 (a). Apoptotic cells on the other hand are
characterized by smaller size, very high intensity
and circular shape, figure 1 (f). Metaphase nuclei
are bright and elongated in a rectangular rather
than ellipsoidal fashion, figure 1 (b). Normal ana-
telophase nuclei are also bright and elongated like
the metaphase nuclei but smaller and also paired,
figure 1 (c, d). Monastral nuclei are a kind of
abnormal anaphase nuclei which are bright and
ringshaped, figure 1 (g), and tripolar nuclei (Y-
shaped), are another type of abnormal anaphase
nuclei, figure 1 (h). There can also be other abnor-
mal multipolar nuclei with 4 (X-shaped) or more
poles. We use a combination of features for char-
acterising the objects shape, intensity distribution,
orientation and symmetry.

As mentioned in section 2, nuclei are segmented
by first a global threshold followed by an optional
local threshold for especially bright objects. A
series of features are extracted for all segmented
objects. A list of the features and a description of
the type of information they summarise are found
in table 1. Several of them, size, intensity, in-

tensity variability, elongation, rectangular-

ity, circularity-1, circularity-2 are very com-
monly used intensity and shape features. Only the
few that we custom designed need further explana-
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Figure 1: An illustration of the cell cycle with images showing some different normal (solid lines) and
abnormal (dashed lines) nuclear figures. See text for further details.

tion. Intensity distribution is designed to detect
the radial intensity distribution of monastral fig-
ures by measuring the average intensity difference
between the outer ring and the inner disc of a
region (divided into 2 regions by a central circle
of diameter 1/3 of the diameter of the whole re-
gion). Convexity measures the average distance
of the object boundary from its convex hull. Pair-

wise angle quantifies the orientation of two neigh-
bouring objects. It measures the angular differ-
ences between a line connecting the two object
centres and the minor axis of each object, with
the greater difference being used as the pair-wise
angle measure. This is used to distinguish par-
allel and non-skewed object pairs from unparal-
lel or skewed object pairs, see figure 2 (bottom
row). The two rotational symmetry measures, for
3-fold and 4-fold symmetry respectively, are
based on how much the intensity distribution is
concentrated (as measured by the angular vari-
ance) for each pixel (transformed to polar coordi-
nates) when multiplied by 3 or 4, respectively. This
is similar to the symmetry descriptors in [12], but
using intensity rather than gradient information.
See figure 2 (top row) for examples of figures these
features can distinguish (note that the 4-polar fig-
ure is artificially constructed from two metaphase
figures for illustrative purposes).

4 Phenotype Classification Example

To test the performance of our features, we used
a set of 26 fluorescence images of DNA stained
(using Hoechst 33258) HeLa cells that had been
exposed to a number of known and exploratory
cell cycle affecting agents. The images were ac-
quired on a Zeiss Axiovert fluorescence microscope

Table 1: Features

Feature Description

Size Area
Intensity Mean intensity
Intensity variability Intensity std
Intensity distribution Peripheral-central intensity
Elongation Major/minor
Rectangularity Major*minor/Area
Circularity-1 Perimeter2/

(Area ∗ 4 ∗ pi)
Circularity-2 (Major + minor)2 ∗ pi/

(16 ∗ Area)
Convexity Mean concavity depth
Pair-wise angle Minor axes vs

centreline angle
3-fold symmetry 3-fold angular sum
4-fold symmetry 4-fold angular sum

at 20X magnification, and a typical example is
shown in figure 3. The object features were com-
bined to classify objects into seven different nu-
clear cell cycle phenotypes; normal, metaphase,
ana-telophase, monastral-like spindles, multipolar
(3- and 4-polar), apoptotic, and remaining, see fig-
ure 1. In this application example, the remaining
class simply consists of nuclear phenotypes that
don’t fit in any of the other six classes.

Since (so far) only a set consisting of 26 test images
was available to test our features, all parameters
and feature thresholds used for classifying the ob-
jects were set manually by examining the range of
feature responses for a few nuclei of each class. A
tree-like classifier was then constructed to classify
the nuclear figures into one of the seven classes.
The heuristic decision rules derived were as fol-
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Figure 2: Nuclear figures that can be differentiated
using 3- and 4- fold symmetry (top row), and pair-
wise angle (bottom row).

Figure 3: An example of a typical input image.

lows. First, too large objects (with size greater
than a specified maximum area) were assigned to
the remainder class. Next monastral figures were
identified if an objects Size and Intensity distri-

bution features were within a specified range. The
nuclei with normal intensity were classified as nor-
mal if they were fairly circular (circularity-1) or
ellipsoidal (Elongation), and the ones that were
not within range were put in the remainder class.
For the bright nuclei, the multi-polar figures (very
few in this set) were first found by the two sym-

metry measures. Bright figures were classified as
ana-telophase if they were small (size), elongated
(elongation), and paired in an appropriate con-
figuration (pair-wise angle), and as metaphase
figures if they were fairly small, elongated, rectan-
gular (rectangularity) and convex (convexity).
Apoptotic figures were found based on high inten-
sity and circular shape (circularity-1 and -2),
and finally the bright figures that were left were
set to the remainder class. A gallery of figures
classified to the seven classes are shown in figure 4.
Each row represents a specific class and the stars
mark figures that are misclassified.

In total there were 1899 nuclear figures in the
images, of which our segmentation method

Figure 4: Examples of figures classified as normal
(row 1), metaphase (row 2), ana-telophase (row 3),
monastral like spindles (row 4), apoptotic (row 5),
multi-polar (row 6), and remainder (row 7). The
figures marked with stars are examples of false
positives.

correctly segmented 1868 (99%). The number of
correctly classified/false positives/false negatives
figures of classes were: normal (1736/3/5);
metaphase (46/5/0); ana-telophase (17/0/0);
monastral-like spindels (6/3/0), multipolar
(2/0/0); apoptotic (77/5/3).

5 Conclusion & future work

We have developed a two-step segmentation proce-
dure that very accurately segments nuclei objects
even though they have widely varying brightness.
The small set of object measures that we designed
specifically to discriminate nuclear phenotypes, are
intuitively meaningful to a biologist and can be
readily combined into an ad hoc set of rules to
classify each object. This means that the biologist
can modify these rules for each new experiment
without having to perform complex data analysis.
The classification accuracies achieved are good, al-
though there were very few objects of certain phe-
notypes to fully validate our approach.

It should be mentioned that the current image res-
olution (captured using a 20X objective) is close
to the minimum for which this set of features will
work reliably. Some shape features are rather un-
stable when the nuclear phenotypes are very small
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(one pixel on the width or height can make a not-
icable difference in these features).

Future work will involve the acquisition of more
data (larger sets of the same set-up as well as other
stains, microscopes etc). This will enable us to
refine the classifier (get a better understanding of
within-phenotype variation), to develop a method
to derive the parameters automatically, and to gen-
erate new features for other phenotypes to get a
more general nuclear phenotype classifier.
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Abstract
We are developing a high precision simultaneous full-field acquisition range imager. This device measures
range with sub millimetre precision in range simultaneously over a full-field view of the scene. Laser diodes
are used to illuminate the scene with amplitude modulation with a frequency of 10 MHz up to 100 MHz.
The received light is interrupted by a high speed shutter operating in a heterodyne configuration thus
producing a low-frequency signal which is sampled with a digital camera. By detecting the phase of the
signal at each pixel the range to the scene is determined. We show 3D reconstructions of some viewed
objects to demonstrate the capabilities of the ranger.

Keywords: Range imaging, imaging lidar, heterodyne, image intensified

1 Introduction

The Waikato Range Imager is a full-field imaging
lidar system that is capable of producing high res-
olution images by simultaneously measuring the
range in the field of view as seen by each pixel.
The ranger is capable of acquiring sub-millimetre
precision in range under optimal conditions for a
full-field in 10 seconds. In this paper we give an
overview of the system and present some recent
range images and applications that we have inves-
tigated.

2 Imaging Lidar

Image ranging systems can usefully be classified
as laser point scanning or full-field (simultaneous)
image acquisition. The high precision ranging and
x-y positioning of the laser scanner is obtained by
moving a laser dot over a field of interest, however
the acquisition times can be very long. Such sys-
tems are numerous in the literature and in models
commercially available [1]. Full-field acquisition,
or imaging lidar as it is sometimes called, offers
the potential of fast and precise measurement over
the whole field of view, but remains somewhat in
its infancy with few systems demonstrated with
varying degrees of success [2, 3, 4, 5, 6, 7, 8]. De-
spite the variety of implementation methods, there
is much commonality in operating principles and
hardware configurations. The operating principle
is the expansion of time-of-flight point laser rangers
to operate simultaneously over a full field of view.
The Waikato Range Imager falls into the imaging
lidar category.

upto 100Mhz

Signal
Generator

Lens Time of flight

Object

Camera

Shutter
High Speed

Light

10MHz

Figure 1: Basic components of an imaging lidar
system.

The basic means of operation of imaging lidar is
as follows (also see figure 1): A modulated light
source illuminates the scene and the light is scat-
tered by objects in the scene to be collected by a
camera system. The camera system incorporates a
high speed (non-mechanical) shuttering system to
modulate the intensity of received light. The major
difference in imaging lidar systems lies in the high
speed shuttering mechanism and in the modula-
tion control signals. The most common shuttering
mechanism is an image intensifier with high speed
photocathode modulation capability. Image inten-
sifiers have a number of disadvantages thus there is
a move to integrate the shuttering mechanism into
custom image sensors. A number of these types of
sensors have been described, but they are currently
limited by low spatial resolution [4, 8].

The modulation control philosophies can be
grouped as pulsed, homodyne or heterodyne. In
pulsed systems the illumination source and the
high speed shutter are controlled with a single
pulse in the nano-seconds region [6]. The scattered
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light from the scene entering the camera is time
delayed due to the path length travelled. The
received pulse from a close object will align well
with the shutter pulse and an intense signal is
received. A received pulse from a far away object
will not coincide well with the shutter pulse
and a weak signal is received. The brightness
of a pixel is therefore correlated with range.
Homodyne systems are similar, but a continuous
modulation in the 10 MHz to 100 MHz region of
the illumination and shutter is used to improve
SNR and reduce the requirements of high-speed
electronics. Some decoding of the signal is required
to derive actual range values from intensity, and
such schemes as quadrature or phase-shift keying
are often used. Nevertheless systems based on
the pulsed or homodyne philosophy have range
precision that is limited by the dynamic range
of the camera (often a CCD) and these systems
typically achieve at best centimetre precision over
a distance of less than five metres.

Heterodyne systems are different from homodyne
systems in that the modulation frequencies applied
to the illumination source and the high speed shut-
ter differ very slightly. The mixing process at the
shutter produces a low frequency beat at the differ-
ence of the frequencies of the illumination source
and the high speed shutter. The phase delay of
the received light (hence the range information)
is preserved on the heterodyne beat signal. Thus
a scene observed by the camera appears to flash,
with close objects flashing at a different time to
those far away. Range information can be obtained
by calculating the beat signal phase (over time) for
each pixel. The range precision is therefore limited
by the accuracy with which the phase of the beat
signal can be measured. This is the approach used
in the Waikato Ranger Imager.

3 The Waikato Range Imager

Figure 2 shows the Waikato Range Imager. The
illumination source is a bank of four laser diodes
(658 nm) rated at 80 mW for continuous output.
These are fibre optically coupled to illuminate the
scene from a ring surrounding the camera lens.
This scheme helps to ensure that the path length
from the light source to scene can be calculated as
originating from the optic axis about the plane of
the lens focal point. The light from the ends of the
fibre optics is allowed to disperse to illuminate the
whole scene.

Like many other imaging lidar arrangements [2, 6,
7] the Waikato Range Imager employs an image
intensifier as the high speed shutter. A Photek
25 mm single microchannel plate (MCP) image
intensifier is used. The 25 mm diameter on the

Figure 2: The University of Waikato Range Imager

entrance window allows easy imaging of the scene
with standard F-mount lenses. Image intensifiers
are often used for high speed photography by
switching the MCP voltage on and off in a very
short single pulse. This provides extremely
good contrast between the on and off shutter
states. Because the MCP voltage is approximately
700 V and we require continuous switching at
frequencies up to 100 MHz, switching the MCP
voltage is not feasible. We therefore choose to
switch the photocathode voltage with a 50 V
amplitude signal. Image quality is affected by the
photocathode voltage and as the voltage passes
through the low voltage régime some blurring of
the image formed by the image intensifier occurs.
We use square wave modulation to minimise the
transit time through low voltages.

The illumination wavelength is not optimal for the
image intensifier as the S20 photocathode sensitiv-
ity at 658 nm is only 40% compared to its 450 nm
peak. The laser diodes were purchased for their
combination of low cost and high power. There are
other issues with using image intensifier technology
and they are discussed in a companion paper [9].

A Dalsa Pantera TF 1M60 digital video camera is
used to acquire video sequences of the beat signal
appearing on the phosphor screen of the image
intensifier. This camera is a 1 megapixel, 60 fps,
true 12-bit camera with good sensitivity. Since the
image intensifier is the resolution limiting compo-
nent we run the camera in the 2× 2 binning mode
providing 512 × 512 pixels at up to 100 fps. This
provides two advantages: better photon statistics
(hence better SNR) and a higher video sampling
rate (hence quicker estimation of phase). The cam-
era is coupled to the image intensifier with a high
quality fixed focal length relay lens that has a work-
ing distance of 15 mm. Better collection of light
of an order of magnitude would result from using
direct fibre optic coupling between the image in-
tensifier and camera CCD, however at this stage
we prefer the flexibility of using the relay lens.
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The modulation signals for the image intensifier
and illumination source and the frame trigger for
the camera are generated by three direct digital
synthesis (DDS) chips driven by a common digital
clock source. Operating multiple synthesisers from
the same digital clock source produces highly ac-
curate relative frequencies as any drift is common
to all outputs. To enable absolute range measure-
ments the phase of the beat signal generated by
mixing of the received light of an object at zero
range in the image intensifier is required as a refer-
ence. Measuring the phase difference between the
two outputs is a challenging task due to the high
frequencies involved and the resolution required.
The distance to phase relationship is given by

θ =
4πfd
c

(1)

where θ is the phase, f is the modulation frequency,
d is the distance being measured and c is the speed
of light. Hence to obtain millimetre range precision
using 100 MHz modulation requires the phase to
be measured to a precision of less than 4 mrad.
The reference phase precision must better this and
be known to 12 bit resolution (i.e. 1.5 mrad). This
is achieved by using the third DDS to produce a
synchronised signal at the low frequency difference
of the first two outputs; its phase can be directly
measured to provide the reference phase difference.
This signal is also used to provide the camera frame
trigger keeping it synchronised with the rest of the
system allowing the scene to be sampled at an
exact multiple of the low frequency beat signal.

The availability of the beat reference and frame
grabber signals has also allowed the ability to
switch off the image intensifier to blank the view
during CCD readout. This is important as the
CCD continues to integrate the received light
even during readout thus smearing scene data
down columns of the CCD [10]. This can lead
to contamination of the phase of the beat signal
along columns of the CCD. By switching off
the image intensifier during CCD readout this
problem is completely eliminated.

4 Signal Processing

Video sequences are collected of a scene over time
with the ranger system. Each pixel is analysed in
time for the beat signal. In earlier incantations
of the ranger, in which the frame grabbing was
not synchronised to the beat signal, Fourier anal-
ysis was used to estimate the phase of the beat
signal [11, 5]. Now that the hardware has been
improved so that the frame grabber is precisely
synchronised to the beat frequency an inner prod-
uct of a sine wave of the known beat frequency

with the signal at a pixel suffices to isolate the
signal to calculate the phase and, hence, the range.
This approach affords a significant advantage: the
signal processing can be implemented in real time,
thus eliminating the need to save video data, other
than maintaining a buffer for the current frame.

There is a potential problem for the näıve: the
image intensifier has a non-linear response thus
there are harmonics on the signal. It is not possible
to low-pass filter the signal (the beat on the image
intensifier) before sampling (frame-grabbing)
therefore any harmonics above the nyquist limit
are aliased. If an aliased harmonic happens to
land at the fundamental frequency after sampling
then it can contaminate the phase estimation
thereby reducing range precision. Not only must
there be an integer number of beat cycles in the
sample period for inner-product processing, it is
also important to choose the sampling frequency
and the beat frequency to have no common
factors [12]. This is contrary advice to that
normally given in phase measurement problems
such as occurs in interferometric phase shifting for
profile measurement. There the signal is cleanly
sinusoidal.

5 Results

A number of objects were imaged to show the capa-
bility of the Waikato Range Imager. A steel block
of height 100 mm and width 70mm was imaged
as a first example (see figure 3). A second exam-
ple is a wheel of diameter 175mm (see figure 4).
Ideal imaging conditions were used; in particular
the blocks were painted matte white to improve
signal detection and reduce specular reflections. A
modulation frequency of 78 MHz, beat frequency
of 1Hz and camera frame-grabbing frequency of
29 Hz was used to capture these two examples.

For both examples we show both a photograph
of the object and the three-dimensional rendering
reconstructed from a single view of range data of
the object. Details such as the 2 mm high ridges
on each spoke of the wheel and the sharp edges
of the block are clearly visible. Unfortunately the
chosen visualisation method tends to accentuate
the measurement noise. An in-depth discussion
of the error sources is beyond the scope of this
paper, but can be found in references [9, 13, 14].
In previous experiments under the same operating
conditions we have demonstrated 0.4mm precision
for ranging at the one standard deviation uncer-
tainty level over distances of up to 6 m [13]. To
estimate the precision achieved in the range images
we have fitted a plane with a least-square fitting
approach to a number of small areas of various
faces of the block (fig. 3) and used the mean of the
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Figure 3: Photograph (top) and 3D reconstruction
from range data (bottom) of a block.

Table 1: Precision achieved for various small areas
of the block

Size of Area (pixels) Precision (mm)
16 × 16 0.385
18 × 18 0.332
16 × 16 0.345
20 × 20 0.342

residuals as an estimate of precision. The results
are listed in table 1 and indicate that the 0.4mm
precision is being achieved in these examples.

As a third example we show the range image (fig-
ure 6) and the three-dimensional reconstruction
(figure 7) of ‘Stumpy’ – a garden gnome (see fig-
ure 5). Stumpy was imaged with 80MHz mod-
ulation frequency, 1Hz beat frequency and 29 fps
sampling rate for a period of 10 s. For this case
Stumpy was imaged ‘as is’ and one can see the
noisier reconstruction (see figure 7) resulting from

Figure 4: Photograph (top) and 3D reconstruction
from range data (bottom) of a wheel.

Figure 5: Stumpy: the garden gnome under
investigation (for various unresolved crimes).
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Figure 6: Range image of Stumpy. Increasing
intensity represents increasing range to the scene.

the dark areas (such as the spade) where a poor
signal is received. Despite the poor signal (sig-
nal amplitude less than 2% of that of the bright
regions) the general shape of the spade is never-
theless reconstructed. Note the detail of features
detected where good signal is received, such as the
eye lashes that are less than 2mm deep and the
ridges in the ears that are less than 1 mm deep.
The Waikato Range Imager measures intensity at
the same time as measuring range and in figure 8
we show a visualisation in which the intensity data
is overlaid the 3D reconstruction.

Figure 7: 3D reconstruction of Stumpy.

6 Discussion

We have demonstrated precision, operational dis-
tance and spatial resolution all at the upper end
of the scale compared to other solid-state range
imagers. Furthermore, we have demonstrated all
those characteristics simultaneously, which, to our
knowledge, no other group has demonstrated.

Figure 8: 3D reconstruction of Stumpy overlaid
with intensity information.

Even though we have achieved one of our main
aims with the Waikato Range Imager, namely high
precision simultaneous full-field ranging, there re-
main a number of factors that can be improved.
The high precision has been obtained at the ex-
pense of time; acquisitions reported here take 10 s.
It would be nice to get the acquisition time below
1 s for near real time imaging. Currently one can
only reduce the acquisition time at the expense
of range precision, for example, we have demon-
strated approximately 1 cm precision with 1 s ac-
quisitions.

Our reported precision is only for repeated range
measurements from a single pixel. There remain
systematic errors across the field of view. These are
due to geometrical distortion for off axis viewing,
lens distortions and image intensifier distortions.
In principle they can be calibrated for. Geometri-
cal distortion corrections and lens calibrations are
well reported and could be easily applied. The
behaviour of the image intensifier is less well de-
scribed and we report some of our own investiga-
tions in a companion paper [9]. One important
problem is irising in the image intensifier. This
occurs because the switching off (or on) of the
image intensifier proceeds from a ring at its outside
and progresses over time towards the centre of the
image intensifier. This leads to a phase delay in
the measurements at the centre of the field of view
compared to those at the periphery. Thus range
reconstructions report inflated range values as a
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function of radial distance from the optical axis in
the field of view.

The image intensifier requires high voltages and,
with its power supplies, is bulky. It remains the
greatest obstacle to miniaturising the technology.
A few custom image sensors that incorporate the
high speed shuttering function in the sensor have
been described but they are currently of low reso-
lution and typically only achieve 1 cm range preci-
sion [8, 4].
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Abstract
Monitoring of the resin infusion process used to form advanced composite materials requires estimation of
displacements of ������� over an area of������. Optical artefacts (mainly specular highlights) prevented the
use of sub-pixel estimations in traditional stereophotogrammetry. However, we were able to adapt digital speckle
photogrammetry to obtain the required displacement accuracy. Our modi ed technique uses two verging axis
cameras but measures displacements from image to image of the same camera by measuring the phase shift in the
Fourier transform from one image to the next. A sparse set of reliable correspondences between the left and right
images permitted triangulation to obtain absolute depths - as in conventional stereophotogrammetry. We achieved
a depth resolution of ����� mm at a distance of ��m and over an area of ����� � using two 8Mpixel cameras.
Keywords: Digital speckle photogrammetry, stereo vision, resin infusion

Vacuum bag

Fibre mat

Resin Inlet Vacuum portResin Flow

800 mm

Camera one Camera two

Figure 1: Experiment layout

1 Introduction

This work was inspired by a desire to fully understand
the dynamics of resin infusion. The resin infusion pro-
cess is a low cost method for manufacturing large com-
posite parts with aircraft quality: composite materi-
als are formed by placing a  bre mat inside a plastic
bag and draining resin through the bag by applying
a vacuum to one end. However, this presents some
challenges in reliability and repeatability. A key aim
was to be able to measure the bag deformation and
compare it with a numerical model.

Contact free non-intrusive measurement and an
accuracy of about 0.05 mm over an area of 0.1m �

is needed. Previously, deformations were measured
using linear vertical displacement transducers (LVDT)
and laser gauges, allowing measurement at a small
number of points. Moreover, LVDT requires contact
and laser measurements are perturbed by bag surface
wrinkles since laser light focuses at a single point.

A preliminary experiment used a verging axis stereo
system, see Figure 1. A wide baseline and high reso-

Figure 2: Experimental Rig

lution cameras (Canon 20D, 8Mpixel sensors, f=50mm
lens, see Figure 2) allowed for a 0.3 mm accuracy at a
distance�� m without sub-pixel estimation. We could
have adopted a sub-pixel estimation scheme, but unsta-
ble matching between stereo pairs made this unreliable.
The vacuum bag is slightly re ecti ve plastic. This led
to different appearances of corresponding regions. Ap-
plying a coat of paint alleviated specular effects, but the
difference was still signi cant (see Figure 3). The large
view angle also led to signi cant perspective distortion.
Although  rst order radial lens distortion was largely
corrected, residual errors were also still too large to
satisfy accuracy requirements.
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Figure 3: Effect of specular re ections

To overcome the correspondence problem, a
modi ed stereo speckle photography technique
was implemented. It traced the relative pattern
displacements in the left image sequence and right
image sequence, rather than making a left to right
correlation. Since all images in the left or right
sequence are taken by the same camera, for a small
patch, the specular effect, perspective distortion, and
lens distortion are almost constant. Therefore, the
displacements can be closely approximated as pure
translations of patch patterns.

2 Stereo digital speckle photography

Speckle photography is widely used in solid and  uid
mechanics [1]. The basic idea is to compare a pattern
on the object surface before and after the deformation.
Chen et al. developed a digital speckle displacement
system that integrated optical speckle photography into
a process which used correlation in the frequency do-
main [2]. Synnergren and Sjödahl described a stereo-
scopic digital photography system that permitted 3D
displacement measurements [3].

Stereo has advantages over single camera speckle pho-
tography. With a single camera, the out-of-plane de-
formation component is lost and the measured in-plane
components are themselves contaminated by perspec-
tive errors [4].

Our method is based on that of Sjödahl [3]. How-
ever, the canonical parallel axis stereo con guration
was replaced by a high resolution convergent camera
system for higher accuracy. Also, the rather lengthy
calculation was simpli ed by a triangulation procedure.

Figure 4 shows our system. A calibrated convergent
axis camera system was used to monitor the vacuum
bag during infusion. Before deformation, a pair of ref-
erence images were taken by each camera and a set
of correspondences were established. During deforma-
tion, two sequences of images were taken. The relative
displacements to the reference images were calculated
on a left-left and right-right comparison basis. Hav-
ing collected all the initial states and the displacement
vectors, the 3D deformations were calculated by tri-
angulating corresponding pairs formed by their initial
positions plus displacement vectors.

2.1 Displacement measurement

Given a unique pattern of the object surface, its corre-
sponding region in a subsequent image can be found by
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Figure 4: Speckle photography system

cross correlation of the original pattern with the subse-
quent image.

Consider matching a pattern, ���� ��, of size � � �
in an image, 	��� ��, of size 
 � � , the correlation
between ���� �� and 	��� �� is[5]:

��� �� �
�
�

�
�

	��� ����� � � � � �� (1)

where  � �� �� �� � � � �
 � �� � � �� �� �� � � � � � � �.
The position of the maximal value in ��� �� indicates
where ���� �� matches 	��� ��.

Fortunately, correlation can be computed in the fre-
quency domain if 	 and � have the same size. Denote
the correlation between 	��� �� and���� �� as 	��� ��Æ
���� ��, then[5]:

	��� �� Æ ���� ��� � ���� ��� ��� �� (2)

where � ��� �� and � ��� �� are the Fourier Transforms
(FT) of 	��� �� and ���� ��.

Eq 2 shows that correlation in the spatial domain
can be obtained by taking the inverse transform of
� ���� ��� ��� �� in the frequency domain:

��� �� � �
���� ���� ��� ��� ��� (3)

where ��� is the inverse FT operator.

The Discrete Fourier Transform (DFT) of 	��� �� is:

� ��� �� �
�

�

����
���

����
���

	��� �� �	
�������������� 

(4)
and the inverse transform is:

	��� �� �
�

�

����
���

����
���

� ��� �� �	
�������������� 

(5)

Figure 5 shows two sub-patterns and the correlation in
the frequency domain from Eq 3: The peak indicates
the value of the translation.
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In general, translations will be non-integral. To esti-
mate a sub-pixel translation value, Chen et al suggested
 tting a 2D parabola to the surrounding nine points[2].
Sjödahl increased the accuracy by shifting in the fre-
quency domain until an autocorrelation occurs [6].

A 2D-parabola  t was used here: it is computationally
simple and yielded consistent results with high
frequency patterns. Figure 6 shows an example of
x-direction displacements against positions in the
image, using the patterns in Figure 5.
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Figure 6: Example x-displacement plot

The random error in locating the correlation peak is[7]:

� � ���
�

�� Æ

Æ
(6)

where Æ is the correlation factor, � is the average
speckle size, and � is a function of � and the inverse
of the window size. So, accuracy drops rapidly when
correlation drops.

If there is a large displacement between two  elds,
the correlation function will have a smeared-out peak
because of the decreased correlation (less overlapping
area). In such cases, for a biggest possible overlapping
area, the position of the window will be shifted to the
new position until the integral translation is zero. The
sub-pixel peak position is then estimated after this
shift.

2.2 Deformation calculation

With calibrated stereo cameras, the position of a scene
point can be obtained by intersecting two rays formed
by the corresponding points in the left and right images.
The process is outlined as follows.

After calibration, the intrinsic matrices ��, rotation
matrices ��, and translation vector �� of each camera
are known. Their optical centres, �� and ��, are given
in world coordinates as:

�� � ���
�
��

�� � ���
�
��

(7)

Given a pair of corresponding image points, their
‘ideal’, undistorted coordinates �� � ���� ��� ��

�

and �� � ���� ��� ��
� , can be calculated from their

real image coordinates providing the lens distortion
parameters are known. The directions of the two rays,
�� and ��, are de ned as:

�� � �� ��� � ��
�
���

�
��

�� � �� ��� � ��
�
���

�
��

(8)

Two rays do not always intersect in 3D space, so one
may choose to approximate the intersection by  nding
the pair of points that have the shortest distance. Let the
two rays be������� and�������. The parameters,
�� and ��, that give the shortest distance can be calcu-
lated by solving the following minimisation problem:

���� ��� � ������
��	��

��� � ���� ��� � �����
� (9)

Taking the partial derivatives with respect to �� and ��
and setting them to zero, �� and �� are found by�

��
��

�
�

�
���

�
�� ���

�
��

���
�
�� ���

�
��

�
���

���
�
��� ����

���
�
��� ����

�

(10)

After  nding �� and ��, the intersection, � , can be ap-
proximated as the midpoint of these two nearest points.

� � ��� � ���� � �� � ������� (11)
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Figure 7: Initial correspondences established

2.3 Correspondence registration

Digital speckle photography records only the displace-
ment vectors. For the triangulation to work, the ini-
tial coordinates in the left and right reference images
must be established. Given a set of sample points in
the left image, their corresponding points in the right
image can be obtained by manual pairing or performing
a conventional left-right stereo matching. However,
manual registration is too time consuming if the num-
ber of sampling points is large and the left-right stereo
matching suffers the aforementioned problems (listed
in section 1) and did not always yield a robust result.

Since the experiment focuses on the relative depth
change and the vacuum bag surface is nearly  at before
the infusion, the initial bag surface can be regarded as
a plane. Thus, correspondences at the initial stage can
be approximated as a planar homography H, a � � �
matrix, induced by the bag surface:

�� � H� (12)

where � and �� are a pair of corresponding points in the
left and right image respectively. Given coordinates of
at least four pairs of corresponding points, the planar
homography can be found by Direct Linear Transfor-
mation or other more elaborate methods [8].

If one chooses not to calculate the planar homography,
an equivalent method is to back project the left point
� to the bag surface plane (ray-plane intersection), and
project it again into the second camera’s image plane.
Figure 7 shows an example of the initial correspon-
dences established (white circular dots) via the initial
surface plane.
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Figure 8: Layout of monitored area

3 Experimental results

In a set of evaluation experiments, infusion was
simulated by oil instead of resin. Two convergent
Canon EOS 20D cameras, separated by 800 mm, were
mounted � � m above the infusion bag. Two dial
gauges (Mitutoyo Digimatic 543-256, resolution 0.001
mm) were placed near the bag border at the inlet and
outlet side. Figure 8 shows the layout.

A total of 26 image pairs were taken - images #0 to #21
were taken every 10 seconds, and images #22, #23, #24
and #25 were taken at 5, 10, 20, and 30 minutes after
 lling. The cameras operated at a resolution of 3504�
2336 pixels and apertures were set to f/22 to maximise
depth of  eld and minimise lens distortion.

The speckle pattern was prepared by applying a layer of
undercoat (Dulux spraycote Flat Black) and then over-
coated by spraying white paint (Dulex White Under-
coat). These two layers were effective in reducing the
re ecti ve effect and provided a random speckle pattern
- see Figure 5 (left).

The correlation window size was set to ��� �� pixels.
A �����window gave stable results with a reasonable
computation time. To evaluate the stability of sub-pixel
displacement estimation, for each point, displacements
within a local � � � pixel window centred on it were
calculated. Since the vacuum bag surface is smooth
locally, all nine points should have similar displace-
ments. Standard deviations of these displacements give
a measure for sub-pixel estimation consistency: Ta-
ble 1 shows standard deviations of displacements for
���� evenly distributed points between the reference
(#0) images and the #1 images.

Left sequence Right sequence
Average Max Average Max

x-disp 0.0007 0.0033 0.0007 0.0037
y-disp 0.0007 0.0033 0.0007 0.0029

Table 1: Standard deviations of displacements within
local �� � windows

Data obtained with the speckle photography system
represented a complete description of the thickness
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variations during processing. Figure 9 shows an
example bag surface at 120s and Figure 10 shows
thickness pro les at 20, 40, 60, 80 and 100 s after
infusion began.
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Figure 9: Bag surface (monitored area) at t=120s
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Figure 10: Thickness pro les at selected times

Figure 11 compares depths measured by the dial gauge
at the outlet side and those calculated by speckle
photography at the same horizontal position. The same
trend was observed but speckle photography gave
slightly higher values. One possible reason is that
the dial gauge was near the bag border where there is
lower variation than in the centre area. The dial gauge
also requires contact and the application of some
pressure. Thus it may be expected to underestimate an
upward displacement.
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Figure 11: Speckle photography vs dial gauge readings

A reliable ground truth was not available, since a point
cannot be simultaneously measured by speckle photog-
raphy and other techniques: a dial gauge obscures the

measured point and a laser gauge provides lighting in-
terference. Thus accuracy was inferred from displace-
ment estimations. Standard deviations within small ��
� pixel windows were ������ pixels with a maximum
less than 0.004 pixels. Assuming the estimation error
to be within 2.5 standard deviations of the maximum
standard deviation, an accuracy of 0.01 pixels in dis-
placement estimation was obtained.

Due to the wide baseline, convergent geometry and
high resolution cameras, the depth accuracy was ����
mm per disparity. Hence, the depth accuracy was
� ����� mm (in consideration of displacement errors
in the left and right images).

4 Conclusion

Stereo photogrammetry is a non-contact technique that
provides dense depth maps. Matching in two images
taken from different viewing points is affected by sev-
eral sources of noise, such as re ections and specular
highlights, different optical or electronic gain settings,
perspective distortion, etc. [9]. This makes sub-pixel
estimates unreliable. Thus traditional stereo techniques
could not measure the very small displacements over a
wide area required for this application.

By tracing speckle patterns during deformation, the dif-
 cult left-right matching process migrates to correla-
tion between images taken by the same camera. For
a small patch, specular effects, perspective distortion
and lens distortion are almost constant. Therefore, dis-
placements can be closely approximated as pure trans-
lations of patterns and thus accurately calculated. Ex-
periments with the system described here produced sta-
ble sub-pixel accuracy displacements. Standard devia-
tions within small � � � pixel windows were � �����
pixels with a maximum standard deviation � �����
pixels. With such levels of displacement estimation
accuracy, the depth resolution obtained was����� mm
over an area of � �����. The reconstructed thick-
ness pro les and corroborating measurements with dial
gauges con rmed that the speckle photography system
produced such high accuracy reliably.
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Abstract
This paper discusses some characteristics of free-form or mobile three-dimensional (3D) scanning. We
demonstrate these through a description of a hand-held 3D scanning system for static objects and scenes
ranging in size from less than a metre to tens of metres, indoors or outdoors. The scanner’s pose is
optically tracked relative to a constellation of active targets placed around the scene at the start of the
survey. The system auto-calibrates the target locations and defines a scene coordinate system in which
all scan data is subsequently represented. Mobile scanners can capture 3D structure of almost arbitrary
complexity very rapidly. Real-time visual feedback to the operator coupled with manual control of data
filtering can result in artefact-free 3D point clouds. Free-form scan data typically contains very few
holes because the scanner can be manoeuvred to observe occluded surfaces, and oriented optimally for
obtaining ranges to difficult surfaces.

Keywords: 3D scanning, pose tracking, range sensor

1 Introduction

Demand for three-dimensional (3D) computer
models has risen dramatically with the advent
of affordable processing power and graphics
display capability. While good tools exist for
creating synthetic digital models, applications
that require the geometry (3D structure) of
real-world scenes or objects are hampered by the
cost and inconvenience of current 3D scanning
technology:

• Objects with complex geometry have to be
surveyed from many different viewpoints to
avoid holes in the acquired surfaces.

• Fixed-station scanners rely on fiducials placed
in the scene to register multiple scans to a
common coordinate system. In some appli-
cations this can be a time-consuming and in-
accurate process when many scans are needed
to cover a complex object.

• Surfaces have to be sufficiently visible to the
scanner to be acquired reliably.

• Some common scanner technologies generate
artefacts (stray points) near edges, requiring
interactive clean-up after the survey.

• Common 3D scanners typically scan both in-
teresting and boring parts of the scene with
uniform sampling density.

• Most current mobile or hand-held scanners fail
to fully exploit their mobility due to their un-
derlying pose tracking technology: magnetic
sensors fail near ferromagnetic materials, op-
tical sensors require unoccluded lines-of-sight,

inertial sensors drift, global positioning sys-
tem (GPS) sensors only work outdoors, and
so on.

This paper demonstrates the advantages of mobile
scanning by reporting on a hand-held scanner de-
signed to address most of these problems. Its first
prototype is optimised for medium-sized scenes or
objects (one to tens of metres) although this is not
a hard constraint.

Free-form scanning is characterised by a highly
interactive scanning experience: the operator
sweeps the scene with a motion reminiscent of
spray-painting, covering surfaces of high interest
more densely, glossing over areas of lesser interest,
and manoeuvring freely to scan into awkward
regions such as concavities.

The system resembles other current hand-held or
mobile scanners and differs from them in some key
aspects. The Polhemus FastSCAN [1] uses mag-
netic sensors to determine the pose of the scanner
which limits the working volume to be about a
metre cube and free of nearby ferromagnetic mate-
rials. The 3rdTech HiBall [2] uses an array of light-
emitting diodes (LEDs) overhead (usually ceiling-
mounted) to track the pose of a hand-held sensor
which can be fitted with a stylus for surface contour
tracing. Hand-held range sensors are surveyed in
[3].

The applications of mobile scanning overlap with
those already being addressed by other types of
scanning. They include:
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• Forensics and accident scene recording

• Movie visual effects and computer games

• Heritage and archaeology

• Virtual tourism

• As-built engineering surveying

It is likely that, in each of these sectors, mobile
scanners will have wider utility in cluttered or con-
voluted environments than other types of scanning.

Some applications may be practically infeasible
without scanner mobility. It is quite difficult, for
example, to scan the cabin interior of a passenger
aircraft or luxury yacht without being able to
move the scanner freely between seats, bulkheads
and other obstacles.

The paper is organised as follows: Section 2 de-
scribes our hand-held scanner in terms of its sys-
tem components. Section 3 generalises the descrip-
tion to a discussion of some characteristics of mo-
bile scanning and how it addresses many problems
that hamper fixed 3D scanners. Section 4 provides
a practical illustration through an example scan.
Section 5 suggests future work, specifically the po-
tential for highly photorealistic renderings of 3D
models captured by mobile scanners.

We use the phrases “mobile” and “free-form” in-
terchangeably. They refer to the manoeuvrability
associated with hand-held scanners, but may also
apply to other deployments such as robot, vehicle
or aircraft-mounted scanners.

2 System Description

The basic functions of the scanner system are
shown in Figure 1. The function of each of the
blocks will be described in the following sections.

2.1 Conventions

Figure 2 shows the relationship between some of
the coordinate systems used in the system. For no-
tational ease, the scene coordinate system is called
CSW (world coordinate system), and the scanner
head’s coordinate system is called CSM (mobile co-
ordinate system). CSR is the range sensor’s coordi-
nate system. The pose sensor’s coordinate system
is denoted CSP, and CST represents the coordi-
nate system of additional sensors such as texture
sensors.

2.2 Base station

The base station computer is used for overall sys-
tem control and for storage and visualisation of
scan data.

Station
Base 

Scanner head
CSM

Interface
Operator

CSR
Range Sensor

(e.g. texture)
Other sensors

Pose sensor
(e.g. optical,

inertial, GPS)

CSP

Figure 1: Functional block diagram.

Pose of
CSM in CSW

CSM

CSW

CSR

CST

CSP

Figure 2: Coordinate systems and their relation-
ships

2.3 Operator Interface

The operator interface comprises a display, indica-
tor lights, and buttons on the scanner head. An
important use of the display is to provide real-
time visual feedback of the accumulating scan data.
This is referred to as the guidance visualisation.

2.4 Pose Sensor

The pose sensor estimates the pose (location
and orientation) of CSP in CSW in real time.
Any spatial data produced by a local sensor
rigidly attached to the scanner head can then be
transformed into CSW.
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Figure 3: The prototype scanner head, resting on
its laser line scanner on which six direction sensor
cameras and an operator panel are mounted.

Figure 4: Scanner prototype: On the table from
left to right are the base station, active targets
which would be placed around the scene before the
survey, and the scanner head. The scanner head
is connected by umbilical cord to a processor-filled
backpack.

The scanner uses an optical tracking system com-
prising an omnidirectional camera on the scanner
head and a number of active targets in or around
the scene.

The omnidirectional camera is approximated in
the prototype by six synchronised digital cameras,
called direction sensors, with wide-angle lenses
and optical filters matched to the colour of the
targets (see Figure 3). The targets are segmented
from each image and their centroids are extracted
to sub-pixel accuracy. These centroids are then
transformed into 3D lines in CSP. The lines
together with the known target positions are used
to estimate the pose of the scanner.

The geometric relationship between each of the
direction sensors is fixed and calibrated (see sec-
tion 2.7 below) so that the group can be charac-
terised by a single coordinate system denoted by
CSP.

2.5 Range Sensing

The scanner prototype uses a time-of-flight laser
line (or flying-spot) range scanner. Since it is
rigidly fixed to the scanner head, and its pose
CSR in CSM is calibrated, the laser scan data can
be represented in CSW as soon as the scanner
head’s pose is known (CSM in CSW), which can
be done in real time.

The laser line scanner accuracy of about ±10 mm
(3 standard deviations) currently makes the
biggest contribution to system accuracy. Different
applications would typically require range scanners
with different reaches, wavelengths and accuracies.
For example, sub-millimetre accuracy would
probably require a laser triangulation device with
a reach of less than a metre.

Every data point is tagged with the pose of the
scanner at the instant it was captured. The output
is therefore more than a point cloud, it contains
information on observation directions which can
be used to disambiguate the sidedness of surfaces,
especially those of thin sheets.

2.6 Data representation

All geometric primitives in the system are rep-
resented and communicated as homogeneous ge-
ometric algebra (GA) [4, 5] elements: points, lines,
vectors and rotations. Work is in progress to port
the system to conformal GA which is a more pow-
erful and compact description [6]. A pose, for
example, comprises a GA rotation and a GA vector
in the homogeneous model, and a GA motor in the
conformal model.

2.7 Calibrations

The system depends crucially on three levels of
calibration, namely intrinsic, group, and target
self-calibration. Intrinsic calibration relates to
characterising sensor outputs (such as images
from cameras) as meaningful measurements of
the scene (such as angles between targets and
camera optical axis). Group calibration relates
to the relative poses between sensors and the
scanner head. Target self-calibration relates to
finding where the active targets are in the scene
at the start of a survey, and establishes the scene
coordinate frame.

2.7.1 Intrinsic and group calibrations

Intrinsic camera calibration [7] is performed for
each of the direction sensors which make up the
pose sensor. This effectively turns each direction
sensor camera into an accurate meter of angles of
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rays from the scene going through the image plane
and optical centre.

Camera group calibration establishes the pose of
each sensor in CSP. Similarly, laser range sensor
group calibration finds the pose of the range sensor
relative to the scanner head.

After intrinsic and group calibration the pixel co-
ordinates of a target’s centroid can be transformed
to a line in CSM and represented internally as a
GA element.

In the current implementation, the pose sensor co-
ordinate system CSP coincides with CSM.

2.7.2 Target self-calibration

Target self-calibration is described in [8]. It in-
volves moving the scanner to a number of station-
ary positions in the scene. The pose sensor gathers
a set of lines in CSP at each position. These sets
of lines, and a yardstick for scale, are presented to
the target calibration algorithm which determines
the 3D position of each target.

These target estimates can be further refined us-
ing an iterative algorithm [9] on additional target
sightings gathered by walking around the scene.

3 Characteristics of Mobile Scanning

We believe that any efficient solution to the scan-
ning of complex shapes has to involve a highly mo-
bile scanner. There is currently a preponderance
of statically-mounted scanners. The advantages of
mobile scanning can be discussed one by one: in
combination we think they provide a compelling
argument for the use of mobile scanning in many
practical situations.

Many of the advantages stem from the highly in-
teractive nature of scanning and the possibility of
real-time visual feedback of the growing 3D data
set to the operator.

In our system scanning is activated by a trigger
button and can be started, stopped and resumed
at any time. A common surveying pattern seems
to be one or several scanning sweeps followed by
the operator moving to the next position before
resuming the survey.

3.1 Data Quality

Holes in surface meshes obtained from scanners has
been a persistent difficulty requiring post-survey
intervention. Holes are caused by incomplete scan-
ning due to occluded surfaces and failure of non-
contact range sensors to detect surfaces, for exam-
ple due to absorption of laser light.

The following characteristics of a mobile scanner
help minimise holes in the data:

• The scanner head can follow complex trajec-
tories to acquire data in areas that are difficult
to access.

• The orientation of the scanner can be adjusted
to be more normal to the surface in order to
get data from surfaces with low return.

3.2 Discarding Unwanted Data

3D scanners can produce a lot of data, but quality
or usefulness is not guaranteed. With real-time
visual feedback to the operator, data filters can
be made fully interactive. This effectively places
operator intelligence into the filter cascade:

• If scan data looks anything but perfect, all or
some of it can be discarded and immediately
rescanned. The graphical operator interface
of our prototype, for example, has a slider
control which rolls back the survey in time,
interactively showing the acquired point cloud
at any earlier time, and allowing resumption
of the survey from that time.

• If laser return intensity is considered too low
to produce accurate ranging, those points can
be discarded immediately. The operator reori-
ents the scanner and rescans to get a stronger
return.

• Stray points near edges and surfaces scanned
at grazing angles can be identified by their
sparseness and either discarded or visually
tagged for the operator to make a snap
decision on their fate.

The combined effect of such interactive filtering is
that one has a clean set of data at the end of the
survey, containing only the areas of interest thus
minimising the post-processing.

3.3 Data Quantity

Handling very large data sets can be a problem.
The above filters reduce data size by removing
points which are suspect or simply unwanted. In
addition, the following features allow us to control
data quantity,

• Only areas of interest are scanned. For exam-
ple, it is possible to scan discrete objects in a
scene and maintain their spatial relationship
without scanning the entire region in between.

• Areas can be scanned at suitable resolutions.
It is often not necessary to scan the entire
scene at high resolution.

248



Figure 5: The scanner prototype in action.

• With known pose of the scanner in CSW, it is
trivial to define virtual bounding boxes con-
taining the objects of interest. All points that
are out of bounds are silently discarded. The
bounding volume can be of any piecewise pla-
nar shape and may be formed interactively by
indicating the bounding planes with the scan-
ner. Bounding planes can be removed, and
new ones added, interactively in the course of
the survey.

• Bounds can also be placed on the range of
acquired points from the scanner head. Points
not within a specified window of ranges from
CSM are automatically discarded in our
prototype, making it easy to reject either
foreground or background clutter. One might
think of scanning an object in a barred cage
without including any of the bars.

4 An Example Scan

Figure 6 shows the result of an example scan
with the prototype scanner. The decapitated
mannequin, simulating a forensic scene, spans
about three metres. This scene is reasonably
complex, including concavities, separated parts
and undersides that are difficult to access.

The gap between the body and the head arises be-
cause the scan was intentionally restricted to those
two areas of interest. The positions of the head and
body are nevertheless spatially maintained to the
accuracy of the scanner, even if they had been far
more widely separated.

The floor appears bounded by a rectangle because
a virtual bounding box, enclosing the volume of
interest, was optionally defined at the start of the
scan. No data was therefore collected of the sur-
roundings.

The noisy points visible above the surface of the
body is indicative of system accuracy. The scan-
ner’s accuracy, defined in terms of average or root-
mean-square errors in scan points, is not easy to
characterise simply. It is a non-linear function of
many variables in several contributing subsystems:
sensor intrinsic calibration, sensor group calibra-
tion, target self-calibration, pose estimation, and
range sensor error among them.

In some cases accuracy can be measured as a func-
tion of residual error. Target self-calibration and
pose estimation use lines between the direction sen-
sors and each visible target. The root-mean-square
angle between actual and reprojected lines can be
found as a measure of either target self-calibration
or pose estimation accuracy. How these numbers
translate to eventual accuracy of 3D points again
depends on factors such as the relative geometry
of targets, scanner head, and scanned points.

System accuracy is dominated in the current pro-
totype by the accuracy (or lack thereof) of the
laser line scanner mounted on the scanner head.
Future prototypes will employ more accurate range
scanners.

The scanned objects have no significant holes that
would make meshing difficult. It was straightfor-
ward to scan surfaces that would have presented
a challenge to fixed-position scanners: around the
legs and close to the floor.

5 Future Work

Future work could be based on the fact that hand-
held scanners can produce data sets in which each
surface in the scene is seen from hundreds of direc-
tions. If a calibrated colour camera is attached to
the scanner head, copious amounts of texture data
can be gathered. The pose of the texture camera
will be known for each texture element, which will
in turn be closely registered to the underlying 3D
geometry. Such texture data sets may be mined
for detailed surface appearance models.

If, in addition, illumination of the scene is con-
trolled or measured, bidirectional reflectance dis-
tribution function (BRDF) modelling of surfaces
could yield highly photorealistic renderings with
relighting [10].
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Figure 6: Captured point cloud rendered with laser return intensity.
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Abstract
Traditional computer monitors offer limited depth perception due to their 2D nature. The multi-layer display
technology uses two or more display layers stacked in parallel and separated physically by depth. When viewing
a Multi-Layer Display (MLD™) objects displayed on the front layer appear closer than objects on the back
layer, and when moving the head while viewing the display objects on the front and back layer move relative to
each other. However, it is not clear how complex 3D scenes can be rendered effectively using two physically
separated view planes. We have experimentally analysed differences in perception when using single and Multi-
Layer Displays and used the results to develop novel rendering techniques for MLD™. We found that
perception of scenes can be improved by emphasizing important objects by displaying them on a different layer,
by separating datasets on different layers, by extruding objects across layers, by transitioning objects smoothly
between layers and by making use of the transparency of the front layer. As a result of our user studies we
present a set of guidelines for the most effective use of Multi-Layer Display technology for rendering 3D
scenes.

Keywords: Multi-layer displays, 3D displays, visual perception, human-computer interfaces, visualization

1 Introduction
Consumer level display technology has advanced
dramatically with the advent of plasma and LCD
displays. One important feature that has yet to reach
the mainstream consumer is real 3D depth in images.
There are many display technologies which can
achieve varying levels of 3D depth, however most are
expensive, inconvenient or have depth limitations.
The Multi-Layer Display (MLD™) developed by
PureDepth functions similarly to a conventional LCD
monitor except that it features a second screen directly
behind the transparent front screen.  Images can be
rendered on either of these two layers which are
separated by a small space, conveying a limited
amount of 3D depth [1].

3D display technology has a wide range of
applications in entertainment, advertising, medicine,
military and other fields.  Examples include animated
signs, video games, television, heads-up-displays and
design visualizations [2].  3D depth in display
technology allows images to be interpreted faster,
with more clarity and more realism.  The MLD™ is
one of the most accessible depth limited displays
because of its compact size, low cost and
compatibility with common PCs.  Traditionally its
dual layers are used as discrete surfaces for displaying
overlaid information and highlighting objects by
making them appear physically closer to the user.

In this paper we present a number of novel rendering
techniques for harnessing the power of MLD™
technology and creating more effective visualizations.
Section 2 summarises results about human depth
perception. Section 3 introduces 3D display
technologies and the PureDepth MLD™ technology.
In section 4 we analyse differences in perception of
single- and multi-layer displays and use the results in
section 5 to develop more effective rendering
techniques for a MLD™. Section 6 presents the
summary of results obtained by performing user
testing for our novel rendering methods. In section 7
we draw conclusions to our research and suggest
directions for further studies.

2 Depth Perception
Human beings perceive depth using a combination of
depth cues. Psychological depth cues are attributes of
a physically flat image which are interpreted by the
brain as 3D distance information and are hence
extensively used when rendering 3D scenes on
conventional 2D displays. Linear perspective is  the
recognition of parallel lines converging towards a
point in the distance.  Closer objects appear larger
than distant ones and the known sizes of recognized
objects can also be recalled from memory in order to
make accurate distance estimations. Occlusion is the
overlapping of objects and gives some idea of the
order of objects in a scene.  Depending on light
sources, shadows and shading can provide clues as to
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where objects are with respect to the ground plane.
Atmospheric perspective is the blurring and blue
tinting of distance objects due to scattering light.
Some psychological depth cues involve motion.
These include motion parallax, where nearer objects
move faster than further ones; and optic flow, where
the scene seems to expand from the point that the
camera is moving towards [3][4].

Physical depth cues rely on the fact that humans have
two eyes, and cannot be utilized by ordinary 2D
displays. Binocular disparity is the main physical
depth cue which involves the brain processing the
images from both eyes.  Since the eyes are some
distance apart they capture slightly different images
with a large overlap.  The differences in the
overlapping region can be perceived as 3D depth.
Vergence is the movement of both eyes in opposite
directions as they focus on an object which is moving
towards the viewer.  This can be used by the brain to
very accurately judge distance [3][4].

The brain uses a weighted combination of all depth
cues to perceive 3D depth.  Physical cues are
weighted more heavily at closer distances and
psychological cues (particularly motion based cues) at
long distances [3]. Gestalt psychology states that an
important part of visual perception involves grouping
parts of geometry in a scene into recognizable objects,
e.g. by similarity, continuation, proximity, and
common fate. Gestalt does not refer to depth
perception in particular but we utilise the brains
ability to perceive Gestalt when making objects
appear to be continuous across both layers of the
display [5].

3 3D Display Technologies
Artists have exploited size, shape, overlay, linear
perspective and shadows to add depth to an image [6].
3D displays are designed to utilise as many of the
depth cues covered in section 2 as possible [7]. 3D
capable technologies include anaglyphs, stereoscopic
displays and autostereoscopic displays which use
goggles or other tools to generate different images for
both eyes [8]. All of these techniques suffer from user
discomfort and eyestrain. A hologram records the
intensity and the phase of the wavefront emanating
from an objects surface but at present the images are
fixed in film and cannot be manipulated. Volumetric
displays illuminate points in 3D space but are very
expensive [8].

Multi-Layer Displays do not have the same issues
with discomfort, are smaller than other displays, can
be easily installed on most computers (they require a
dual head graphics card), and are cheaper than most
alternatives. A Multi-Layer Display blends the
colours of pixels rendered on the front and back layer
together. This means if a dark pixel is rendered on the
back layer, then the corresponding pixel on the front
layer will also be dark. What is rendered on the front

layer must therefore take into account the colour of
the scene behind it.

In our research we use a 17 inch MLD™ prototype,
which consists of 2 LCD layers, with the back layer 7
mm behind the front layer. The display is connected
to the computer via a dual head graphics card. The
resolution of the screen is set to 2560x1024. The first
1280 pixels correspond to pixels on the front layer,
the rest are for the back layer.  We use OpenGL for
rendering because it is platform independent, easily
portable, offers fast real-time 3D graphics, has a
stencil buffer for rendering silhouettes, and includes a
shading language for implementing per-pixel
operations. In OpenGL an easy way to render on the
MLD™ is to create 2 viewports, one for the front
layer and the other for the back, and render in each
viewport separately.

4 Perceptional Differences for
MLD™

We have performed and analysed a series of
experiments in order to better understand how
perception of the MLD™ varies from that of single
layer displays (SLDs). Details of the experimental set-
up and results are described in [9,10]. We found that
users sitting within 0.5m from the screen in most
cases could determine what was on the front layer and
what was on the back layer. Reference objects helped
with this which indicates that binocular disparity is an
important depth cue in the MLD™. Similarly being
able to move the head improved perception when
using reference objects (motion parallax).
Performance was further improved when the objects
were overlapping.

5 Rendering Techniques on MLD™
We have developed various techniques to improve
depth perception when rendering 3D scenes on a
MLD™. The following subsections introduce these
techniques and discuss their advantages,
disadvantages and limitations.

5.1 Emphasising objects by putting them on a
different layer

Since depth is more powerful than colour to help find
an object [11], objects can be emphasized by putting
them on a different layer, usually the front layer.  Care
must be taken when choosing colours for the
emphasised object and the background scene. We
found that the technique works best if the background
has light colours, and the foreground has dark colours.
If the background is dark then foreground objects are
hard to see and if the foreground object is light it
appears transparent (because of the physical makeup
of the front layer) and the background shines through.
The first problem can be alleviated by rendering a
white silhouette of the foreground object onto the
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back layer. We achieve this in OpenGL by drawing
the background into the stencil buffer, then drawing
the foreground objects in white where stencil values
are non-zero, and finally drawing the foreground
objects onto the front layer.

Figure 1: Emphasizing important objects.

We tested the scene displayed in figure 1 and found
that most users perceived the red object as more
accentuated when using the above described
technique. One problem is that the white silhouette
becomes visible when the user moves the head. This
can be alleviated by fading the silhouette similar to
the technique explained in the next subsection.

5.2 Determining layers by object depth value

The Z-value technique splits the entire scene by its Z-
value (depth buffer value) and renders each half on a
separate layer.  All parts of the scene with a Z value
greater than a certain threshold distance are rendered
on the back layer and everything else on the front
layer.  An example is shown in the top row of figure
2, which shows a scene consisting of a rotating cube
suspended in space and casting a shadow onto a
platform below it.  As the camera moves towards an
object which is on the back layer, the object will
eventually cross the threshold distance and gradually
move to the front layer.  The faces of any 3D object
which intersect the threshold plane will be cut
accordingly and the object will be partially rendered
on both layers.

Figure 2: The Z-value technique using hard edges
(top) and continuous shading (bottom).

The initial implementation of this technique was not
very effective because of the discontinuity in the
image caused by objects crossing the Z threshold.
The main problem is that objects cut by the threshold
plane appear to be unnaturally discontinuous or
overlapping, particularly when the viewer moves the
head.

The Z-value technique was dramatically improved by
using continuous shading rather than discretely
splitting a scene and rendering each half on a separate
layer.  In this implementation, each pixel in the scene
is rendered with an independent alpha which depends
on its Z-value and four other constants.  These
constants are fMinZ, fMaxZ, bMinZ and bMaxZ.  The
alpha of each pixel is calculated using equation (1) for
the front layer and equation (2) for the back layer.
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The constants can be adjusted in order to provide
enough overlap of the shading to naturally blend the
layers.  The demo application uses a custom OpenGL
fragment shader to adjust the alpha for each pixel in
real time [12]. The default values used are fMinZ =
0.91, fMaxZ = 0.96, bMinZ = 0.88 and bMaxZ = 0.93.
Figure 2 shows a comparison of using hard edges on
silhouettes compared to continuous smooth shading.
Although this technique can be applied to any 3D
scene with Z-values available, the amount of depth
added to the scene is limited, as the distance between
the layers is small.  Another limitation is that the
continuous smooth shading is less effective when
rendering more complex objects with detailed
surfaces (textures), particularly if the gradients
overlap significantly.

5.3 Gradients

Simple view plane aligned static objects can be
rendered effectively by splitting them and rendering
the outer part on the front layer and the inner part on
the back layer and fading the parts at the contour
where they were split using the OpenGL smooth
shade model.

We tested this technique by showing the scenes
displayed in figure 3 and figure 4 to users. The three
images at the bottom of each figure show the
perceived scene from a view point to the left, in front
and to the right of the monitor. The viewers were able
to tell when the scene was rendered on only one layer
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and all users agreed that using two layers improved
depth perception. Further user studies showed that the
technique is most effective when the width of ring
object is small (the size of the two rings are around
the same size) and the length of the gradient is a long.
When the width of the ring is large, viewers can’t see
any difference from the equivalent single layer
technique. The technique is only effective when the
ring appears facing up. The most suitable background
colour for ring area (which determines the colour of
the highlight) is white or a colour lighter then the
colour of the ring. When it’s dark it makes the part
rendered on the front layer hard to see. Possible
explanations for these observations are that the ring
appears less flat since when is rendered on both layers
and that the whitish region where the rendered parts
overlap moves as a viewer moves their head, which is
consistent with how a specular reflection on a ring
would behave when being viewed.

Figure 3: Effective use of gradients for ring objects.

Figure 4: Ineffective use of gradient.

Figure 5: Ineffective use of gradient on other objects.

We applied this technique to other objects such as the
car in figure 5, but found it to be ineffective.  The

most likely explanation is that the depth of the object
is too large, i.e. when the viewer moves the head the
headlights move independently of the rest of the car,
which is unnatural. In addition the shape and
behaviour of the whitish region where the scene
components meet is inconsistent with that of a
specular highlight.

5.4 Transitioning between layers

Objects can be made to appear between the display
layers by rendering a percentage of the object on each
layer. The object appears closer to the layer which has
the higher percentage of the object rendered on it. We
implemented this technique in OpenGL using alpha
blending.

Figure 6: Transitioning objects between layers.

Two versions of the scene displayed in figure 6 were
shown to users who were asked to order the squares
by depth away from them. For the first version five
out of six viewers agreed on the expected ordering,
with the last viewer disagreeing in 3 positions. For the
second version 3 out of six agreed on the expected
ordering, with 2 disagreeing on 2 positions and one
disagreeing on 3 positions. Note that is possible, that
viewers use the apparent size of the gap between
objects displayed on both layers to order the squares.
However, overall the technique is effective for
moving objects between layers. Possible problems are
that objects change their perceived colour when
moving between layers.

5.5 Calibrating objects to be viewed from a
particular position

One way to render on the MLD™ is to assume that
the viewer will only view the scene from a particular
angle and to render the scene from that viewpoint
such that both layers show the correct projection.
However, it is very hard for the user to keep the head
completely fixed and since we would loose depth
perception due to motion parallax this technique does
not seem suitable.

5.6  Grey scale depth map to determine layer

One of the most promising techniques we developed
utilizes two images: the image to be displayed and a
greyscale depth map which dictates how to render the
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image on each layer.  A white and black pixel in the
depth map results in the corresponding image pixel to
be displayed on the front and back layer, respectively.
For gray scale pixels we blend the images between the
layers by using the gray scale value as the weighting
factor for alpha blending. Viewers found this
technique to be very effective for an image of a brick
wall (figure 7). The bricks appear closer and the
grouting appears to recede behind the bricks.

Figure 7: Depth Map to determine layer.

5.7 Visualising two data sets simultaneously
separated by physical depth

Two data sets with matching domain (independent
variable) can be effectively visualised on the MLD™
by displaying the data sets on a different layers on top
of each other as illustrated in figure 8. The main
advantage over a single layer display is that both
datasets are physically close on the display which
makes it easy to compare values for the same point in
the domain. When points on one dataset block points
on the other set the user can simply move the head to
see the missing points.

Figure 1: Comparing two datasets.

5.8 Moving objects on two layers with different
speeds

Moving the scene on the front layer at a different rate
to the scene displayed on the back layer gives the
impression of a moving camera. An example is to
have moving stars on the back layer and a stationary

spacecraft on the front layer. However, user testing
indicates that the technique is equally effective for
single layer displays.

5.9 Transparency

The transparent front layer can be utilised to display
semi-transparent materials such as glass, water and
fog. The scene rendered on the back layer then
appears to be physically behind the semi-transparent
material. This is in particularly the case if the semi-
transparent material is textured, e.g. slight waves, in
which case motion parallax enhances depth
perception. While this technique seems promising we
did not have time to explore it in more detail.

6 Results

6.1 Analysis of Experimental Results

The perception of a MLD™ differs from a SLD in
two ways. Firstly what is displayed on the front layer
appears closer and separated from what is displayed
on the back layer; this is due to binocular disparity.
Secondly what is displayed on the front layer moves
relative to what is displayed on the back layer when a
viewer moves their head; this is due to motion
parallax. Techniques that utilize either or both of
these two properties to their advantage are more
effective on the MLD™ than for a SLD.

For example, visualising two data sets simultaneously
(figure 8) effectively makes use of both properties and
works well. The gray scale depth map technique
(figure 7) effectively makes use of binocular disparity
and also works well. Techniques that don’t make use
of these two properties look identical on the MLD™
and SLD. Techniques where these depth cues interfere
with the displaying data reduce the perceived
information. An example is figure 5 which makes
poor use of motion parallax and therefore appears
confusing to the user.

6.2 Rules for creating effective 3D displays on
MLD

Our research found no general technique that works
well for all applications. A developer must make
intelligent decisions about what to render on the front
and back layer to produce an effective scene. The
following rules are compiled from our experiences
will help to make this decision.

Emphasize important objects
Rendering a scene on the back layer and putting
selected objects onto the front layer emphasises them.
Other techniques such simulating depth using
gradients also accentuates objects. This is useful in
applications such as advertising, where the advertised
product can be accentuated, and visualization
applications such as satellite information where the

255



designer wants to emphasise GIS information or
military activity.

Making use of layer separation to separate
information
Putting different datasets on different layers clearly
shows that the datasets are separate but at the same
time enables the user to read and compare both
datasets.

Extruding objects across layers
Rendering an object over two layers, as explained in
subsection 5.2 and 5.3, can give the illusion of
physical depth and makes the scene more eye-
catching.

Transition objects between layers
When moving objects between layers it is best to fade
them between the two layers to give a continuous
movement. This is useful when animating an object
in 3D and a gradual movement between layers is
required in order to emphasise its motion towards or
away from the camera.

Making use of transparency
The transparency of the front layer can be used to
render semi-transparent materials, such as glass, water
and fog. The objects rendered on the back layer
appear to be physically behind the semi-transparent
material.

Avoiding visual discontinuity
When rendering a scene on the MLD™ it is important
to take into account user head movements and that
multiple users might view the display at the same
time. In particular visual discontinuities as illustrated
in figure 2 (top row) and figure 5, must be avoided.

7 Conclusion
Binocular disparity and motion parallax are the main
depth cues users employ in order to determine which
objects are displayed on the front and the back layer
of the MLD™. Binocular disparity makes objects on
the front layer appear closer and separated from what
is displayed on the back layer. Motion parallax
causes objects displayed on the front layer to move
relative to objects displayed on the back layer when
the viewer moves the head.

These depth cues cannot be depicted on SLDs and we
have used them to develop effective rendering
techniques for the MLD™. Gradients are useful for
both reducing discontinuity caused by the physical
gap between layers and for making objects appear
continuous across layers. An effective general
technique is to split a scene by Z-value to add a
limited amount of physical depth to the scene.
Important objects or objects that are closer to the
viewer should be rendered on the front layer.  In
general, areas of an image can be made to appear

some distance between layers by rendering them with
appropriate transparency values on both layers. The
example with the brick wall in figure 7 demonstrated
that this works best if only a relatively small depth is
simulated.

Care must be taken that the physical separation
between layers does not lead to unnatural effects such
as gaps between layer images and unrealistic motion
parallax (see figure 5 where the car’s head lights
move in an unnatural way).

In future research we want to develop an OpenGL
style graphics library for use with MLD™. This might
involve the development of special graphics card
drivers to make full use of hardware acceleration.
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Abstract
The Iterative Closest Point (ICP) algorithm can accurately register and match 3D rigid surfaces.
However, when it comes to non-rigid or semi-rigid surfaces such as the human face, the performance
of ICP drops significantly. In this paper, we extend the ICP algorithm and propose a Semi-Rigid ICP
algorithm which can match and register semi-rigid surfaces. We compare the performance of SRICP
and ICP algorithms in a challenging scenario whereby 3D faces under exaggerated facial expressions
are matched to 3D faces under neutral expression for recognition. Our results show that the proposed
SRICP algorithm performs significantly better than the original ICP algorithm.

Keywords: Non-rigid registration and matching, semi-rigid surface, 3D face recognition, ICP.

1 Introduction

Surface registration and matching are fundamental
problems in computer vision. Surface registration
has applications in 3D modeling [8] whereas surface
matching has applications in object recognition
[11]. This paper mainly focuses on the latter
problem i.e. surface matching with particular
emphasis on 3D face recognition. A 3D face is
essentially a three-dimensional surface represented
by a 3D vector of its x, y, z coordinates. 3D
face recognition is believed to have the potential
to achieve higher accuracy compared to its 2D
counter part mainly because 3D surface matching
is robust to changes in illumination, makeup and
pose [3]. However, 3D face recognition is more
sensitive to varying facial expressions compared
to 2D face recognition. For literature review of
existing 2D and 3D face recognition algorithms,
the interested reader is referred the surveys of
Zhao et al. [16] and Bowyer et al. [3].

The Iterative Closest Point (ICP) [2] is a classic
algorithm used for the registration and matching of
3D rigid surfaces. It has been extensively used for
3D face recognition [5][7][9][10]. However, strictly
speaking, face is a non-rigid object and varying
facial expressions can significantly change the 3D
surface of the face. This is why the performance
of ICP significantly deteriorates under varying fa-
cial expressions. For example in [7], the 3D face
recognition rate for neutral faces is 98% whereas
it drops to 68% for smiling faces. The recogni-

tion rate drops significantly even though there are
no exaggerated facial expressions. In our earlier
work [10], we demonstrated that it is possible to
achieve high 3D face recognition accuracy by using
only partial regions of the face which are com-
paratively less sensitive to expressions. However,
such regions not only vary between individuals but
also vary between different facial expressions. To
determine these precise regions for an individual
requires many training images under all possible
facial expressions which are usually not available
in practical situations. Furthermore, this approach
will also require the pre-classification of the expres-
sion type (e.g. smile, frown, anger, disgust) before
performing recognition.

On the pretext that under different facial expres-
sions, some regions of the 3D facial surface deform
significantly lesser compared to others, we treat the
face as a semi-rigid object in this paper. We ex-
tend the ICP algorithm and present SRICP (Semi-
Rigid Iterative Closest Point) which can match and
register semi-rigid 3D surfaces such as the human
face. Like the ICP algorithm, SRICP is generic
and can be applied to any 3D or even nD non-rigid
datasets. Briefly, SRICP dynamically determines
the points of the probe face which are less likely
to have been affected by facial expressions and
matches them to the corresponding points of the
gallery face. These points are different for each
match i.e. for each probe versus gallery face. More-
over, we also calculate a weighted distance error
between the two faces by giving confidence weights
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to different points (according to their sensitivity to
facial expressions) of the gallery faces. We compare
the recognition performance of the two algorithms
using the FRGC (Face Recognition Grand Chal-
lenge) dataset [14] and demonstrate that SRICP
outperforms the ICP algorithm.

This paper is organized as follows. Section 2 gives
a brief description of the ICP algorithm. Section
3 gives details of the proposed SRICP algorithm
and its differences from the ICP algorithm. Ex-
perimental setup and results are given in Section 4
and Section 5 respectively. Conclusions are given
in Section 6.

2 Iterative Closest Point Algorithm

The ICP algorithm assumes that the two surfaces
(to be matched or registered) are already coarsely
registered or an initial set of correspondences have
been identified between them either manually
or automatically through a feature matching
algorithm [8]. The distance between these
corresponding points is then minimized by
applying a rigid transformation to one of the
surfaces (see Section 3 for details). Next, the ICP
algorithm iteratively establishes correspondences
between the closest points of the two surfaces and
minimizes the distance between them by applying
a rigid transformation to one of the surfaces. The
iterations stop when the distance error reaches a
saturation value and cannot be further decreased.
The end effect of the algorithm is that the two
surfaces are registered and the final distance error
value is used as a similarity metric between the two
surfaces. The more accurately the two surfaces
resemble each other, the lower is the error. Note
that this error value is also dependent upon how
accurately the “closest points” of the two surfaces
represent the correspondences between the two
surfaces.

A number of modifications have been proposed to
improve the registration performance of the ICP
algorithm. These modifications are mainly tar-
geted at improving the correspondence establish-
ment which determines the final accuracy of the
algorithm. Setting thresholds on the allowed dis-
tance between the closest points and the angular
difference between their normals have improved the
registration performance of the ICP algorithm. Es-
tablishing correspondences along the sensor view-
ing direction has been found to improve face recog-
nition performance [10]. Since ICP is a computa-
tionally expensive algorithm, many efficients vari-
ants have also been proposed [15]. ICP has also
been extended to non-rigid intensity based regis-
tration of 3D volumes [6].

3 Semi-Rigid ICP

SRICP mainly differs from the ICP algorithm in
determining the eligible closest point correspon-
dences and calculation of the distance error. In
ICP, the closest pairs of points that are within
a certain distance threshold are considered corre-
sponding points. However, in SRICP, the closest
pairs of points whose weighted distance is less than
a threshold are considered corresponding points.
Moreover, these weights also count towards the
calculation of the final error in SRICP. The SRICP
algorithm is described in detail below.

We use our automatic pose correction algorithm
[10] for providing a initial registration of the faces
for onward refinement by SRICP. All faces are pre-
processed to remove spikes and noise and fill holes.
Next each face is normalized with respect to pose
and sampled on a uniform square grid [10]. The
resultant faces are facing front with origin (coordi-
nate [0 0 0]) at their nose tip.

Let P = [xi, yi, zi]� (where i = 1 . . . nP ) and G =
[xj , yj , zj]� (where j = 1 . . . nG) be the point cloud
of a probe and a gallery face respectively. P and
G are matrices of size 3 × nP and 3 × nG respec-
tively. Let k be a vector of size nG whose elements
represent the confidence in the respective point of
the gallery face G. k is calculated as follows.

Ĝ =
[

0 −1
1 0

] [
xj

yj

]
(1)

r =
√ ∑

j=x,y

Ĝ.2 (2)

k =
r

max(r)π
arccos(Ĝx./r) (3)

Eqn. 1 maps the gallery face to the xy-plane and
rotates it by 90o so that the x-axis passes between
the eyes. In Eqn. 2, r is a vector of the distances
of each point of Ĝ from the origin i.e. nose tip.
In Eqn. 2 and Eqn. 3, .2 and ./ stand for point
wise square and divide respectively. Ĝ.2 is equal
to a matrix whose each element is equal to the
square of the corresponding element in Ĝ. Sim-
ilarly, Ĝx./r is equal to a vector whose elements
are equal to ratio of the corresponding elements
of the vectors Ĝx and r (Ĝx is a vector of the
x coordinates of the pointcloud Ĝ). Note that k

has a negative polarity i.e. lower values of k mean
higher confidence. The confidence values decrease
with increasing distance from the nose tip and with
increasing absolute angle from the x-axis as shown
in Fig. 1. From Fig. 1, we can see that the upper
part of the face has higher confidence whereas the
lower part of the face (the mouth) has the lowest
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Figure 1: Confidence values calculated for a gallery
face. The brighter regions represent higher confi-
dence. Note that the upper part of the face and
nearest to the nose has higher confidence.

confidence. This is to minimize the effects of an
open mouth facial expression.

Let � be a function that finds the nearest point in
P to every point in G.

(c,d) = �(G,P) (4)
dk = d(c)k (5)

In Eqn. 4, c and d are vectors of size nP each
such that ci and di respectively contain the index
number and distance of the nearest point of G to
the ith point of P. dk is the confidence weighted
distance calculated by multiplying the distance of a
corresponding gallery point by its confidence (Eqn.
5). The correspondences are sorted according to
the increasing value of dk and the last 10% are
removed. Points of P that fall in this category are
also removed. Next, the 3D distance error e given
by Eqn. 6 is minimized.

e =
1
N

N∑
i=1

‖Rgi + t − pi‖ (6)

In Eqn. 6, pi and gi are the corresponding points
of the probe and gallery and i = 1 . . .N (where N
is number of remaining points of the probe). R is
a rotation matrix and t is a translation vector that
minimizes the distance between the correspond-
ing points of the gallery and probe. Their values
can be calculated using the classic SVD (Singular
Value Decomposition) method [1]. Note, that this
method can easily be generalized to any number
of dimensions and is presented below for complete-
ness. The mean of pi and gi is given by

µp =
1
N

N∑
i=1

pi and (7)

µg =
1
N

N∑
i=1

gi respectively. (8)

The cross correlation matrix K between pi and gi

is given by

K =
1
N

N∑
i=1

(gi − µg)(pi − µp)� (9)

Performing a Singular Value Decomposition of K

UAV� = K (10)

gives us two orthogonal matrices U,V and a di-
agonal matrix A. The rotation matrix R can be
calculated from the orthogonal matrices as

R = VU� , (11)

whereas the translation vector t can be calculated
as

t = µp − Rµg (12)

R is a polar projection of K. If det(R) = −1, this
implies a reflection of the face in which case R is
calculated using Eqn. 13.

R = V

 1 0 0
0 1 0
0 0 det(UV�)

 U� (13)

The above steps (from Eqn. 4 onwards) are it-
eratively repeated until the number of remaining
points in P are half the starting value i.e. N <=
0.5np. The final value of error ef between the two
faces is calculated as

ef =
N∑

i=1

(‖Rgi+t−pi‖+‖Rgi+t−pi‖(1−ki)+
ki

2
)

(14)

All three terms in Eqn. 14 are first normalized
on a scale of 0 to 1 for each recognition trial i.e.
matching a single probe to all the gallery faces.
This removes the bias between the terms. More-
over, the last term (k) is given half the weight of
the other two terms.
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Figure 2: Sample 3D faces rendered as range images. First and third row contains the probe faces and
second and last row contains their respective gallery faces.

4 3D Face Data and Experimental
Setup

We used the FRGC v2.0 [14] data for our exper-
iments which contains 3D faces along with their
texture maps acquired with the Minolta Vivid 910
scanner [12]. However, we only used the 3D data
for matching in this paper. There are 466 identities
in the FRGC validation set. Out of these, only 374
individuals have a 3D face under neutral as well as
non-neutral expression. For each of these 374 indi-
viduals, we selected one 3D face under neutral ex-
pression to form the gallery and one 3D face under
exaggerated expression to form the probe. Selec-
tion was performed manually to ensure only those
faces are selected which are significantly deformed
due to facial expression e.g. blown cheeks and open
mouth. Fig. 2 shows some example probes and
their corresponding gallery faces. Moreover, where
the choice of probe was to be made between a face
that was covered with hair and a face that was not
covered with hair, the former was selected to make
the recognition extremely challenging.

Note that the aim of this paper is to compare
the performance of the proposed SRICP algorithm
to ICP under non-rigid (or semi-rigid) deforma-
tions using the same dataset. This is why we have
only selected 3D probe faces under extreme facial
expressions. We did not include the faces with
neutral or minor expressions so that the results re-
flect matching performance on semi-rigid surfaces
only. It is not the aim of this paper to achieve
high recognition accuracy on the FRGC v2.0 data.
Therefore, once the faces are preprocessed as de-
scribed in [10], their alternate rows and columns
are removed (i.e. the resolution is reduced by a
factor of 4) in ordered to gain efficiency.

5 Results

We matched each probe to all the faces in the
gallery once using the ICP algorithm and a second
time using the SRICP algorithm. Fig. 3 shows the
rank identification results. For each identification
trial, the gallery faces are ranked according to their
error scores ef (Eqn. 14). A rank x recognition
rate means the rate at which the correct identity
is among the top x ranked identities. A rank one
identification rate is the number of probes that
were correctly identified (to its correct identity in
the gallery) divided by the total number tested
probes.

Fig. 4 shows our verification results. Each time
a probe is matched with its correct identity in the
gallery, the value of ef is treated as a genuine score.
However, when a probe is matched with a different
identity in the gallery, the value of ef is treated as
an impostor score. The ROC curves are plotted
as follows. The threshold for accepting a probe as
a genuine client is varied and at every threshold,
the verification rate is calculated as the number
of genuine probes that fall below the threshold
divided by the total number of genuine probes.
Similarly, at every threshold, the False Acceptance
Rate (FAR) is calculated as the number of impos-
tors that fall below the threshold divided by the
total number of impostors. At 0.001 FAR, SRICP
achieves 62.57% verification rate whereas the ICP
algorithm achieves 47.06% verification rate. These
results show that SRICP outperforms the ICP al-
gorithm.

The aim of these experiments was to perform an
unbiased comparison of the SRICP and ICP al-
gorithms on a challenging dataset. Note that the
performance of both algorithms is quite low since
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Figure 3: Identification results. SRICP achieves
61.23% rank one identification rate whereas the
ICP algorithm achieves 45.99% rank one identifi-
cation rate.

the data on which these experiments were per-
formed was highly challenging due to exaggerated
facial expressions. Moreover, the resolution of the
faces was reduced (by a factor of 4) to gain com-
putational efficiency. Therefore, these results can
not be compared to others which used the entire
FRGC v2.0 database (e.g. [10] and [13]) since the
database also contains easy to recognize faces (i.e.
with neutral and minor facial expressions). More-
over, these results can not be compared to those of
Bronstein et al. [4] since their approach apparently
does not deal with open mouth expressions.

6 Conclusion

We presented an algorithm for the registration and
matching of semi-rigid 3D surfaces and demon-
strated its performance on the challenging case of
3D face recognition under exaggerated facial ex-
pressions. Even though SRICP uses only half of
the probe points for matching, it performs signif-
icantly better than the ICP algorithm which uses
all the probe points from matching. SRICP is a
generic algorithm and can be used for matching
any 3D semi-rigid data. Moreover, like the ICP
algorithm, it can also be extended to the nD case.
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2EMHFWLYH�&RORXU�0HDVXUHPHQW�RI�7RPDWRHV�DQG�/LPHV�

+�0�:��%XQQLN���'�*��%DLOH\��DQG�$�-��0DZVRQ��

�)DUP�7HFKQRORJ\�*URXS��:DJHQLQJHQ�8QLYHUVLW\�DQG�5HVHDUFK�&HQWUH��1HWKHUODQGV�
�,QVWLWXWH�RI�,QIRUPDWLRQ�6FLHQFHV�DQG�7HFKQRORJ\��0DVVH\�8QLYHUVLW\��3DOPHUVWRQ�1RUWK��1=�
�,QVWLWXWH�RI�)RRG��1XWULWLRQ�DQG�+XPDQ�+HDOWK��0DVVH\�8QLYHUVLW\��3DOPHUVWRQ�1RUWK��1=�

(PDLO��'�*�%DLOH\#PDVVH\�DF�Q]�

$EVWUDFW�

&RORXU�LV�DQ�LPSRUWDQW�SDUDPHWHU�RI�IUXLW�IURP�ZKLFK�PXFK�LQIRUPDWLRQ�UHJDUGLQJ�WKH�TXDOLW\�RI�WKH�IUXLW�FDQ�EH�
JDWKHUHG��7KHUHIRUH�D�FRUUHFW�JUDGLQJ�RI�IUXLW�LQ�UHVHDUFK�LV�QHFHVVDU\��&RPPRQO\�RQO\�VPDOO�DUHDV�RI�DQ�REMHFW�
DUH�SURFHVVHG�� DIWHU�ZKLFK� D� UDWKHU� FRDUVH� JUDGLQJ� LV� DSSOLHG��7KH� DLP�RI� WKLV� VWXG\� LV� WR� GHYHORS� D� ORZ�FRVW��
REMHFWLYH�WHFKQLTXH�WKDW�ZLOO�PHDVXUH�WKH�FRORXU�RI�OLPHV�DQG�WRPDWRHV��7KLV�V\VWHP�TXDQWLILHV�WKH�FRORXU�RI�DQ�
HQWLUH� REMHFW� XVLQJ� IRXU� LQGH[� QXPEHUV�� WKH� PHDQ�� VWDQGDUG� GHYLDWLRQ�� VNHZ� DQG� NXUWRVLV�� DOORZLQJ� DQ� HDV\�
FRPSDULVRQ�EHWZHHQ�GLIIHUHQW�REMHFWV�RU�RI�WKH�VDPH�REMHFW�DW�GLIIHUHQW�WLPHV��

.H\ZRUGV��&RORXU�FKDQJH��WRPDWR��OLPH��JUDGLQJ��LPDJH�SURFHVVLQJ�

�� ,QWURGXFWLRQ�

&RORXU� LV� DQ� LPSRUWDQW� FKDUDFWHULVWLF� RI� IUXLW� DQG�
YHJHWDEOHV�� &RQVXPHUV� SUHIHU� EULJKW� UHG� WRPDWRHV�
RYHU�JUHHQ�RU�GDUN�UHG�WRPDWRHV�>����@��6LPLODUO\�WKHLU�
SUHIHUHQFH�LV�IRU�JUHHQ�OLPHV��UDWKHU�WKDQ�\HOORZ��VLQFH�
WKH� JUHHQ� FRORXU� LV� OLQNHG� WR� IUHVKQHVV� >�@�� 6LPLODU�
SDWWHUQV� FDQ� EH� IRXQG� ZLWK� PDQ\� RWKHU� IUXLWV� DQG�
YHJHWDEOHV��

&RORXU� SURYLGHV� PRUH� LQIRUPDWLRQ� WKDQ� MXVW� WKH�
PDUNHWDELOLW\� RI� WKH�SURGXFW�� 7KH� FRORXU�RI� D� WRPDWR�
KDV� D� GLUHFW� UHODWLRQ� ZLWK� WKH� ILUPQHVV� >�@��
)XUWKHUPRUH��WKH�UHG�FRORXU�JLYHV�D�FOHDU�LQGLFDWLRQ�RI�
WKH� DPRXQW� RI� O\FRSHQH� �D� FDURWHQRLG�� LQ� WKH� WRPDWR�
>���@�� /\FRSHQH� LV� EHOLHYHG� WR� KDYH� D� SUHYHQWLYH�
HIIHFW�DJDLQVW�VHYHUDO�IRUPV�RI�FDQFHU�>����@��

7KH�LPSRUWDQFH�RI�WKH�FRORXU�RI�IUXLW�LV�FOHDU��\HW�WKHUH�
DUH� PDQ\� FRORXU� UHODWHG� TXHVWLRQV� VWLOO� XQDQVZHUHG��
7R�VROYH�VRPH�RI�WKHVH�TXHVWLRQV��PRUH�NQRZOHGJH�LV�
QHHGHG� DERXW� WKH� GHYHORSPHQW� RI� SLJPHQWV� VXFK� DV�
FKORURSK\OO�DQG�FDURWHQRLGV�DV�D�IXQFWLRQ�RI�WLPH���

,Q� FRORXU� UHVHDUFK� RQ� IUXLW� DQG� YHJHWDEOHV� LW� LV�
FRPPRQ� WR� FODVVLI\� WKH� FRORXU� RI� DQ� REMHFW� LQWR� D�
QXPEHU�RI�EDQGV��)RU�LQVWDQFH�D�FRORXU�VFRUH�KDV�EHHQ�
JLYHQ� IRU� OLPHV�E\�DVVLJQLQJ�D�YDOXH�RI���������������
RU������\HOORZ�>��@��7KH�QXPEHU�RI�EDQGV�XVHG�FDQ�
YDU\� VWURQJO\� IURP� IUXLW� WR� IUXLW�� 7RPDWR� JUDGLQJ�
FKDUWV� IURP� DXFWLRQV� YDU\� IURP� �� EDQGV� LQ� WKH�86$�
>��@�WR�XS�WR����FODVVHV�LQ�,VUDHO�DQG�WKH�1HWKHUODQGV�
>���������@��7KH�PDMRULW\�RI�WKLV�JUDGLQJ�ZRUN�LV�GRQH�
E\� H[SHUW� SDQHOV� DQG� PD\� UHVXOW� LQ� HUURUV� >�@��
&RQVXPHUV� LQ� JHQHUDO� KDYH� GLIILFXOW\� GLVFULPLQDWLQJ�
EHWZHHQ�DGMDFHQW�FRORXU�JUDGHV�LQ�WKH�PRVW�H[SDQGHG�
FRORXU�FKDUWV�>��@��

,Q� VRPH� FDVHV� D� VSHFWURPHWHU� LV� XVHG� ZLWK� ZKLFK� D�
QXPEHU�RI�SRLQWV�XSRQ�WKH�REMHFW�DUH�FRPSDUHG�>������
������@��7KH�GLVDGYDQWDJH�RI�WKLV�PHWKRG�LV�WKDW�RQO\�D�

VPDOO� QXPEHU� RI� SRLQWV� RQ� DQ� REMHFW� DUH� PHDVXUHG��
ZKLFK� FDQ� JLYH� D� PLVOHDGLQJ� UHSUHVHQWDWLRQ� RI� WKH�
FRORXU��

7R� REWDLQ� D� PRUH� REMHFWLYH� PDQQHU� RI� JUDGLQJ� WKH�
HQWLUH� REMHFW�� DQ� DXWRPDWHG� JUDGLQJ� PHFKDQLVP� LV�
QHHGHG�� 5HVHDUFK� KDV� EHHQ� GRQH� DSSO\LQJ� VSHFWUDO�
LPDJH� DQDO\VLV�� ZLWK� YHU\� JRRG� UHVXOWV� >�����@�� 7KH�
GLVDGYDQWDJH� RI� WKLV� PHWKRG� LV� WKDW� WKH� HTXLSPHQW�
LQYROYHG�LV�UHODWLYHO\�H[SHQVLYH���

7KH�DLP�RI�WKLV�UHVHDUFK�LV�WKHUHIRUH�WKH�GHYHORSPHQW�
RI� D� UHODWLYHO\� LQH[SHQVLYH�� DXWRPDWHG� PHWKRG� RI�
REMHFWLYHO\� JUDGLQJ� DQ� REMHFW� LQ� LWV� HQWLUHW\�� 7KLV�
UHVXOWV�LQ�D�VHW�RI�QXPEHUV�WKDW�GHVFULEH�WKH�PHDVXUHG�
REMHFW� LQ� VXFK� D� ZD\� WKDW� DQ� HDV\� FRPSDULVRQ� LV�
SRVVLEOH� EHWZHHQ� REMHFWV�� RU� RI� D� VLQJOH� REMHFW� RYHU�
WLPH��7KH�PHWKRG� LV� WKHQ�XVHG� WR�TXDQWLI\� WKH�FRORXU�
FKDQJH� �µGHJUHHQLQJ¶�� RI� OLPHV� DQG� WRPDWRHV� RYHU�
WLPH���

7KLV�OHDGV�WR�WKH�IROORZLQJ�UHVHDUFK�TXHVWLRQV��

�� ,V� LW� SRVVLEOH� WR� IROORZ� WKH� GHJUHHQLQJ� RI� WKH�
FRPSOHWH� DUHD� RI� D� OLPH� RU� WRPDWR�� XVLQJ� D�
VWDQGDUG�YLGHR�FDPHUD"�

�� +RZ�FDQ�DQ�REMHFW�EH�FKDUDFWHULVHG�E\�D�VPDOO�VHW�
RI�QXPEHUV�WKDW�FDQ�EH�HDVLO\�FRPSDUHG"�

�� ,QVWUXPHQW�'HVLJQ��

���� ,PDJH�&DSWXUH�

7R�FDSWXUH�WKH�LPDJHV�RI�WKH�REMHFW��OLPH�RU�WRPDWR���
D�FKDUJH�FRXSOHG�GHYLFH��&&'��FDPHUD�LV�XVHG��6RQ\�
'):�6;����� UHVROXWLRQ� ���� [� ����� SL[HOV��� 7KH�
FDPHUD� LV� OLQNHG� E\� ILUHZLUH� WR� D� 3&� RQ� ZKLFK� WKH�
SURFHVVLQJ�VRIWZDUH�LV�LQVWDOOHG���

7R�FDSWXUH�PRUH�WKDQ�MXVW�RQH�VLGH�RI�WKH�REMHFW�XVLQJ�
D� VLQJOH� FDPHUD�� D� WXUQWDEOH� LV� XVHG�� 7KH� REMHFW� LV�
SODFHG� ZLWKLQ� D� FXS�� WR� DOORZ� LW� WR� VWDQG� HUHFW�� 7KH�
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WXUQWDEOH� LV� GULYHQ� E\� D� VWHSSHU�PRWRU�� 7R� UHPRYH� D�
VWLFN�VOLS�HIIHFW�DW� ORZ�VSHHGV��ZKHUH�WKH�IUXLW�URWDWHV�
DW�D�GLIIHUHQW�VSHHG�WR�WKDW�RI�WKH�FXS��WKH�LQVLGH�RI�WKH�
FXS�LV�OLQHG�ZLWK�UXEEHU��ZKLFK�KDV�D�KLJK�FRHIILFLHQW�
RI�IULFWLRQ���

,Q� WKH�FDVH�RI� WRPDWRHV�� WKH� LQVLGH�RI� WKH�FXS� LV�DOVR�
OLQHG�ZLWK�VRIW�WLVVXH��WR�SUHYHQW�WKH�HGJHV�RI�WKH�FXS�
IURP�GDPDJLQJ�WKH�WRPDWR��:KHQ�ZRUNLQJ�ZLWK�OLPHV�
WKLV�SUHFDXWLRQ�LV�QRW�QHHGHG��VLQFH�WKH�ULQG�RI�D�OLPH�
LV�OHVV�VHQVLWLYH��

(OHYHQ� LPDJHV� DUH� FDSWXUHG� RYHU� RQH� FRPSOHWH�
URWDWLRQ�� ZKLFK� WDNHV� ��� VHFRQGV�� (DFK� DUHD� LV�
UHFRUGHG�VHYHUDO�WLPHV��DW�GLIIHUHQW�DQJOHV��EXW�LQ�RQH�
URWDWLRQ�WKH�ZKROH�REMHFW�LV�HTXDOO\�FRYHUHG��$SSO\LQJ�
D�KLJKHU�URWDWLRQ�VSHHG�ZLOO�UH�LQWURGXFH�WKH�VWLFN�VOLS�
HIIHFW�� )XUWKHU� XVLQJ� IHZHU� LPDJHV� ZLOO� LQFUHDVH�
IOXFWXDWLRQV�LQ�WKH�RXWFRPH��

���� /LJKWLQJ�

(YHQ��FRQVLVWHQW�OLJKWLQJ�LV�HVVHQWLDO�WR�REWDLQ�LPDJHV�
RI�WKH�REMHFW�WKDW�DUH�RI�D�KLJK�HQRXJK�TXDOLW\��$�'&�
KDORJHQ� ODPS�DYRLGV�SUREOHPV�RI�PDLQV� IOLFNHU�� ,W� LV�
DOVR�VPDOO��HQDEOLQJ�D�FRPSDFW�FRQVWUXFWLRQ��

7R� REWDLQ� DFFXUDWH� PHDVXUHPHQWV� RI� WKH� FRORXU��
VSHFXODU� UHIOHFWLRQV� IURP� WKH� VXUIDFH� RI� WKH� REMHFW�
PXVW�EH�DYRLGHG��7KLV�PD\�EH�DFKLHYHG�XVLQJ�LQGLUHFW��
GLIIXVH� LOOXPLQDWLRQ�� )RU� WKLV� SXUSRVH� WKH� KDORJHQ�
ODPS�LV�ILWWHG�LQWR�D�WXEH��$W����FP��EHORZ�WKH�EXOE�D�
FLUFXODU� SODWH� LV� ILWWHG� LQ� WKH�PLGGOH� RI� WKH� WXEH� �VHH�
)LJXUH�����7KLV�SUHYHQWV�WKH�GLUHFW�LOOXPLQDWLRQ�RI�WKH�
REMHFW�� 7KH� LQVLGH� RI� WKH� WXEH� LV� EULJKW� ZKLWH�� WR�
VFDWWHU� WKH� OLJKW�DURXQG� WKH�GLVN��7KH�DUHD�EHORZ�DQG�
WKH� FXS� LWVHOI� DUH� DOVR� ZKLWH�� 7KLV� DOORZV� OLJKW� WR� EH�
VFDWWHUHG� EDFN� RQWR� WKH� REMHFW� WR� SURYLGH� UHODWLYHO\�
HYHQ�LQGLUHFW�OLJKWLQJ��

7KH� OLJKWLQJ� REWDLQHG� LV� JRRG�� EXW� DV� FDQ� EH� VHHQ� LQ�
)LJXUH� ��� WKHUH� LV� VWLOO� D� JUDGDWLRQ� LQ� WKH� ZKLWH�
EDFNJURXQG�� ZLWK� WKH� ORZHU� SDUW� RI� WKH� LPDJH�
UHFHLYLQJ�OHVV�OLJKW�WKDQ�WKH�XSSHU�SDUW��,PSURYLQJ�WKH�
OLJKW� IXUWKHU��E\� IRU� LQVWDQFH�E\�XVLQJ�D�ZKLWH� VSKHUH�
UDWKHU�WKDQ�D�F\OLQGHU��ZRXOG�LPSURYH�WKH�RXWFRPH��

$W�WKH�ERWWRP�RI�WKH�WXEH�D�ZLQGRZ�LV�FUHDWHG�WKURXJK�
ZKLFK�WKH�FDPHUD�REWDLQV�WKH�LPDJHV���

���� $OJRULWKP�

7R� SURFHVV� WKH� LPDJHV� WKH� SURJUDP� 9,36� �9LVXDO�
,PDJH�3URFHVVLQJ�6\VWHP��LV�XVHG�>��@���

:KHQ� FRQVLGHULQJ� WKH� FRORXU� FKDQJH� RI� OLPHV� DQG�
WRPDWRHV�� WKH\� ERWK� VWDUW� DV� JUHHQ� REMHFWV�� :KHUHDV�
WKH� WRPDWR� SURJUHVVHV� XQWLO� LW� LV� UHG�� WKH� OLPH� VWRSV�
FKDQJLQJ� µKDOIZD\¶�� ZKHQ� LW� LV� \HOORZ�� 7KLV� PHDQV�
WKDW�D�VLPLODU�DOJRULWKP�FDQ�EH�XVHG�IRU�ERWK�FDVHV���

$OWKRXJK� WKH� KDORJHQ� ODPS� SHUIRUPV� ZHOO� ZLWK�
UHVSHFW� WR� LOOXPLQDWLRQ�� WKH�FRORXU� WHPSHUDWXUH�RI� WKH�
ODPS�GRHV�QRW�PDWFK�WKH�FDPHUD��$V�WKH�LQVLGH�RI�WKH�

WXEH� LV� ZKLWH�� WKLV� FDQ� EH� XVHG� DV� D� UHIHUHQFH� IRU�
FRORXU� FRUUHFWLRQ�� 7KH� EULJKWHVW� ���� RI� WKH� LPDJH�
FRQWDLQV� RQO\� WKH� EDFNJURXQG�� VR� WKH� DYHUDJH� 5*%�
YDOXH�RI�WKHVH�SL[HOV�SURYLGHV�DQ�HVWLPDWH�RI�WKH�ZKLWH�
OHYHO�� 7KH� FRORXU� FRUUHFWLRQ� UHTXLUHV� WKDW� WKH�
EDFNJURXQG� SL[HOV� DUH� QRW� VDWXUDWHG� LQ� DQ\� RI� WKH�
FKDQQHOV�� DV� WKLV� ZRXOG� GLVWRUW� WKH� DYHUDJH� REWDLQHG��
7KH� EODFN� OHYHO� LV� HVWLPDWHG� HPSLULFDOO\�� $� OLQHDU�
H[SDQVLRQ� LV�DSSOLHG� WR�HDFK�RI� WKH�5*%�FKDQQHOV� WR�
VHW� WKH� EODFN� OHYHO� WR� ��� DQG� WKH� ZKLWH� OHYHO� WR� �����
7KH�UHVXOW�RI�WKLV�LV�VKRZQ�LQ�)LJXUH�����

�

)LJXUH����$�VNHWFK�RI�WKH�PHDVXULQJ�GHYLFH��7KH�
VFDWWHU�GLVN�HQVXUHV�WKDW�RQO\�LQGLUHFW�OLJKWLQJ�UHDFKHV�

WKH�REMHFW��

�

)LJXUH����/HIW�EHIRUH�DQG�ULJKW�DIWHU�DSSO\LQJ�WKH�
ZKLWH�EDODQFH�DQG�OLQHDU�H[SDQVLRQ���

7KH�QH[W�VWHS� LV� WR�GHWHUPLQH�ZKLFK�SL[HOV�EHORQJ� WR�
WKH� REMHFW� EHLQJ� LPDJHG�� 7KH� EOXH� FKDQQHO� VWD\V�
DSSUR[LPDWHO\�FRQVWDQW�GXULQJ�WKH�µGHJUHHQLQJ¶�DQG�LV�
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RI� D� VLPLODU� ORZ� OHYHO� IRU� ERWK� OLPHV� DQG� WRPDWRHV��
7KHUHIRUH� WKLV� FKDQQHO� FDQ� EH� XVHG� WR� DXWRPDWLFDOO\�
GLVWLQJXLVK� EHWZHHQ� WKH� EDFNJURXQG� DQG� IRUHJURXQG��
7R� HQDEOH� D� JOREDO� WKUHVKROG� WR� EH� XVHG�� WKH� EOXH�
FKDQQHO�LV�QRUPDOLVHG�E\�GLYLGLQJ�E\�WKH�PD[LPXP�RI�
WKH� JUHHQ� DQG� UHG� FKDQQHOV�� )RU� OLPHV�� WKH� JUHHQ�
FKDQQHO�LV�UHODWLYHO\�XQLIRUP�DQG�FRQVLVWHQW��DOWKRXJK�
IRU� WRPDWRHV�� WKH� JUHHQ� LV� UHSODFHG� E\� UHG� DV� WKH�
WRPDWR�ULSHQV��

)LQDOO\�� PRUSKRORJLFDO� ILOWHULQJ� �XVLQJ� ERWK� RSHQLQJ�
DQG� FORVLQJ�� UHPRYHV� VPDOO� LVRODWHG� DUHDV� WKDW� KDYH�
EHHQ�PLV�WKUHVKROGHG�WR�JLYH�D�FOHDU�VLOKRXHWWH�RI�WKH�
REMHFW��$�VPDOO�VDIHW\�PDUJLQ�LV�UHPRYHG�IURP�DURXQG�
WKH� HGJHV� RI� WKH�PDVN� WR� UHPRYH� WKH� SL[HOV� QHDU� WKH�
ERXQGDU\� RI� WKH� REMHFW� ZKLFK� DUH� YLHZHG� DW� D� YHU\�
DFXWH�DQJOH��

3K\VLRORJLFDOO\�� WKH� JUHHQ� FKDQQHO� VWURQJO\� UHIOHFWV�
WKH�FKORURSK\OO�FRQWHQW�RI�WKH�REMHFW��ZKHUHDV�WKH�UHG�
FKDQQHO� LQGLFDWHV� WKH� \HOORZQHVV� �RU� FDURWHQRLG�
FRQWHQW�� RI� OLPHV�� RU� WKH� O\FRSHQH� FRQWHQW� RI�
WRPDWRHV��'LYLGLQJ�WKH�UHG�E\�WKH�JUHHQ�JLYHV�D�XVDEOH�
QXPHULFDO�UDWLR���

� B B B
5HG

SL[HO FRORXU LQGH[ �
*UHHQ

 � ����

7DNLQJ� WKH� UDWLR� LQ� WKLV� ZD\� RYHUFRPHV� WKH� VPDOO�
XQHYHQQHVV� LQ� LOOXPLQDWLRQ�DV�ERWK� WKH�UHG�DQG�JUHHQ�
FKDQQHOV�ZLOO�EH�DIIHFWHG�HTXDOO\��

:KLOH�WKLV�LQGH[�LV�XVHIXO�IRU�OLPHV��ZKHUH�WKH�\HOORZ�
FRQWDLQV�D�VWURQJ�JUHHQ�FRPSRQHQW��ZLWK�WRPDWRHV��WKH�
JUHHQ�FRPSRQHQW�EHFRPHV�PXFK�OHVV�WKDQ�WKH�UHG��DQG�
D� VPDOO� FKDQJH� LQ�FRORXU� UHVXOWV� LQ�D� ODUJH�FKDQJH�RI�
UDWLR��$�PRUH�XQLIRUP�FRORXU� LQGH[�PD\�EH�REWDLQHG�
IURP�HTXDWLRQ����

� B B B
5HG *UHHQ

SL[HO FRORXU LQGH[ �
5HG *UHHQ

�
 

�
� ����

$JDLQ� WKLV� LQGH[� LV� QRUPDOLVHG� DJDLQVW� YDULDWLRQV� LQ�
LOOXPLQDWLRQ�E\�WDNLQJ�D�UDWLR��7KLV�LQGH[�UDQJHV�IURP�
��� IRU� JUHHQ� SL[HOV�� WR� �� IRU� \HOORZ�� DQG� ��� IRU� UHG�
SL[HOV�� 7KH� FRORXU� LQGH[� YDOXHV� FDQ� EH� HDVLO\�
FRQYHUWHG�WR�D�SHUFHQWDJH�E\�DGGLQJ���DQG�VFDOLQJ��7R�
REWDLQ� WKH� LQGH[� RI� MXVW� WKH� REMHFW� SL[HOV�� WKH� FRORXU�
LQGH[�LPDJH�LV�PDVNHG�WR�UHPRYH�WKH�EDFNJURXQG��

���� 'HULYHG�,QGH[�1XPEHUV�

2QFH� WKH� SL[HO� FRORXU� LQGH[� RI� WKH� REMHFW� LV� NQRZQ��
WKLV� KDV� WR� EH� FDSWXUHG� LQ� D� VHW� RI� PHDQLQJIXO�
QXPEHUV��$�KLVWRJUDP�LV�REWDLQHG�RI�WKH�SL[HO�FRORXU�
LQGH[� YDOXHV� DFFXPXODWHG� RYHU� DOO� ��� LPDJHV�� VHH�
)LJXUH� ��� ,Q� WKLV� ZD\� WKH� KLVWRJUDP� UHSUHVHQWV� WKH�
FRPSOHWH� VXUIDFH� RI� WKH� REMHFW� DSDUW� IURP� D� VPDOO�
UHJLRQ�QHDU� WKH� VWHP�ZKLFK� LV� VLWWLQJ� LQ� WKH� FXS�� DQG�
WKH� VPDOO� UHJLRQ� QHDU� WKH� WRS� WKDW� LV� DOZD\V� YLHZHG�
DFXWHO\��VHH�)LJXUH����7KLV�DUHD�LV�LQ�JHQHUDO�OHVV�WKDQ�
����RI�WKH�WRWDO�DUHD��

)URP� WKHVH� KLVWRJUDPV� IRXU� LQGH[� QXPEHUV� DUH�
JHQHUDWHG��
�� 0HDQ�� ��
�� 6WDQGDUG�GHYLDWLRQ�� ��
�� 6NHZ��6��
�� .XUWRVLV��.��

�

)LJXUH����7KH�KLVWRJUDP�RI�D�OLPH��3VHXGR�FRORXUV�
DUH�DSSOLHG�UHODWLYH�WR�WKH�FRORXU�RI�WKH�OLPH��

,W� KDV� EHHQ� IRXQG� WKDW� WKHVH� IRXU� LQGH[� QXPEHUV�
SURYLGH�D�JRRG�UHSUHVHQWDWLRQ�RI�WKH�FRORXU�DQG�FRORXU�
GLVWULEXWLRQ��7KH�PHDQ�JLYHV�WKH�DYHUDJH�FRORXU�RI�WKH�
REMHFW��7KH�VWDQGDUG�GHYLDWLRQ�JLYHV�D�PHDVXUH�RI�WKH�
UDQJH�RYHU�ZKLFK�WKH�FRORXUV�DUH�IRXQG��7KH�VNHZQHVV�
GHVFULEHV� WKH� V\PPHWU\� LQ� WKH�GLVWULEXWLRQ�RI� FRORXU��
7KH� NXUWRVLV� LQGLFDWHV� WKH� XQLIRUPLW\� RI� WKH� FRORXU��
7KHVH� PDNH� LW� SRVVLEOH� WR� HDVLO\� FRPSDUH� GLIIHUHQW�
REMHFWV��RU�WKH�VDPH�REMHFW�RYHU�WLPH��

'XH� WR� WKH� ODUJH� DPRXQW� RI� GDWD� SURGXFHG� ZKHQ�
PDNLQJ� WKH� PHDVXUHPHQWV� RYHU� D� ODUJH� QXPEHU� RI�
REMHFWV�DQG�RYHU�DQ�H[WHQGHG�WLPH��WKHUH�LV�QHHG�IRU�DQ�
DXWRPDWHG�SURFHVVLQJ�V\VWHP��7KLV�SURJUDP�LV�ZULWWHQ�
LQ� 9LVXDO� %DVLF� ([FHO� DQG� DOORZV� WKH� LQSXW� RI� ODUJH�
TXDQWLWLHV� RI� GDWD� LQ� UDQGRP� RUGHU�� SURGXFLQJ� WKH�
VRUWHG�GDWD�LQ�D�QXPEHU�RI�FKDUWV��

�� ,QLWLDO�7HVWLQJ�

2QFH� WKH� DOJRULWKP� LV� ZRUNLQJ�� WKH� UHOLDELOLW\� RI� WKH�
HQWLUH�VHWXS�LV�HYDOXDWHG��)RU�WKLV�SXUSRVH�D�QXPEHU�RI�
WHVWV�DUH�SHUIRUPHG��

���� &RQVLVWHQF\�7HVWLQJ�

)LUVW� WKH� VWDELOLW\� RI� WKH� SURFHVV� LV� LQYHVWLJDWHG�
FDOFXODWLQJ� WKH� LQGH[� QXPEHUV� RYHU� D� ORQJ� SHULRG� ���
KRXU��� ,Q� WKLV� WLPH� ���� VHSDUDWH� PHDVXUHPHQWV� DUH�
PDGH� RI� WKH� REMHFW�� GXULQJ� ZKLFK� WLPH� WKH� LQGH[�
QXPEHUV�VKRXOG�UHPDLQ�FRQVWDQW��

7KH� FKDQJHV� IRXQG� LQ� WKH� PHDVXUHPHQWV� RYHU� WKLV�
ORQJHU� SHULRG� DUH� VPDOO� DQG� IDOO� ZHOO� ZLWKLQ� WKH�
PDUJLQ� FRPSDUHG� WR� WKH� FRDUVHQHVV� RI� PDQXDO�
JUDGLQJ�� IRU�H[DPSOH�VHH�)LJXUH���IRU�D� OLPH��'XULQJ�
WKH�RQH�KRXU�RI�PHDVXUHPHQW�WKH�LQGH[�QXPEHUV�VKRZ�
D�VWDEOH�RXWFRPH��7KH�IOXFWXDWLRQV�VWD\�ZLWKLQ�D�UDQJH�
RI�OHVV�WKDQ���������
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)LJXUH����)OXFWXDWLRQV�RI�WKH�DYHUDJH�FRORXU�LQGH[��
GXULQJ�WLPH��7KH�\�D[LV�LV�QRUPDOLVHG�EHWZHHQ���DQG�
������7KH�IOXFWXDWLRQ�VWD\V�ZLWKLQ�D�UDQJH�RI��������

7KH� RWKHU� LQGH[HV� VKRZHG� VLPLODU�� UHODWLYHO\� VPDOO�
YDULDWLRQV�� DOWKRXJK� WKH� NXUWRVLV� ZDV� VHQVLWLYH� WR�
VPDOO� YDULDWLRQV� LQ� WKH� ORZ� DPSOLWXGH� WDLOV� RI� WKH�
KLVWRJUDP��

7KH�UHDVRQ�EHKLQG�WKH�VPDOO�IOXFWXDWLRQV�LV�QRW�NQRZQ�
IRU�FHUWDLQ��7KHUH�LV�D�VPDOO�VKDGRZ�EHWZHHQ�WKH�FXS�
DQG� WKH� REMHFW� �YLVLEOH� LQ� )LJXUH� ��� DQG� WKLV� PD\�
LQWURGXFH� VRPH� XQFHUWDLQW\��:LWK� WKH� URWDWLRQ� RI� WKH�
WXUQWDEOH�� WKH� IUXLW�PD\� DOVR� EH�PRYLQJ� VOLJKWO\�ZLWK�
WKH� UHVXOW� WKDW� VOLJKWO\� GLIIHUHQW� VXUIDFHV� PD\� EH�
PHDVXUHG�HDFK�WLPH��

���� $PELHQW�/LJKWLQJ�

7KH� LQIOXHQFH� RI� DPELHQW� OLJKW� VRXUFHV�� VXFK� DV�
VXQOLJKW� FRPLQJ� LQ� WKH� ZLQGRZ�� RU� WKH� QRUPDO�
IOXRUHVFHQW� OLJKWV� LQ� WKH� ODERUDWRU\�� LV� GHWHUPLQHG��
7KLV� LV� GRQH� E\� FRPSDULQJ� LQGH[� QXPEHUV� XQGHU�
GLIIHUHQW� OLJKW� FLUFXPVWDQFHV�� ZKLOH� XVLQJ� WKH� VDPH�
REMHFW��7DEOH���JLYHV�DQ�RYHUYLHZ�RI�WKH�HIIHFWV��

7DEOH����(IIHFWV�RI�DPELHQW�OLJKWLQJ�

7\SH�RI�OLJKW� 0HDQ� 6W��'HY��
'DUN� ������ ������
)OXRUHVFHQW� ������ �����
6XQOLJKW� ������ �����

7KH� HIIHFWV� RI� DPELHQW� OLJKWLQJ� DUH� QHJOLJLEOH�� DV�
H[SHFWHG�� GXH� WR� WKH� GHVLJQ� RI� WKH� PHDVXUHPHQW�
DSSDUDWXV��7KH�F\OLQGHU�SUHYHQWV�DQ\�VLJQLILFDQW�OHYHO�
RI�DPELHQW�OLJKW� IURP�UHDFKLQJ�WKH�REMHFW��DSDUW�IURP�
OLJKW� FRPLQJ� LQ� YLD� WKH� YLHZLQJ� ZLQGRZ�� 7KH� ZKLWH�
EDODQFLQJ� SURFHGXUH� FRUUHFWV� IRU� WKH� OLWWOH� OLJKW� WKDW�
GRHV�FRPH�LQ��

�� 0HDVXUHPHQW�3HUIRUPDQFH�

���� 7HVW�6HWXS���

)LQDOO\�� D� VPDOO� QXPEHU� RI� IUXLW� ��� ±� ���� ZHUH�
PHDVXUHG��UHFRUGLQJ�WKHLU�FRORXU�FKDQJH�RYHU�WLPH��7R�
VSHHG�XS�WKH�GHJUHHQLQJ�SURFHVV��WKH�REMHFWV�DUH�NHSW�
DW����&���

7KH�WRPDWRHV�XVHG�DUH�VHOHFWHG�LQ�D�EURDG�VSHFWUXP�RI�
FRORXUV�� 2QH� ZDV� FORVH� WR� WKH� EUHDNHU� VWDJH� ������

FRORXUHG�� ZKHUHDV� RWKHUV� ZHUH� DOUHDG\� FORVH� WR� UHG�
�!����FRORXUHG��>��@��

7KH� OLPHV� XVHG� ZHUH� DSSUR[LPDWHO\� ���� JUHHQ�� EXW�
ZLWK�TXLWH�ODUJH�GLIIHUHQFHV�LQ�FRORXU�XQLIRUPLW\���

���� 5HVXOWV�

7KH� LQLWLDO� WHVW� ZLWK� D� VPDOO� QXPEHU� RI� WRPDWRHV�
VKRZHG�WR�EH�YHU\�YDOXDEOH���

)LJXUHV� ���� VKRZ� WKH� HYROXWLRQ� RI� WKH� PHDVXUHG�
FRORXU�LQGH[�ZLWK�WLPH��7KH�PHDQ�FRORXU�LQGH[�FOHDUO\�
VKRZV� D� GHYHORSPHQW� VLPLODU� WR� WKDW� UHSRUWHG� LQ� WKH�
OLWHUDWXUH� >��� ��@��'XH� WR� WKH� SDUWLDO� FKDUDFWHU� RI� WKLV�
LQLWLDO� WHVW�� WKH� FXUYH� GRHV� QRW� VKRZ� WKH� FRPSOHWH�
SURJUHVVLRQ�RI�FRORXU�FKDQJH��

7KH� VWDQGDUG� GHYLDWLRQ� LQFUHDVHV� VORZO\�� DIWHU�ZKLFK�
LW� VWD\V�FRQVWDQW�DW�D� UDWKHU�KLJK� OHYHO��7KLV� LV�GXH� WR�
WKH� UHODWLYHO\� ODUJH�� HYHQ� WDLOV� LQ� WKH�KLVWRJUDP��7KLV�
FOHDUO\� VKRZV� WKH� EHQHILWV� RI� WKH� NXUWRVLV�� VLQFH� WKLV�
JLYHV� D� FOHDU� LQGLFDWLRQ� DERXW� WKH� µSHDNQHVV¶� RI� WKH�
KLVWRJUDP��

)RU� WKH� WRPDWR�PDUNHG�ZLWK� µ�¶� WKH�PHDVXUHPHQW� RI�
WKH� VNHZ� LV� GLIIHUHQW� IURP� WKH� RWKHUV�� 7KH� WRPDWR�
LQYROYHG� ZDV� LQLWLDOO\� YHU\� JUHHQ� �DOPRVW� EUHDNHU���
'XH�WR�WKH�JUHHQ�FRORXU��ZLWK�D�VPDOO�UHG�FRPSRQHQW��
WKH� VNHZ� LV� QHJDWLYH�� ,Q� DOO� RWKHU� FDVHV� WKH� FRORXU� LV�
PRUH�XQLIRUP�RU�ZLWK�PRUH� UHG� WKDQ�JUHHQ�� UHVXOWLQJ�
LQ�D�VNHZ�FORVH�WR�]HUR�RU�SRVLWLYH�UHVSHFWLYHO\��

&RORXU�FKDQJH�UHFRUGHG�RYHU�WLPH
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)LJXUH����7KH�GHYHORSPHQW�RI�WKH�DYHUDJH�FRORXU�RI�
QLQH�WRPDWRHV�DV�WKH\�FKDQJH�RYHU�WLPH�DV�UHFRUGHG�

E\�WKH�GHYHORSHG�PHDVXULQJ�GHYLFH���

&RORXU�FKDQJH�UHFRUGHG�RYHU�WLPH
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)LJXUH����7KH�GHYHORSPHQW�RI�WKH�VWDQGDUG�GHYLDWLRQ�
RI�QLQH�WRPDWRHV�DV�WKH�FRORXU�FKDQJHV�RYHU�WLPH��
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�

)LJXUH����7KH�GHYHORSPHQW�RI�WKH�VNHZ�RI�QLQH�
WRPDWRHV�DV�WKHLU�FRORXU�FKDQJHV�RYHU�WLPH��

&RORXU�FKDQJH�UHFRUGHG�RYHU�WLPH
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)LJXUH����7KH�GHYHORSPHQW�RI�WKH�NXUWRVLV�RI�QLQH�
WRPDWRHV�DV�WKHLU�FRORXU�FKDQJH�RYHU�WLPH��

,Q� VRPH� VLWXDWLRQV� WKH� VNHZ� DQG� NXUWRVLV� DUH� PRUH�
GLIILFXOW� WR� LQWHUSUHW�� 6LQFH� WKH\� DUH� �UG� DQG� �WK� RUGHU�
PRPHQWV�� WKH\� WHQG� WR� EH� YHU\� VHQVLWLYH� WR� VPDOO�
IOXFWXDWLRQV�� 7KLV� PLJKW� REVFXUH� WKH� RXWFRPH� LQ�
FHUWDLQ� FDVHV�� ,Q� JHQHUDO� WKH� RXWFRPH� LV� JRRG�� VHH�
)LJXUHV���DQG����+RZHYHU� LQ� VRPH�FDVHV�DQ�RXWO\LQJ�
NXUWRVLV� QXPEHU� LV� IRXQG�� DV� IRU� WKH� WRPDWR� PDUNHG�
ZLWK�D�µ�¶�LQ�)LJXUH���RQ�������IRU�LQVWDQFH��

:LWK�WKH� OLPHV�WKH�RXWFRPH�ZDV�OHVV�JRRG��6LQFH�WKH�
OLPHV� DUH� VWRUHG� XQGHU� QRUPDO� FRQGLWLRQV�� ZLWKRXW�
FRROLQJ�� WKH\� EHJDQ� GHK\GUDWLQJ�� 7KLV� FDXVHG� WKH�
OLPHV� WR� PDLQWDLQ� WKHLU� JUHHQ� FRORXU�� ZKLOH� WKH� ULQG�
WXUQHG� KDUG�� 7KH� UHVXOWV� RXW� RI� WKLV� WHVW� ZKHUH�
WKHUHIRUH� OHVV� XVHIXO�� RWKHU� WKDQ� WR� REWDLQ� PRUH�
H[SHULHQFH�ZLWK�WKH�PHDVXULQJ�GHYLFH���

�� &RQFOXVLRQV�

&RPSDULQJ�WKH�RXWFRPH�ZLWK�WKH�XVH�RI�FRQWURO�FKDUWV��
WKHUH� LV� FHUWDLQO\� DQ� LPSURYHPHQW�� 7KH� QXPEHU� RI�
FODVVHV�LQWR�ZKLFK�IUXLW�PD\�EH�JUDGHG�ZDV�LQFUHDVHG�
VLJQLILFDQWO\�� ZKLOH� PDLQWDLQLQJ� D� FRUUHFW�
FODVVLILFDWLRQ��

7KH� XVH� RI� WKH� IRXU� LQGH[� QXPEHUV�� PHDQ�� VWDQGDUG�
GHYLDWLRQ�� VNHZ� DQG� NXUWRVLV�� JDYH� D� FOHDU� LQGLFDWLRQ�
DERXW� WKH� FRORXU� GLVWULEXWLRQ� RI� WKH� REMHFW�� ,W� DOVR�
DOORZV� DQ� HDV\� FRPSDULVRQ� XVLQJ� WKH� DXWRPDWLF�
JHQHUDWHG�JUDSKV�EHWZHHQ�GLIIHUHQW�REMHFWV���

7KH�UHODWLYHO\�VORZ�PHDVXUHPHQW�VSHHG�SUHFOXGHV�WKH�
XVH� RI� WKLV� SURWRW\SH� IURP� FRPPHUFLDO� DSSOLFDWLRQ��

+RZHYHU�� WKH� IRFXV� RI� WKLV� SURMHFW� LV� PRUH� RQ�
SURYLGLQJ� D� XVHIXO� UHVHDUFK� WRRO�� DQG� WKH� VORZ�
PHDVXUHPHQW�VSHHG�LV�QRW�DV�LPSRUWDQW��

�� )XUWKHU�5HVHDUFK�

'XULQJ� WKLV� UHVHDUFK� LW� LV� GHPRQVWUDWHG� WKDW� WKH�
PHWKRG� GHVFULEHG� LV� XVHDEOH�� 7KHUHIRUH� WKLV� PHWKRG�
ZLOO� EH� DSSOLHG� LQ� IXUWKHU� UHVHDUFK� LQ� ZKLFK� WZR�
DVSHFWV�ZLOO�EH�LQYHVWLJDWHG��

�� 7KH� UHFRUGLQJ� RI� WKH� FRORXU� FKDQJH� QHHGV� WR� EH�
FRPSDUHG� WR� PHDVXUHPHQWV� PDGH� XVLQJ� D�
VSHFWURPHWHU��

�� $� ODUJHU� VWXG\� ZLWK� PRUH� REMHFWV� VWRUHG� XQGHU�
GLIIHUHQW� WHPSHUDWXUH� UHJLPHV� WR� GHYHORS� NLQHWLF�
PRGHOV� WKDW� FDQ� EH� XVHG� WR� GHVFULEH� FRORXU�
FKDQJH� D� UDQJH� RI� FRQVWDQW� RU� YDU\LQJ� VWRUDJH�
FRQGLWLRQV��

7KH�UHVXOWV�RI�WKLV�UHVHDUFK�ZLOO�EH�SUHVHQWHG�DW�D�ODWHU�
VWDJH��

�� $FNQRZOHGJHPHQWV�

,� ZRXOG� OLNH� WR� DFNQRZOHGJH�0DVVH\� 8QLYHUVLW\� IRU�
JLYLQJ� PH� WKH� SRVVLELOLW\� WR� OHDUQ� PXFK� GXULQJ� P\�
LQWHUQVKLS���

�� 5HIHUHQFHV�
>�@� <�� (GDQ�� +�� 3DVWHUQDN�� ,�� 6KPXOHYLFK�� '��

5DFKPDQL�� '�� *XHGDOLD�� 6�� *ULQEHUJ�� DQG� (��
)DOOLN�� �&RORU� DQG� ILUPQHVV� FODVVLILFDWLRQ� RI�
IUHVK� PDUNHW� WRPDWRHV��� -RXUQDO� RI� )RRG�
6FLHQFHV�������������������������

>�@� *�� -DKQV�� +�0�� 1LHOVHQ�� DQG� :�� 3DXO��
�0HDVXULQJ� LPDJH� DQDO\VLV� DWWULEXWHV� DQG�
PRGHOOLQJ� IX]]\� FRQVXPHU� DVSHFWV� IRU� WRPDWR�
TXDOLW\� JUDGLQJ���&RPSXWHUV� DQG�(OHFWURQLFV� LQ�
$JULFXOWXUH�����������������������

>�@� (�� %RVTXH]�0ROLQD�� -�� 'RPtQJXH]�6REHUDQHV��
/�-��3pUH]�)ORUHV��)��'tD[�GH�/HyQ�6iQFKH]��DQG�
-�� 9HUQRQ�&DUWHU�� �(IIHFW� RI� HGLEOH� FRDWLQJV� RQ�
VWRUDJH�OLIH�RI�0H[LFDQ�OLPHV��FLWUXV�DXUDQWLIROLD�
6ZLQJOH��+DUYHVWHG�LQ�WZR�GLIIHUHQW�SHULRGV���LQ�
;;9,� ,+&� �� &LWUXV�� 6XEWURSLFDO� DQG� 7URSLFDO�
)UXLW�&URSV�����������������������

>�@� $��%DWX�� �'HWHUPLQDWLRQ� RI� DFFHSWDEOH� ILUPQHVV�
DQG�FRORXU�YDOXHV�RI�WRPDWRHV���-RXUQDO�RI�)RRG�
(QJLQHHULQJ����������������������

>�@� 5�� $ULDV�� 7�� /HH�� /�� /RJHQGUD�� DQG� +�� -DQHV��
�&RUUHODWLRQ� RI� O\FRSHQH� PHDVXUHG� E\� +3/&�
ZLWK� WKH�/�� D�� E� FRORU� UHDGLQJV�RI� D� K\GURSRQLF�
WRPDWR� DQG� WKH� UHODWLRQVKLS� RI� PDWXULW\� ZLWK�
FRORU� DQG� O\FRSHQH� FRQWHQW��� -RXUQDO� RI�
$JULFXOWXUDO� DQG� )RRG� &KHPLVWU\�� ���� �����
�������������

>�@� 6�� %UDQGW�� =�� 3pN�� e�� %DUQD��$�� /XJDVL�� DQG� /��
+HO\HV�� �/\FRSHQH� FRQWHQW� DQG� FRORXU� RI�
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ULSHQLQJ� WRPDWRHV� DV� DIIHFWHG� E\� HQYLURQPHQWDO�
FRQGLWLRQV���-RXUQDO�RI�WKH�6FLHQFH�RI�)RRG�DQG�
$JULFXOWXUH����������������������

>�@� $��:ROG��+�-��5RVHQIHOG��.��+ROWH��+��%DXJHU¡G��
5�� %ORPKRII�� DQG�.�� +DIIQHU�� �&RORXU� RI� SRVW�
KDUYHVW� ULSHQHG� DQG� YLQH� ULSHQHG� WRPDWRHV�
�/\FRSHUVLFRQ� HVFXOHQWXP� 0LOO��� DV� UHODWHG� WR�
WRWDO� DQWLR[LGDQW� FDSDFLW\� DQG� FKHPLFDO�
FRPSRVLWLRQ��� ,QWHUQDWLRQDO� -RXUQDO� RI� )RRG�
6FLHQFH�DQG�7HFKQRORJ\����������������������

>�@� 6�.�� &OLQWRQ�� 7�0�:�� %RLOHDX�� DQG� -�:��
(UGPDQ�� �(IIHFW� O\FRSHQH� RU� WRPDWR� SRZGHU�
XSRQ�SURVWDWH�FDQFHU��FRUUHVSRQGHQFH����-RXUQDO�
RI�WKH�1DWLRQDO�&DQFHU�,QVWLWXWH�����������������
��������

>�@� 3�+�� *DQQ� DQG� )�� .KDFKLN�� �7RPDWRHV� RU�
/\FRSHQH� YHUVXV� SURVWDWH� FDQFHU�� ,V� HYROXWLRQ�
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Abstract
This paper sets out to detail novel algorithms related to calculating and displaying robust athlete
performance data overlaid on video. The paper describes a robust background segmentation algorithm
that enables human body performance parameters to be calculated. A further algorithm is presented
that can successfully recover from stereo camera deficiencies. Athlete performance parameters include
center of mass, principal axis, speed, acceleration, cyclic motion and energy usage. The motivation for
calculating human performance parameters is to aid movement disorder clinicians, coaches and athletes.
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1 Introduction

The goal of this paper is to present algorithms that
are relevant when determining motion characteris-
tics of a human moving naturally within a scene.
The justification is that determining such charac-
teristics allows sports coaches and movement disor-
der clinicians to gain a more accurate vision of how
a human is moving and where to focus attention.
The paper will first detail prior research and the
process involved in estimating body characteris-
tics. It will then detail the algorithms researched,
finishing with an evaluation of this research. Sev-
eral motion parameters and their algorithms are
presented including center of mass, principal axis,
axial aligned bounding boxes, speed, acceleration
and cyclic motion.

2 Background

2.1 Background Segmentation

Background segmentation is the process of
segmenting the background from the desired
foreground objects within the scene, in this case
a human. Temporal differencing algorithms are
widely in use due to their adaptiveness with
dynamic backgrounds [1], two examples are:
Adjacent Frame Difference Algorithm (AFDA)
[2] and Double Difference Algorithm (DDA) [3],
which is used in this research.

2.2 Contact & Non-Contact

In detecting key body joints systems thus far fall
into two categories, contact and non-contact. Con-
tact systems are when the user has various joint

marker sensors attached to their body, compared
to non-contact in which the user is without any
sensors attached and can act freely and more natu-
rally using computer vision based motion tracking.
Due to the expense and cumbersome use of contact
systems this paper will focus on non-contact com-
puter vision based methods.

2.3 Human Model

Determining a human model from computer vision
is a widely researched area with [4] providing an
overview of the field. Two areas of interest exist,
model reconstruction and movement recognition.
Constructing a human model can be done through
various methods such as blob segmentations [5]
and distance transformations [6]. Whilst move-
ment recognition can be completed through the use
of Hidden Markov Models (HMM), [7] for example,
which are used to recognise sign language.

2.4 Tracking

Motion tracking involves keeping track of coordi-
nates of interest on the subjects body. Mathemat-
ical models exist for tracking and predicting co-
ordinate locations in successive frames such as the
Kalman filter [8], which uses state estimation based
on the Gaussian distribution, and the Condensa-
tion filter [9] or Particle Filter [10], which uses
conditional density propagation with the posterior
distribution.
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Figure 1: Example of background segmentation
using disparity filtering.

3 Method

3.1 Background Segmentation

For this project the Double Difference Algorithm
(DDA) served as the basis for an adaptive disparity
segmentation algorithm. The process first involves
performing the DDA algorithm on the incoming
video frame and then computing the center of mass
of the segmented region. The disparity of the pixel
located at the center of the mass is then used to fil-
ter the disparity data provided by the stereo cam-
era. The subsequent body parameter algorithms
then operate on this filtered disparity image.

3.2 3D Data

To cope with the Bumblebee’s inability to reliably
determine the disparity of an individual pixel, a
simple yet robust algorithm was implemented. In-
stead of checking for the disparity of the exact
required location, a region of interest (ROI) is con-
structed and surveyed around that pixel. This
method surveys disparity pixels within the con-
structed square and then returns the average of
the detected values.

3.3 Athlete Overlays

All athlete overlay calculations operate on the bi-
narized segmented disparity image.

3.3.1 Center of Mass

The center of mass is the most robust body param-
eter available and is used in segmenting the mov-
ing object and to estimate other body parameters
including principal axis, speed and cyclic motion.
The center of mass (x, y) [11], is considered as:
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3.3.2 Principal Axis

To correctly determine the principal axis of a shape
it must be elongated, and the principal axis is thus
considered the axis of least inertia. From [11], [12],
the principal axis is described as:

tan2 θ +
μ20 − μ02

μ11
tan θ − 1 = 0 (3)

Where the second order moments μ20, μ11 and μ02

are considered as:
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Solving equation 3 yields:
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)

(7)

3.3.3 Bounding Boxes

The system constructs and displays a two dimen-
sional bounding box around the detected area of
movement. To produce the most accurate bound-
ing box it is aligned with the principal axis and
thus the accuracy of the bounding box depends on
the accuracy of the principal axis. Generating an
axis aligned bounding box involves calculating the
maximum widths of the human at angles orthog-
onal to the principal axis. It also generates axis
aligned bounding boxes for the upper and lower
segments of the human as determined by the center
of mass.

3.3.4 Cyclic Motion

To determine the cyclic motion of a human as they
walk in front of the camera the visible area of
their lower body is calculated. The lower body is
considered as anything below the center of mass.
Other methods to determine cyclic motion were
also tested; the distance between each feet, and
the principal axis of the lower body, but neither
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Figure 2: A principal axis aligned bounding box,
with center of mass also shown.

Figure 3: The principal axis and bounding boxes
are shown for the upper and lower body.

Figure 4: Graph of cyclic motion of gait moving
perpendicular to the camera.

performed sufficiently accurate. Mathematically,
the cyclic motion, c, is represented as:

c =
n

∑

i=x

m
∑

j=y

B[i, j] (8)

Figure 5: Graph of the speed (red), acceleration
(green) and energy usage (white) of a human as
they move within a scene. Y axis values have been
compressed to fit on the same graph.

3.3.5 Speed & Acceleration

With 3D data and the center of mass located cal-
culating the speed, s, and acceleration, a, of the
moving object is a trivial task. The Euclidean
distance between the objects center of mass posi-
tion is calculated from the current frame i and the
previous frame i − 5. This distance then enables
the speed of movement to be calculated as well
as acceleration. In this implementation both the
speed and acceleration are updated every 5 frames
of input images.

xd = (xi − xi−5)2 (9)
yd = (yi − yi−5)2 (10)
zd = (zi − zi−5)2 (11)

s =
√
xd + yd + zd

5
(12)

Acceleration is then considered as:

a = si − si−5 (13)

3.3.6 Energy Usage

A simplified model of the energy used, e, by the
moving human is calculated and graphed. The
current area of the human is multiplied by the
speed at which the human is moving to produce
this energy usage result.

e = s×
n

∑

i=1

m
∑

j=1

B[i, j] (14)
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Figure 6: Example of disparity filtering (left) and
DDA (right).

3.4 Setup

The system was implemented in C++ on an Intel
Pentium IV, 2.4GHz PC with 512MB of memory.
The Bumblebee stereo camera developed by Point
Grey Research was utilised. The Intel Open Com-
puter Vision Library and the Triclops/Digiclops
Library for stereo processing provided by Point
Grey Research aided implementation. Video was
retrieved at a resolution of 320x240.

4 Results

4.1 Performance

The setup was described in section 3.4 and would
perform in real-time. If the user required the sys-
tem to calculate all parameters at a given time
performance would degrade below real-time.

4.2 Background Segmentation

A formal evaluation of our background segmenta-
tion algorithm has not been completed for this pa-
per, however it did appear to perform better than
DDA by itself and an example frame comparison is
shown in figure 6. An evident advantage disparity
filtering has over sole DDA is that slow moving or
stationary objects do not fade into the background.

4.3 3D Data

Due to the heavy reliance the performance algo-
rithms place on accurate 3D data this has been
evaluated. The center of mass is used as the pixel
of interest in figures 7, 8 and 9.

Figures 7, 8 and 9 show that the square average
approach aided in estimating the real world coordi-
nates of pixels the camera was unable to determine.
Of the 335 frames captured the average approach
successfully recovered from the 12% of frames that

Figure 7: X coordinate of a moving object. Black
circles indicate an estimated value.

Figure 8: Y coordinates of a moving object. Black
circles indicate an estimated value.

Figure 9: Z coordinates of a moving object. Black
circles indicate an estimated value.

272



the exact world coordinates of the point could not
be determined. The figures illustrate that the es-
timated values generally fit on the curve to the
next detected coordinate. Further improvements
in stereo camera hardware and stereo processing
algorithms will aid in negating this issue.

4.4 Conclusions & Future Work

This paper has presented algorithms relating to
segmenting and calculating athlete performance
data. The system was designed using non-contact
computer vision based techniques without the
need for explicit initialisation by the user. A
novel background segmentation algorithm was
researched that works robustly in cluttered
environments, for which a formal evaluation could
be completed for future research.

An accurate algorithm to estimate the 3D coor-
dinate of a point when the camera is unable to
was also detailed. This algorithm successfully re-
covered from the 12% of frames when the camera
failed to determine the 3D coordinate of a selected
point.

Currently the system can only handle one moving
object within the scene, it would be beneficial to
research the use of clustering algorithms to fur-
ther segment regions of movement. This would al-
low subsequent algorithms to process and calculate
data on all moving objects.

The current method for calculating the cyclic mo-
tion of a human relies on the human moving along
the x axis in front of the camera and will fail when
the human walks back and fourth along the z axis.
Further research needs to be conducted to find
a simple algorithm that works correctly in both
cases.

Motion tracking algorithms such as those described
in 2.4 could be researched and implemented to fur-
ther improve the robustness of the system.
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Abstract
The segmentation of meat images for reference in spectral analysis is considered in this paper. The
purpose is to compute the proportions of the major visible constituents of lean fat and connective
tissue. The segmentation of the meat images primarily utilised colour information, for which the RGB
colour space and an adaptation of a YUV like colour space were primarily used. The ADTree algorithm
was used to optimise specificity of fat object detection. Localisation of spectra acquisition positions
in the meat images was done using other specially acquired images. Canonical correlations were used
to preform preliminary comparison of spectra to the image processing result. Strong correlations were
observed between spectra and visible lean and fat. Weaker but significant correlations were observed for
the visible connective tissue.

Keywords: Meat Image Segmentation, Near Infrared Reflectance Spectroscopy, Reference Method

1 Introduction

In this paper we investigate image processing of
meat to obtain reference data for Visible/Near In-
frared Reflectance (Vis/NIR) spectroscopy. The
objective was to segment meat images into back-
ground, lean, fat and connective tissue. The seg-
mentation result was compared to corresponding
Vis/NIR spectra. This work is a continuation of
the work presented in [1], in which preliminary
processing measures were considered. Processing
of meat images is not new in the literature [2]. Pro-
ceessing of meat images for spectrascopic reference
appears to be.

The Meat Quality project at AgResearch is a
FRST funded initiative with the ongoing goal of
finding better ways to objectively assess meat
quality. Vis/NIR is being employed as a possible
commercial tool for non-destructively measuring
the chemical and physical properties of meat.
Vis/NIR spectroscopy has traditionally only
scanned a single point or small region at a time.
Spectroscopic imaging (usually referred to as
hyperspectral imaging in the literature) provides
spectral information at a number of locations,
yielding extra information. Hyperspectral
imaging systems are being developed, but as
yet commercially available systems either have
limited spectroscopic bandwidth or considerably
limited spectral resolution (these cases are usually
referred to as multispectral imaging). Given a

suitable hyperspectral imaging device, there is
considerable room for research into the fusion of
traditional NIR spectroscopic data analysis and
image processing techniques.

As part of the Meat Quality research, AgResearch
is looking at localised properties throughout the
volume of m. longissimus dorsi (porterhouse,
rumpsteak and ribeye). This “3-D mapping” is
hoped to reveal new information about spatial
variability in the characteristics of the muscles.
Image processing is being investigated to establish
localised ‘truth’ of meat content (fat-lean ratios,
etc) for the Vis/NIR spectral analysis. This paper
describes the image processing routine developed.

The paper is structured as follows. Section 2 out-
lines the data acquisition process. Section 3 de-
tails the image processing methodology employed
to segment the images. Section 4 describes the pro-
cessing of special images to link the image process-
ing with the spectra and statistics used to compare
the spectra with image processing. Section 5 gives
results and section 6 conclusions.

2 Data Acquisition

For the work outlined in this paper the data acqui-
sition process is of great importance. The images
under consideration are of meat, harvested accord-
ing to a specific protocol, established in consulta-
tion with meat science expertise. Measures were
taken to regulate the data acquisition process.
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Four pairs of beef m. longissimus dorsi (LD) were
harvested from steers shot with captive bolt. No
electrical stimulation was used to speed induction
of rigor mortis. The LD muscles were wrapped
in cling-foil to prevent shortening [3] and placed
in a holder tube. The wrapped LD muscles were
stored at 15 degrees Celsius until 24 hours post
rigor mortis (approximately 72 hours). At 24 hours
post rigor the muscles (now meat) were transferred
to a custom built holding and positioning tube
for data acquisition. This holding and position-
ing tube allowed for the acquisition of images and
spectra with constancy and regularity.

The images were acquired through a JAI machine
vision colour camera interfaced through a Matrox
capture card. The image size was 760×570 pixels.
The host computer was running Windows XP with
legacy image capture software for the Matrox card.
A 14mm slice was taken and discarded, leaving
a new meat face for data acquisition. After data
were acquired, the slicing process was iterated until
twenty meat faces were examined. At least three
images were captured of each meat slice, the best
image later selected for processing. Concurrent
with imaging of the meat face, the white 90% re-
flectance and grey 18% reflectance sides of a Jes-
sops grey card were also imaged. These grey card
images had two uses. The first use was before
image acquisition the grey 18% was used to check
and calibrate the colour balance of the camera.
The second use was shade correction in image pre-
processing (section 3).

Figure 1: A meat slice image.

After image acquisition forty nine spectra were
taken over the face of the meat slice in a 7×7 grid.
The spectra were taken with a KES spectrometer
with an optical fibre probe. This probe was held
in front of the meat face by an appendage of the
meat holder rig. This appendage allowed spectra
to be taken with 14mm horizontal and vertical
spacing. Spectra taken by this procedure formed
spatially coarse hyperspectral images. A blue disc

of cardboard was placed in the probe holder and
images were taken at each relevant position. The
blue disc images were used to match each NIR
spectrum with the corresponding image location.

3 Image Processing Methodology

Preprocessing

Region Segmentation
Connective Tissue

Segmentation
Lean Region 

Segmentation 
Result

Input Image

Fat Object Property 
Computation

Candidate Fat 
Object Detection

Fat Object 
Classification

Meat Outline
Segmentation

Colour Transform

Figure 2: Flow Diagram of the Meat Segmentation
Image Processing.

The processing of the meat images is designed to
segment the meat images into major constituent
parts (background, lean, fat and connective tissue).
Visual examination of the images made the task
appear deceptively simple. Some confounding fac-
tors were present in the images. There were issues
due to low illumination levels at image acquisition
and fluid which produced objects similar in appear-
ance to fat marbling. The idea behind the pro-
cessing was to use many small steps to gradually
segment the image, resulting in a robust procedure.
Figure 2 shows a flow diagram of the processing
scheme. Figure 1 shows an example image of a
meat slice. Note the metal ring which is the end
of the tube used to hold the meat, the presence of
intra and extra muscular fat and specularities on
the dark red lean due to moisture.

3.1 Preprocessing

The images of the grey 18% Jessops were used as
reference for background shading. First an 11× 11
median filter was used on each colour plane in the
grey images to remove any scratches or marks that
appeared time. Then the meat images were divided
pixel-wise by the grey image.

Reflections due to liquid secretion appear as small
roundish white objects and resemble fat. They
represented a confounding factor to segmentation
of the meat images. To reduce this effect the meat
face was padded down lightly with a tissue to ab-
sorb the fluid. Despite this padding, some specu-
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larity is still apparent. A 5 × 5 pixel median filter
was used to reduce the specularity.

The object of interest, i.e. the meat face in the
meat holder, was positioned in the same place in
each image. A circle aperture mask was used to
mask out everything up to and including the meat
holder tube. Before processing the outline of the
meat object boundary was estimated in a two step
process. The first step removed most of the back-
ground not already masked out but was slightly
underspecific. The second step was used to ‘chop
away’ what was left by the first. The first step
proceeded as follows:

• The difference between the green and red
planes was computed. A threshold of greater
than or equal to zero was applied to the
difference image.

• All objects that did not reach the boundary
were removed. The result was inverted pro-
viding candidate objects for the meat.

• The largest candidate object was selected and
each colour plane masked (see figure 3, left).

The second step proceeded as follows:

• A threshold of 0.2 was applied to the masked
red plane.

• To fill holes, a floodfill operation was applied
to the resultant binary image.

• The largest binary object was selected as the
meat object mask. Each colour plane was
subsequently masked (see figure 3, right).

Figure 3: Preliminary binary meat object mask
(left) and final meat object mask (right).

3.2 Processing

The processing scheme is designed to segment the
meat into lean, fat and connective tissue in that
order. For colour segmentation an adaptive linear
colour transformation was used (a modified version
of that presented in [4]). The colour transforma-
tion first found the first eigenvector v1 of the pixel
colour in the meat region. A transform matrix T

was formed as

T =

vt
1

1 1
−2 1
1 1

 (1)

which was subsequently orthogonalised by the
Gram-Schmidt process [5]. The orthogonalised
version of T provided an adaptive transformation
from RGB to a YUV like colour space.

Y’U’V’ = T

 R
G
B

 (2)

Lean region segmentation was done in the U’ plane.
The purpose of the lean region segmentation was
to identify the boundary of the lean object. Dif-
ferentiation between the lean and extramuscular
fat was desired. Differentiation between lean and
intramuscular fat was part of the fat segmentation,
which occurred after the lean segmentation. The
procedure was

• The U’ plane was thresholded at threshold
value t found as

t = Ū’ + xσU’ (3)

where Ū’ and σU’ are the U’ plane mean and
standard deviation of all pixels within the
meat holder. The multiplier x was typically
set to 0.15, but had to be adjusted for some
images.

• The binary result of thresholding was tidied
up by a morphological closure with a disc
structuring element of radius one (a diamond
shape) and a flood fill to fill holes.

• Some extraneous objects were removed by
masking out the background according to the
background mask computed previously.

• The largest binary object was selected as the
lean object.

The red plane of Figure 6 shows the result of lean
object segmentation. Note the ‘arm’ off the right
hand side which is due to blood seepage into the
cling wrap around the meat.

Fat object detection consisted of detection of can-
didate fat objects, computation of some shape and
colour features on the candidate objects and clas-
sification of fat objects. Candidate fat object de-
tection was very similar to the lean object detec-
tion but with the following differences: processing
was carried out in the Y’ plane; in computing the
threshold, the standard deviation was multiplied
by 0.4 (cf. equation 3) and instead of closing and
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Figure 4: Candidate fat object binary image.

floodfilling, an opening was used with a disc struc-
turing element of radius two pixels.

The candidate fat object detection typically
yielded a large number of false candidates (see
figure 4, cf. figure 1). To improve specificity of fat
object detection a set of features were computed
and pattern classification was employed. The
features computed included: the area in pixels of
each object; the mean and standard deviation of
each plane in: the RGB images; CIE La*b* colour
space and HSV colour space. In total nineteen
features were computed.

The ADTree algorithm [6] was used to classify can-
didate fat objects as fat or spurious objects. A
tree based method was selected because there are
two types of fat object present: large extramusclu-
lar fat and smaller intramuscular fat blobs. The
‘branching’ of a tree algorithm allows the handling
of multiple types of objects that belong to the
same broad class. ADTree is very flexible, allowing
multiple branches per node. Also ADTree returns
a numerical value for thresholding rather than a
hard class result.

To train the ADTree, the candidate detection algo-
rithm was run on every fourth image in the entire
image set (thirty of the one hundred and twenty
images). For the candidate objects the true clas-
sification was set manually and the feature data
computed. The ADTree algorithm was trained in
WEKA [7], a data mining package written in Java.
Ten fold cross validation was used. Classification
of candidate fat objects gives rise to the question
of how many false detections are present in each
image. Free Receiver Operator Characteristics [8]
(FROC) provides quantitative assessment of the
false detection per image rate. Thus FROC metrics
were used to asses the quality of the training and
testing. The reader is reminded that the goal here
was not to develop an algorithm for use on subse-
quent data sets, rather the goal was to provide suit-
able reference values for analysis of corresponding
NIR spectra. Thus the most important test was to
compare the image processing result with the NIR
spectra. The green plane of figure 6 shows the
result image of candidate fat object classification.

Connective tissue is present in all muscular struc-
ture. It is found between muscles and between
muscle and fat. In the images it appeared dark and
glassy. The lean and fat images were used to mask
out all pixels clearly not connective tissue. Such
masking simplified detection of connective tissue.
The procedure was as follows:

• Binary logical OR image o = lean OR fat, o
identifies all pixels already assigned a class.

• The lean and fat images were dilated with
a disc structuring element of radius two, on
which a logical AND image a was computed.
This identified all lean-fat boundaries where
connective tissue must be.

• A third image, c, formed by filling the holes in
o and heavily closing with a disc structuring
element of radius 10.

• An initial possible connective tissue binary im-
age was formed as t0 = (NOT(o) OR a) AND c
(see figure 5 left).

• A more precise candidate connective tissue im-
age was found as t1 = (R ≥ 0.6) AND t0
where R is the red plane of the meat image.

• The candidate connective tissue images had
significant ‘cut-ins’ into the lean region. These
were removed by first closing the binary lean
region image with a disc structuring element
of radius 9, then eroding it with a disc of
radius 5. The resultant morphologically
transformed image lm was used to mask
the candidate connective tissue image
tfinal = t1 AND NOT(lm) (see figure 5,
right).

Figure 5: Connective tissue computation.

The result of processing at this point was three bi-
nary images classifying regions into the three image
constituents of interest. However there was signifi-
cant overlap between regions. An hierarchical class
preference was used to assign final classification.
Connective tissue was the hardest to detect and
and typically was impinged upon by other classes.
Thus Connective tissue was assigned highest pri-
ority. The intramuscular fat was by definition em-
bedded in the lean. Thus it was necessary to make
fat second in priority and lean last. Figure 6 shows
the final result (cf. figure 1).
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Figure 6: Final segmentation result image.

4 Linking and Comparing the Images
with the Spectra

4.1 Processing the Blue Spot Images

Figure 7: A blue spot image. Here the probe
holder is visible with a blue disc in place of the
spectrometer probe. White paper has been placed
between the probe holder and the meat face to
provide a suitable image background.

Forty nine blue spot images were taken, each with
the blue spot at one spectrum acquisition position.
Figure 7 shows an example blue spot image. De-
tection of the blue spot as the largest bright blue
object was trivial. By detecting the position of
the blue spot in each image the result of the meat
image processing was localised and matched with
each spectrum.

In some of the images the blue spot was partially
excluded at the image boundary. This made the
rigorous determination of the centre of the blue
spot non-trivial. A rigorous method to find the
blue spot centre was devised. The blue spot was
detected by thresholding. The binary blue spot
images were perimeterised to yield the visible
boundary. A model of the circular blue spot object
perimeter was matched to the blue spot location
using a simple scheme based on the Hausdorff
distance [9]. The Hausdorff distance is a measure
of distance between two sets of vertexes (pixel
locations in this case). The model was iteratively
shifted around the image. The location of the blue

spot centre was determined by the position of the
model that minimised the Hausdorff distance.

4.2 Comparing of Image Processing with
the NIR Spectra: Canonical Correla-
tions

Canonical correlations [10] was used to compare
the Vis/NIR spectra with the image processing.
Here we had NIR spectra S and image processing
reference values I for lean, fat and connective tis-
sue. Canonical correlations finds the bases wS and
wI such that

ρ =
E[wT

S ST IwI ]√
E[wT

S ST SwS ]E[wT
I IT IwI ]

(4)

is maximised. Here E[·] is the expected value and
[·]T is the matrix transpose operator. The num-
ber of values for ρ is determined by the minimum
number of values in the data examined. Since
there were three reference values in I (lean etc)
and one hundred and twenty two wavelengths in
the spectra, we had three values for ρ. Canonical
correlations were computed for each reference value
in turn. Correlations could have be found for all
three references at once but inspection of the spec-
tra showed significant swamping of the effect due
to connective tissue. First canonical correlations
were taken over all data instances (direct). Then
the data were divided up per animal into three sets
and the basis vectors wi were computed on two
animals and applied to the third in sequence (cross
validated). Cross validation of canonical correla-
tions is analogous to linear regression. Significance
testing of all correlations was done.

5 Results and Discussion
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Figure 8: FROC curve for ADTree training cross
validation of candidate fat objects. A fitted theo-
retical FROC curve with 95% confidence intervals
is shown.
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Lean Fat Connective
Tissue

Direct 0.97 0.96 0.84
Cross
Validated

-0.86 0.88 0.60

Table 1: Correlations of the image processing
result with the spectra.

Figure 8 shows the FROC curve for training and
testing the fat detection classification. A threshold
value of 0.2154 was chosen which corresponded to
true positive fraction of 0.91 with 5.33 false pos-
itives per image. Visual examination of the clas-
sified fat images showed in general very few false
positives. Some fat objects had a tendency to spill
into the lean region. Particularly the extramusular
fat.

Table 1 lists the canonical correlations. The direct
correlations were all high and were significant at
99% confidence. The cross validated correlations
are lower but also significant at 99% confidence.
The cross validated correlations account for vari-
ation between animals. Thus they are more real-
istic than the direct correlations. Regardless the
correlations for lean and fat are good. Investiga-
tion into Vis/NIR spectral analysis for lean and
fat prediction is warranted. The lower correlation
for connective tissue is unsurprising given that the
contribution to spectra is small. Greater spatial
resolution in spectral scanning is necessary to suffi-
ciently assess calibration against connective tissue.

6 Conclusion and Future Directions

The segmentation of meat images for reference in
spectral analysis has been outlined. Correlations
between the image processing result and
corresponding spectra were found. These
correlations indicated strong relationships between
visible lean and fat with the spectra. Insufficient
spatial resolution in spectra for connective tissue
was observed. Further analysis of spectra by
sophisticated chemometic techniques is warranted.

Increased resolution in spectral scanning is desired.
To this end methods for hyperspectral imaging
are under investigation. The intended goal is
to acquired hyperspectral images of sufficient
resolution and to hybridise image processing and
spectral analysis techniques. Just what resolution
is sufficient remains an open question.
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Abstract
This paper investigates the assessment of image quality of retinal images. It is based on automatic
detection and localisation of the optic disc to assess that the field of view is sufficiently large. Image
sharpness as a measure of focus is used to assess image clarity. We report on the development of these
algorithms and results obtained from a sample test database of 100 images. The intent of the work is to
automate the quality assessment of an image database with an excess of 100,000 images. This forms the
initial step of a larger research programme for computer assisted screening of diabetic retinopathy images.

Keywords: Image Quality, Medical Imaging, Retina

1 Introduction

Vision is arguably the greatest of the human senses
and its loss brings significant costs, both to the
individual and to society. The leading causes of
blindness in working age people is due to diabetic
complications [1]. Control of blood sugar is the
most important mechanism to controlling the
disease. However, if occular complications occur
(termed diabetic retinopathy) specific ophthalmic
treatments exist. Early intervention and constant
monitoring is essential, with an estimated 90% of
visual loss being avoidable if followed[2].

Monitoring takes the form of regular retinal ex-
aminations; digital images of the retina are taken
and graded by a trained professional, to assess the
level of severity. Severity in turn determines the
frequency of examinations, between 2 yearly and 3
months, and also when treatment occurs. However,
the specific details of monitoring and the desire
for a national New Zealand Screening Program[3]
have given rise to a number of problems for which
medical imaging and image processing of the retina
are desirable. Central to these problems is New
Zealand’s dispersed population, the large quantity
of images being obtained, together with a signifi-
cant shortage of professionals to read them.

The solution, potentially, is some form of computer
assisted screening. This paper describes prepara-
tory work for a research programme to address this
issue. The current diabetic retinal image database
at Canterbury District Health Board (CDHB) con-
sists of some 100,000 plus images. As complex
computer analysis is anticipated in the future re-
search work, one must ensure that the images used

for processing are of sufficient quality. This paper
therefore describes work for assessing image qual-
ity of full-colour retinal images acquired using a
mydriatic digital camera. The objective being to
produce a smaller subset of images, in the current
database, with sufficient quality for further analy-
sis.

In Section 2 we outline our approach based on:
position of the optic disc in the image, and assess-
ment of image sharpness, and contrast. We present
results based on these measures in Section 3 with
a discussion of their discrimination in Section 4.
Finally, conclusions and future work in quality as-
sessment are given in Section 5.

2 Assessing image quality

The key elements in assessing the quality of retinal
images are: optic disc detection and location,
sharpness or focus measure, and contrast and
brightness. Figure 1 shows four different left eye
images. Both images (a) and (b) are of good
quality; the first is fovea centred, while the second
is optic disc centred. Image (c) illustrates an
image of poor quality, in this case too blurry.

As can be seen in the sample images, Figure 1,
the acquired image is rectangular, while the useful
image data lies within a circular support F . All
image processing techniques were restricted to this
support.

Detection and location of the optic disc is impor-
tant for determining if a sufficiently large enough
field of view has been captured to enable detection
of retinopathy. This requirement is called the 45◦

field of view (FOV) [4], Figure 2.
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(a)

(b)

(c)

Figure 1: Various features of retina images from
left eyes. (a) Fovea centred good image, (b) optic
disc centred good image, and (c) Blurry image

Figure 2: For a fovea centred image a 45◦ field of
view will show the optic disc and sufficient quantity
of the retina for assessment.

There are two requirements in order to meet the
45◦ field of view. Firstly, the full optic disc must be
visible in the image. Secondly, for a fovea centred
image approximately two disc diameters either side
of fovea should be visible in the image. Alterna-
tively, for a optic disc centred image approximately
two disc diameters either side of the optic disc
should be visible.

The optic disc is the circular area of maximal
brightness in a retinal image[5]. Therefore the
centre point of the optic disc is estimated by
finding the largest cluster of pixels of the brightest
portion of the image[6]. Once the centre point is
estimated a region of interest is created, further
processing for locating the optic disc is restricted
to this region. Based on the work by Huang[7],
the region of interest is ±340 pixels from the
estimated centre, see Figure 3.

This restriction is necessary because the bound-
ary of the optic disc may be difficult to detect
due to the large blood vessels crossing its bound-
ary. Again following the work of Jelinek[5] and
Huang[7] the perimeter is found through a process
of applying a morphological closing operation to
remove the blood vessels and noise, followed by
a Canny edge detector [8, 9]. The parameters of
the Canny edge detector are varied until a preset
proportion, initially 0.29%, of pixels in the image
are detected as edge pixels, Figure 4. From this
estimates of the disc centre and radius are made.

If the radius of the optic disc is less than 100 pixels
or greater than 200 pixels, then it is assumed that
the optic disc is falsely detected [7]. The preset
proportion of edge pixels is changed and the Canny
edge detection process is reapplied. After the optic
disc has been detected, the location of the optic
disc is tested. If the centre estimate is near the
centre of the image it is assumed to be optic disc
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(a)

(b)

Figure 3: Finding the optic disc. (a) The red star is
an estimate of the centre of the disc, based solely on
image intensity. (b) A restricted region of interest
centred on the estimate of (a).

Figure 4: Superimposing the estimated optic disc
perimeter back onto the source image.

centred. The circumference of a circle of diameter
2.5 times the disc diameter is tested to ensure all
points lie within the captured support. Otherwise,
the image is assumed fovea-centred and an arc of
4.5 times the disc-diameter is tested. To assist in
this work an additional input, whether left or right
eye, is also given to the program.

Clarity of the image is determined by examination
of the sharpness, contrast and brightness of the
image. Clarity is important, as grading is often
based on the examination of very fine blood vessel
structures in the retinal image. Image focus is
the most important of these measures as image
blurring can easily disguise lesions. Image blur oc-
curs for a number of reasons, such as: poor optics,
poor camera focus, lack of dialation, optical media
opacities (cataracts) or patient movement during
acquisition[4].

The proposed algorithm for measuring focus
is based on a sharpness measure of the high
frequency components of the image. Lower
bandpass frequency components represent the
slowly varying characteristics of an image, such
as overall contrast and average intensity, whereas
high frequency components characterise edges and
other sharp details in an image [8]. Sharpness is
defined as the ratio of the high frequency power
to the bandpass power [10],

S =

∫
x,y∈F

HP 2(x, y)

BP 2(x, y)
dxdy, (1)

where HP (x, y) is a measure of the high frequency,
BP (x, y) a measure of the bandpass frequency
taken at points (x, y) that lie within the support
(retina) of the image F .

The high and bandpass filters were implemented
as separable IIR filters given by,

nIIR(x) =

N∑
z=1

αzn(x − z) +

M∑
z=0

βzm(x − z), (2)

where m() and n() are the input and fil-
tered output 1D image data repectively.
The coefficients used for BP (x) were α =
{−2.3741, 1.9294,−0.5321}, β = {0.0087,−0.0029,
0.0029,−0.0087}. The coefficients used for
HP (x) were α = {0.0569, 0.35551, 0.03758}, β =
{−0.0317, 0.0951,−0.0951, 0.0317}. The impulse
responses for the filters are shown in Figure 5. As
the blood vessels form only a small fraction of the
image it is necessary for the HP filter to have a
wide band and the largely uniform background a
narrowband BP filter.

Histograms of the image intensities were also pro-
duced, together with measures of their mean value,
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(a)

(b)

Figure 5: Impulse response of the sharpness filters.
(a) The bandpass background filter, (b) the high-
pass foreground filter.

standard deviation and skewness [8]. It is conjec-
tured that images with large spread and therefore
better contrast have better clarity.

3 Results

A sample of 100 test images were selected from
the CDHB retinal image database and manually
assessed for image quality and retinopathy. Ta-
ble 1 shows the summarised results. Overall 72%
of the images were of adequate quality, whereas the
rest failed due to either poor field of view (FOV),
insufficient clarity or other artifacts. Of these, 2
images had artifacts and 3 were graded as having
both inadequate clarity and field of view.

Image Quality FOV Focus Overall

Adequate 93 74 72
Inadequate 5 24 28

Table 1: Results of manually graded image quality.

These images were then automatically assessed for
quality based on field of view and sharpness using
a program written in MATLAB. In the case of
the sharpness measure the image was 1:10 sub-
sampled, for performance reasons, and an arbitrary
threshold of 0.064 applied. If the overall sharp-
ness measure is less than or equal to 0.064, then
the image is classified as blurred, otherwise the

image is classified as in focus. Table 2 contains
the summarised result obtained from the designed
automated system.

Image Quality FOV Focus Overall

Adequate 67 68 46
Inadequate 33 32 54

Table 2: Results of automatically graded image
quality.

These results show that a significantly lower per-
centage of images, 46%, were classified as having
adequate quality. Of the failed images 11 were
rejected on both grounds of field of view and focus.
However, the images rejected by the manual grader
for artifacts passed the quality tests used here.

The low acceptance rate is not-necessarily a
problem, given the initial aim of producing a
sub-database of images for further image analysis.
More importantly is the measure of false-positives
and false-negatives. It is highly desirable that the
false-positive rate is near zero, Table 3.

Image Quality FOV Focus Overall

False Positives 3:67 5:68 5:46
False Negatives 31:33 13:32 31:54

Table 3: Measures of false-positive and false-
negative classifications.

A preliminary sensitivity analysis of the sharpness
threshold was also conducted. Table 4 shows the
percentage false-positive and false-negative rate
for focus classification as the threshold value is
changed.

Threshold Value 0.060 0.064 0.065

False Positives (%) 2 5 7
False Negatives (%) 32 13 8

Table 4: False detection rates for various setting of
the sharpness threshold.

4 Discussion

The computed results of the automated quality
classification system raise some interesting points
for discussion. The false-positive and false-
negative classifications are high. Having an
inadequate quality image incorrectly graded as
being of adequate quality (i.e. false-positive
detection) is undesired, as images that are
supposed to be rejected are used for further
analysis. False-negative detections are less
troublesome, only the efficiency of the automated
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Figure 6: Example of unsuccessful optic disc
detection.

system is decreased because the good quality
pictures are unnecessarily discarded.

There are a number of physiological factors that
might influence the false detection rate, includ-
ing: the increased reflectivity of a young person’s
retinal image and pigmentation. Here we concen-
trate more on algorithmic approaches that influ-
ence these false detection rates, in turn suggesting
possible changes to improve our performance.

Our assessment of the adequacy of the field of
view is determined by following the approach of
Huang[7] for optic disc detection. This method
has the appeal of simplicity. It is, however,
reliant on adequate detection of the disc perimeter
in order to produce a safe estimate of the
disc centre and diameter. Problems, such as
triangulation errors from edge estimates too close
together must be avoided. These typically lead
to false-negative errors. Whereas an erroneously
computed perimeter could lead to seemingly
sensible but wholly wrong disc parameters,
leading to false-positive classifications, Figure 6.

Jelinek et. al.[5] suggest that the low contrast of
the background of the image and the slow variation
of the optic disc to the background does not help in
discerning the optic disc perimeter. They recom-
mend some statistical technique to help enhance
the optic disc detection.

Alternative optic disc and field of view methods
include the work by Foracchia et. al.[11], where
they reported an error rate of 98%. In this ap-
proach the main retinal vessels (arcades) are iden-
tified and used to locate the disc. Fleming et.
al.[4] also follow this approach using the gener-
alised Hough transform to find the semi-elliptical
shaped arcades. In Lalonde, et. al.[12], pyrami-
dal decomposition and Hausdorff-based template
matching technique are used to detect the optic
disc, where an average error of 7% on optic disc
centre positioning was reached with no false de-

tection. Another method can be found in Li and
Chutatape[6], again based on template matching
and Principal Component Analyses (PCA). A com-
parative analysis of these different techniques is
warranted.

The sharpness measure applied in this work is,
unfortunately, not very discriminatory, producing
a significant number of false-positives and false-
negatives. As can be seen in Table 4 the per-
formance is also significantly sensitive to the cho-
sen threshold value. An issue here may be that
the images were not normalised in image power.
The method described in equation (1) attempts
to compensate for this by measuring image power
through the use of the bandpass filter, however too
many low frequency power terms may have been
discarded.

An alternative sharpness method considered was
that described by Dijk, et. al.[13]. This method
was initially rejected due to the simplicity of the
algorithm from Shaked and Tastl[10]. Fleming et.
al.[4] looked at image clarity in another way. Their
method is based on an algorithm to measure the
total length of blood vessels in the image. An
image is classified as having adequate clarity if this
measure exceeded a threshold determined from a
training set. Their method is based on the concept
that only the finer blood vessels can be measured if
the image has sufficient focus and contrast. Closer
examination of this work is warranted.

Our preliminary examination of the effectiveness of
the image intensity histogram and colour measures
as a means of measuring image quality has, as yet,
proven not to be insightful. These remain areas for
us to continue our work.

The establishment of a database of gold standard
assessed images will also help improve the statis-
tical analysis of this work. At this stage no such
national database exists, but work is underway to
do so by Save Sight Society and the Ministry of
Health.

5 Conclusion and future work

The burgeoning epidemic of diabetes in New
Zealand, and the western nations in general,
threatens to overwhelm health budgets, as much
as 20% in New Zealand [14]. It is one of the
leading causes of blindness [1]. The effective
treatment of diabetic retinopathy is reliant on a
constant monitoring scheme of the patient and
an effective screening programme. However, the
shear number of images requiring reading could
easily exceed the manual resources currently used
for this grading purpose. This paper described
preliminary work to assess retinal image quality
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as a pre-cursor to subsequent image analysis and
a computer assisted screening programme.

The results obtained, based on field of view and
image sharpness, are a good initial step. However
improvements both in terms of false-positive classi-
fication and efficiency (false-negatives) are needed.
Potential improvements were discussed with the
greatest effort required in improving the estimate
of image clarity.

In assessing the results we came across the work
by Fleming, et. al.[4]. We have followed a similar
approach, the difference lying principally in the
measure of image clarity. Their technique is based
on identification and measurement of the blood
vessels in the image. We have reservations about
the applicability of this work to images showing
proliferative diabetic retinopathy. We also have
reservations about the speed and computation load
of their algorithm. However, it is an interesting
approach and important for us to critically analyse
its performance.

There is a possibility that this image quality as-
sessment algorithm could also be used during the
time of photographing the patients. Potentially
photographers could employ such advancements to
assess image quality, rejecting inadequate images
and immediately re-taking the image.

The computational load of the algorithm has not
been explicitly examined at this stage. While
this will be important for processing the current
CDHB retinal image database of 100,000 images,
in the context of a photographer assisted system
it is largely irrelevant, as the processing time is
significantly small compared to the acquisition
time.
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Abstract
This paper presents preliminary results obtained with KiwiSAS-4, an experimental multiple-baseline
interferometric synthetic aperture sonar (InSAS). The sonar can be configured as a three element vertical
interferometer. Super-resolution techniques are applied to experimental data obtained in the shallow
waters of Lyttelton Harbour. The results show a marginal improvement of bathymetry can be obtained
using the additional element to discriminate between the direct and sea-surface multipath echoes.
Keywords: InSAS, bathymetry, multipath, multibaseline

1 Introduction

KiwiSAS-4 is an experimental Interferometric
Synthetic Aperture Sonar (InSAS) developed by
the Acoustics Research Group at the University
of Canterbury. Essentially it is a reconstruction
of KiwiSAS-3 [1], modified to allow the signals
measured by the nine Polyvinyl Difluouride
(PVDF) tiles comprising the hydrophone array
to be individually recorded. These hydrophones
are arranged as a three by three matrix and can
be configured to act as a three element vertical
interferometer. Like KiwiSAS-3, KiwiSAS-4
operates in two simultaneous frequency bands
(20–40 kHz and 90–110 kHz) using the same sets
of transducers.

One of the motivations of the sonar is to determine
whether some of the multipath signals in a shallow
water environment can be suppressed using the ad-
ditional transducers. These multipath signals can
introduce bathymetric artefacts since they violate
the assumption that there is a single scatterer in
each range resolution cell. Spatially resolving the
scatterers with a large array is infeasible, especially
at low frequencies, due to the vertical space con-
straints of a towfish or Autonomous Underwater
Vehicle (AUV). Thus super-resolution techniques
are required.

This paper starts with a review of the techniques
used for standard interferometric bathymetry and
how they can be extended to multiple-baseline in-
terferometric bathymetry. Then there is a brief
review of the multipath problem before a presen-
tation of experimental results obtained from sea
trials.

Tx/Rx1

Rx2

z

x

τ1

τ2

Figure 1: Two element interferometer geometry.
Tx/Rx1 denotes the transmitter collocated with
receiver 1, Rx2 denotes receiver 2. x and z are
estimated from measurements of τ1 and τ2.

2 Interferometric sidescan sonar

Bathymetric imaging is an inverse problem where
the seafloor topography is estimated from the
echoes recorded by a sonar. With a standard
interferometric sidescan sonar, two vertically
displaced hydrophones are employed as shown in
Figure 1. The goal is to estimate the across-track
position x and depth z relative to the sonar
for each imaged point on the seafloor. These
measurements are estimated by correlating the
received echoes. For example, consider a projector
at (xp, 0, zp), a pair of hydrophones at (xh1, 0, zh1)
and (xh2, 0, zh2), and an isolated scatterer at
(x, 0, z). The propagation delay as a function of
scatterer position for the nth hydrophone is

τn(x, z) =
1
c

√
(x− xp)2 + (z − zp)2

+
1
c

√
(x− xhn)2 + (z − zhn)2,

(1)

where c is the speed of sound (assuming an iso-
velocity profile). Denoting the pulse compressed
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Figure 2: Three element interferometer geometry.

signals recorded at the two hydrophones by d1(t)
and d2(t), the bathymetric problem is to estimate
the seafloor height z(x) as a function of across-
track position x. Assuming that z(x) is single-
valued, one approach is to maximise the correlation
between the two signals for each desired across-
track position x by searching over the expected
range of seafloor heights z. Mathematically this
can be described by

ẑ(x) = arg max
z

∣∣∣∣∫ ∞

−∞
χ12(t, τ1, τ2)

∣∣∣∣ dt, (2)

where

χ12(t, τ1, τ2) = d2(t− τ2)d∗1(t− τ1)

× rect
(
t− τ1
T

)
rect

(
t− τ2
T

)
,

(3)

and where T is the extent of a time observation
window.

With the assumption that there is a single
scatterer, the bathymetric problem is equivalent
to a time delay estimation problem. This can
be extended to multiple scatterers, provided
there is only a single dominant scatterer in any
range resolution cell, by estimating the time
delay between the two pulse-compressed signals
averaged over an interval T at each delay τ of
interest, i.e.,

Δ̂τ(τ) = arg max
Δτ

∣∣∣∣∫ ∞

−∞
χ12(t,Δt, τ)dt

∣∣∣∣ , (4)

where

χ12(t,Δt, τ) = d2(t+ Δτ)d∗1(t)

× rect
(
t− τ

T

)
rect

(
t− τ − Δτ

T

)
.

(5)

The differential delay estimates Δ̂τ(τ) are then
mapped to seafloor height estimates ẑ(x) using
simple geometry.

The variance of the differential time delay
estimates about the true delays can be determined
from time estimation theory. The Cramér-Rao
lower bound (CRLB) is inversely proportional
to the observation time T [2] and thus there
is a trade-off between resolution and height
accuracy. When there are multiple hydrophones,
see for example Figure 2, the estimate of z can
be improved by summing the (baseline time-
scaled) correlations between the signals, inversely
weighted by the expected variances. The variance
of the estimate of z can be further reduced by
averaging the correlations over neighbouring
along-track positions (multilook processing)
although this reduces the along-track resolution.

The time delay estimation can be performed in
either the time or frequency domains; the latter
usually using a number of frequency bands to al-
low narrowband approximations. When the signals
are narrowband (as is common in interferomet-
ric radar) the correlations can be simplified to a
Hermitian product. The phase of the Hermitian
product is called an interferogram and is propor-
tional to the interferometric time delay and centre
frequency of the frequency band. However, with
any narrowband time delay estimation technique,
the time delay estimate is ambiguous and requires
unwrapping. The unambiguous time delay inter-
val can be extended using a lower frequency (but
with a degradation in accuracy) or by employing
additional hydrophones (multiple baseline) [3]. It
can also be extended by increasing the signal band-
width [4]. Once the signal bandwidth is compara-
ble with half the centre frequency, ambiguities can
be avoided and thus phase unwrapping is unneces-
sary. However, employing narrowband time delay
estimation techniques with broadband signals re-
sults in a decorrelation due to the footprint shift
effect [5].

3 Multipath

Shallow water sidescan sonar imagery is corrupted
by unwanted reflections from the sea-surface,
a phenomenon known as multipath. Ideally
the acoustic energy travels from the projector
(transmitter) to the seafloor and the scattered
energy travels back to the hydrophone (receiver).
However, some of the scattered energy will be
reflected from the sea-surface and be received at
the hydrophone a short time later. Moreover, some
of the transmitted acoustic energy will be reflected
from the sea-surface before being scattered from
the seafloor as illustrated in Figure 3. The echo
signals due to these additional paths are called
multipath echoes.
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Tx/Rx

Figure 3: Illustration of the first-order multipaths
due to reflections from the sea-surface. As well as
the direct path from the sonar to the seafloor, the
transmitted and received signals can be reflected
from the sea-surface.

By careful control of the projector vertical
beam pattern, the transmitted energy that is
reflected from the sea-surface can be minimised.
However, it is not straightforward to minimise
the seafloor scattered echoes that are reflected off
the sea-surface. While in theory it is possible to
differentiate these echoes from the direct echoes, on
the basis of angle of arrival, this is difficult at low
frequencies due to the vertical space constraints
of a towfish. Thus super-resolution techniques
are required. Unfortunately, multipath echoes
violate the assumption of standard interferometric
techniques that there is only a single plane wave
incident upon the hydrophones in any range
resolution cell.

Resolving multiple echoes within a resolution cell
requires a more sophisticated echo model, addi-
tional elements in the interferometer, and a mul-
tidimensional search. Performing a direct multi-
dimensional search is prohibitively expensive since
the search space is non-convex [6]. A more promis-
ing approach has been to replace the multidimen-
sional search with an iterated single dimensional
search. This technique is called the RELAX algo-
rithm [7] and has been applied to InSAR layover
estimation and InSAS multipath estimation [8, 9].
Unfortunately, this technique cannot be applied to
higher order multipath components that are re-
flected off the sea-surface and again off the seafloor
since they have a similar arrival angle (and thus
interferometric delay) to the direct echoes.

4 Results

The results in this paper were acquired from a
sea trial of the KiwiSAS-4 sonar in late January
2006. The sea trial was conducted in Lyttelton
Harbour, the major port of the South Island of
New Zealand, in the vicinity of Parson’s Rock—a
basalt protrusion 5 m proud of the harbour mud.

The neutrally buoyant KiwisSAS-4 towfish was
nose-towed with a depressor chain at speeds in the
range of 1–2 m/s past Parson’s Rock at a nominal
depth of 5m with a water depth of 10–12 m.
Linear FM chirps were simultaneously transmitted
between 20–40 kHz and 90–110 kHz for a duration
of 12.5 ms at a repetition frequency of 15 Hz. The
projector was steered down by 12◦ in an attempt
to reduce the multipath signals resulting from
the transmitted signal being reflected from the
sea-surface.

On the day of the trial the sea was remarkably
smooth for a summer’s day and this gave rise
to noticeable sea-surface multipath as shown in
Figure 4. These images were reconstructed using
a wavenumber reconstruction algorithm for each
frequency band and hydrophone array. Note that
the multipath (the ghosting in the across-track
direction) is less visible in the 100 kHz images,
primarily due the narrower vertical beam patterns
of the hydrophones.

The coherence between the top and middle hy-
drophone arrays is shown in Figure 5. This was
calculated over a small frequency band centred at
30 kHz and 100 kHz respectively. The coherence is
much higher at lower frequencies and in the region
of Parson’s Rock. It is envisaged that this is due
to volume scattering effects within the layer of fine
suspended sediment above the seafloor mud and to
a lower backscatter coefficient.

The narrowband interferometric phase is shown in
Figure 6. This shows a steadily increasing slope
up to the top right hand corner. This is consistent
with depth-sounding measurements of the area.

The RELAX algorithm [9] was then applied using 9
frequency subbands and 5 along-track looks to the
30 kHz data. The results are shown in Figure 7(a)
and Figure 8(a) for the single target hypothesis
(equivalent to a standard multiple-baseline ML es-
timator). Figure 7(b) and Figure 8(b) show the re-
sults for the component of the dual target hypoth-
esis that falls within the expected seafloor height
range. While both images show artefacts where
the coherence is low, there is a slight improvement
when two components are estimated. This is more
noticeable in the 30-35 m across-track region.

A surprising result is that most of the multipath
energy appears to be arriving from below the sonar,
rather than from a sea-surface reflection as would
be expected with tilting of the projector toward
the seafloor. Thus the dual target hypothesis has
difficulty resolving these multipath signals from the
direct path signals since they are at comparable
arrival angles. This is confirmed by the comparing
the amplitude images Figure 8(a) and Figure 8(b)
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Figure 4: Reconstructed SAS images for middle hydrophones at 30 kHz and 100 kHz.
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Figure 5: Estimated coherence between top and middle hydrophones at 30 kHz and 100 kHz.
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Figure 6: Estimated interferometric phase (median filtered) between top and middle hydrophones at
30 kHz and 100 kHz.
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Figure 7: Estimated bathymetric images using RELAX algorithm for single target and dual target
hypotheses with three elements.
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Figure 8: Estimated amplitude (dB) images using RELAX algorithm for single target and dual target
hypotheses with three elements.

for the single and dual target hypotheses. This
shows little reduction of the ghosting artefacts.

5 Conclusions

Interferometric imaging in shallow waters suffers
from sea-surface multipath. The multipath echoes
sometimes violate the interferometric assumption
that there is only a single echo arrival at each
range. The RELAX algorithm did not give a great
improvement in bathymetric image quality in re-
gions where it appears that there is significant sea-
surface multipath. One of the reasons appears to
be violation of the assumption that the echo am-
plitude is the same for each hydrophone [9]. This
is due to vertical beam-pattern effects (and slight
uncompensated differences in hydrophone sensitiv-
ity). Further work is required to adapt the estima-

tion algorithm to model the vertical beam-pattern
response.

6 Acknowledgements

The author thanks Prof. Peter Gough and Mike
Cusdin for their assistance collecting the data pre-
sented in this paper.

References

[1] M. P. Hayes, P. J. Barclay, P. T. Gough,
and H. J. Callow, “Test results from a
multi-frequency bathymetric synthetic aper-
ture sonar,” in Oceans 2001, (Honolulu,
Hawaii), pp. 1682–1687, November 2001.

[2] A. H. Quazi, “An overview on the time delay
estimate in active and passive systems for
target localization,” IEEE Trans. Acoustics,

291



Speech and Signal Processing, vol. 29, pp. 527–
533, June 1981.

[3] G. Corsini, M. Diani, F. Lombardini, and
G. Pinelli, “Simulated analysis and optimiza-
tion of a three-antenna airborne InSAR sys-
tem for topographic mapping,” IEEE Trans.
on Geoscience and Remote Sensing, vol. 37,
pp. 2518–2529, Sept. 1999.

[4] R. Lanari, G. Fornaro, D. Riccio, M. Migli-
accio, K. P. Papathanassiou, J. R. Mor-
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Abstract
This paper proposes a method to track the motion of swimmers through the noisy background of
rippling water. The method we employ is a combination of an adaptive background subtraction
algorithm, a binary blob filtering algorithm, and a statistical analysis on the temporal change in the
area and dimension of the resulting blobs. Subsequently, we evaluate the success rate of adapting this
method to function in the noisy swimming pool background. Our experimental results show that the
areas and dimensions of segmented binary foreground blobs can be used to track swimmers’ positions,
but not sufficient for detecting cyclic motion. Techniques such as colour-based segmentation and
parameterization of human body parts are proposed for further research to segment and detect cyclic
human motion in this noisy environment.

Keywords: Tracking, cyclic motion detection, background subtraction, blob filtering.

1 Introduction

Tracking human motion is an important research
field in Computer Vision, which can be seen as a
separate process, or as a means to prepare data
for human pose estimation and recognition. Moes-
lund [1] provides a comprehensive survey on human
motion tracking techniques existing in the liter-
ature. Specifically, the cyclic motion of a walk-
ing figure gives cues to identity because it encodes
several human body characteristics such as stride,
height and frequency, on which classification and
recognition could be performed.

In this paper, we develop a tracking technique us-
ing similar ideas to human gait analysis and ex-
periment it on image sequences of swimmers. To
date, most of the research on tracking cyclic mo-
tion assumes a static background, and does not
focus on dealing with moving background elements
and noisy background. The main motivation of
this study is to explore and evaluate tracking tech-
niques applied to environments with noisy back-
ground such as swimming pools. Findings of the
shortcomings of our techniques are reported, based
on which alternative or complementary methods
are suggested.

This paper is organized as follows. In section 2,
a background of the relevant research on gait
analysis is presented. Section 3 describes our

tracking method as a three-phased process.
Section 4 shows the experimental conditions and
the results for four swimming styles: freestyle,
backstroke, breaststroke, and butterfly. Section 5
discusses the weaknesses of the method and
suggests improvements. The last section includes
a conclusion and future work.

2 Related work

Tracking techniques can be categorized as
object-based and image-based regarding the data
representation. Object-based approaches are
based on foreground segmentation while image-
based approaches derive information directly from
the image.

An early example of image-based approaches is
the study in [2] on cyclic motion detection by
considering the 2-D trajectory of a single point
on a moving object. The trajectory is represented
as a spatio-temporal curve in the (x, y, t) space.
Performing autocorrelation and Fourier transforms
on a smoothed version of this curve results in a
Fourier plot, in which large impulses correspond
to a cyclic frequency. However, tracking points
requires the attachment of markers to the tracked
objects, but it is awkward and infeasible to do so
to objects such as swimmers. Furthermore, points
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do not provide as rich information as the temporal
change of the whole body volume.

In a number of tracking methods, it is common
to model the human body as a collection of limbs
to form a connected kinematic tree [3]. In repeti-
tive human motion, the motion sequences decom-
pose into similar motion cycles. Using the hu-
man body model, angles between different body
parts are tracked because they indicate the phase
of cyclic motion. In addition, Principle Compo-
nent Analysis (PCA) models of human gaits also
become quite standard. Urtasun [4] represents the
body of a golfer as a set of volumetric primitives
attached to a 3-D articulated skeleton.

In addition, due to its simplicity, silhouette repre-
sentation is also popular and used in [5] [6] [7] to
detect the cycles of walking figures. Silhouette can
be obtained by background subtraction or thresh-
olding in figure-ground segmentation.

3 Method

We use a static high resolution camera mounted at
the side of the swimming pool, which looks down
the target lanes, to capture video footages of swim-
mers. Image sequences of swimmers are then pro-
cessed through the following phases, as shown in
figure 1.

3.1 Background modelling and fore-
ground segmentation

A statistical background model is approximated
and the foreground image of the target swimmer
is segmented according to the Adaptive Mixture of
Gaussian background subtraction method [8]. We
use this background subtraction technique because
its background model adapts effectively to lighting
changes, repetitive motions, and long-term scene
changes. This algorithm models each background
pixel by a mixture of K Gaussian distributions
(where K is a small number from 3 to 5).

The probability that a pixel has a value of I at
time t is

P (It) =
∑K

i=1 ωi,tη(It;μi,t,
∑

i,t)

where ωi,t is the weight parameter of the ith Gaus-
sian component and η(It, μi,t,

∑

i,t) is the normal
distribution of that component, with μi,t as the
mean and

∑

i,t as the covariance of the ith compo-
nent.

The K components are sorted into the decreasing
order of the fitness value ωi,t

|
∑

i,t
| . The higher the

ratio the more likely the component is part of the

Figure 1: Calculating cyclic motion frequency.

background. Given a threshold T , the first B com-
ponents are used as a model of the background
where B is estimated as

B = argminb(
∑b

i=1
ωi,t

∑K

i=1
ωi,t

> T )

The other important parameter of this model is its
learning rate, α, which determines how fast it is
for a Gaussian component to be included as part
of the background.

According to [9], only two parameters α and T
need to be set for the system. From our experi-
ments with different parameter values of the back-
ground model, we observe that with T = 0.7 and
α = 0.005, we can filter out considerable more
noise blobs from the original video footage com-
pared to other parameter value configurations.

Figure 2 shows the original image of a swimmer
in a noisy background with splashes and light re-
flection from the water, and the foreground image
segmented from the original using the Adaptive
Mixture of Gaussian algorithm.
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Figure 2: Original image of a swimmer and the
segmented binary foreground image.

3.2 Blob extraction

The foreground image resulting from the previous
phase contains several white pixel blobs, one of
which is the moving swimmer blob. This blob
is then extracted from the binary image. To in-
crease the chance of correctly identifying the mov-
ing blob, we have the following assumptions about
the test environment. One is that swimmers only
move in a single direction throughout the whole
image sequence. Therefore, any blobs whose hor-
izontal coordinates are out of order compared to
the swimmer’s positions in the previous and sub-
sequent frame are not considered as a candidate
swimmer blob. Secondly, for simplicity, we only
track a swimmer. Therefore we can choose to pro-
cess only the region of interest corresponding to
the swimmer’s lane. Thirdly, provided that there
are no big water splashes, noise blobs are usually
smaller than the swimmer blob. Therefore, the
largest blob within the target lane is assumed to
be the swimmer blob.

3.3 Speed and cycle length calculation

The swimming speed is calculated as the horizontal
difference between the blob positions in successive
frames. The blob positions in successive frames
are assumed to be strictly increasing or decreasing
provided there is no noise. If the horizontal posi-
tion of a swimmer blob is out of order compared to

its preceeding and succeeding frames, it is simply
discarded from the statistics.

An important cue to determine the cyclic motion
frequency of a swimmer is the temporal changes
of the binary swimmer blob. During a full motion
cycle, its is intuitive that the swimmer blob attains
its maximum area when the swimmer’s arms enter
the water. This is because commonly the largest
blob seen at this stage is a combination of the
swimmer and the resulting splashes. In addition,
for a number of swimming styles, such as butter-
fly, the swimmer’s body stretches furthest at this
stage. Therefore, we can also examine the variation
of the width of the swimmer blob to determine
when the swimmer’s arms enter the water. Sim-
ilarly, the variation of the blob’s height can also be
examined for the same purpose.

The width variation of the blob can be expressed
as a single-valued funtion of time (frame number).
By examining the graph of this function, we can
identify successive local maximal values, which are
approximately a full motion cycle apart in time. A
point on the graph is a local maximum if its value
is greater than a certain percentage p of points in
its neighbourhood. Currently, the neighbourhood
is modelled as a sliding window moving along the
graph. When a local maxima is detected, the win-
dow size is adjusted to be a proportion q of the
length of the last cycle and the window is shifted by
a proportion r of the cycle length. We experiment
with different values of these parameters to obtain
an accurate configuration for finding the local max-
imal blob widths.

4 Experiments and results

We conduct our experiments on several swimming
styles: freestyle, backstroke, breaststroke and
butterfly. The inputs to our experiments are
25 frames per second videos of swimmers in
uncontrolled background conditions: bright lights
and high frequency water ripples. A single
combination of parameter values is used in all the
experiments.

Figure 3 shows the calculated swimming speed
in different styles. The general trend is that
the speeds estimated in the middle of an image
sequence tend to be more stable than that at the
beginning and the end of the sequence. This is
explained by the fact that the swimmer’s body
length is a main factor affecting the choice of the
largest blob of motion, and the images at the
beginning and the end of the sequence do not
contain the whole swimmer’s body. Very high
speeds occasionally occur in the middle of an
image sequence due to the incorrect identification
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of the moving blob. This is because at times the
segmented swimmer’s blob might be smaller than
a water ripple or splash blob. For simplicity, we
discard all these noisy data points when averaging
the swimmer’s speed over a period of time.

The width of segmented swimmer’s blob does not
strictly vary in a periodical pattern over time as
shown in figure 4. Noise blobs, including water
ripples and splashes, are often mistaken for the
swimmer’s blob or combined with the swimmer’s
blob into a bigger one. As a consequence, the
presence of these noise blobs clutters the variation
pattern. Therefore, it is difficult to identify the
arm cycles based on the blob width variation.

The heuristics that the peaks of these graphs cor-
respond to the point in a swimming cycle when
the swimmer stretches furthest does not prove to
be effective. Table 1 shows that the number of
cycles resulting from the experiment is higher than
the actual number. As a result, the experimen-
tal cycle lengths are shorter than the actual ones.
Furthermore, the window size and shifting distance
have to be adjusted to achieve more accurate cy-
cle length estimation for each swimming style. In
other words, there are no single set of parameter
values that are effective for all swimming styles.

5 Discussion

Binary foreground blobs do not provide sufficient
information to analyze swimmers’ motion. Unlike
the background condition used in the human gait
analysis experiments in [6] [5] [7], the swimming
pool videos have a much noisier background with
high frequency moving elements such as water rip-
ples and splashes. As a result, the background sub-
traction algorithm cannot extract the swimmer’s
blob accurately. Moreover, binary blobs lack the
details that support the recognition of different
parts of the human body. Liao et al. [10] has
proposed a color-based segmentation approach for
swimming style classification. We could use this
method to obtain more noise-free foreground im-
ages.

The above method could achieve a higher level
of accuracy in calculating stroke cycles if we
observe all the variations of blob areas, widths and
heights. The vertical variation of the swimmer’s
blob dimension could provide cues to estimate
the phase of the arm’s cyclic motion. As in
[6], Collins chooses either the width or height
variation, whichever having a higher amplitude.

A method to estimate more accurately the phase
of the arm’s cyclic motion is to track the angle
between the arm and the body. BenAbdelkader et
al. [11] proposes a method of calculating the stride

and height of a person using a formula relating
these parameters to the dimension of their silhou-
ette image. Similarly, if the arm length, the upper
body length, the angle between these two parts,
and the dimension of the silhouette are related
by a mathematical model, the phase of the cyclic
motion could be calculated.

Currently, the speed of swimmers is converted from
pixels per frame to a conventional velocity unit
(meters per second) using a known ratio of pixel to
distance unit and the frame rate. Having to know
the ratio of pixel to distance unit is inconvenient, as
this ratio changes with the distance of the swimmer
to the camera. A further improvement to solve this
tracking problem is to identify the lane markers
distributed uniformly along each lane. Usually the
distance (in meters) between successive markers
are known. Once the markers are identified, we
can track the speed of swimmers relative to the
markers.

6 Conclusion and future work

We have presented a feasibility study on applying
cyclic human gait analysis techniques to tracking
swimmer’s in noisy background with rippling
water. The experimental results show that
the area and dimension of segmented binary
foreground blobs can be used to track swimmers’
positions, but not sufficient for detecting cyclic
motion, such as arm movement.

Future work can complement or replace our current
approach. An approach is to rely on a mathemat-
ical relationship between the arm length and the
upper body length to detect the phase of motion.
In addition, a color-based foreground segmentation
approach is an alternative to segmenting the upper
body of swimmers from a different water color in
the background.
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Figure 4: Blob widths calculated for different swimming styles. Noise blobs clutter the periodical variation
of swimmer blob widths.

Style Experimental Actual
Freestyle 15, 22, 25, 28, 31, 37, 40 . . . 142, 145, 148 32, 61, 85, 112, 134
Breaststroke 27, 40, 56, 73, 84, 92, 98, 104, 110, 116, 122 13, 56, 95, 139
Backstroke 10, 15, 17, 19, 21, 23, 25, . . . 201, 203, 205 14, 54, 93, 132, 180
Butterfly 31, 63, 85, 105, 129 34, 69, 108

Table 1: The experimental end-of-cycle frame numbers are largely different from the actual ones across
various swimming styles.
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Abstract 
Previous work discussed a model of cognitive distance with the novel concepts of “tech bias”, “velocity” and 
“inertia”.  This paper examines the human aspects of the model by seeking to verify the expected user familiarity 
behaviour.  

It describes a pilot study that suggests the model presented allows for a very high degree of confidence in 
predicting the effect a user’s familiarity with a problem domain and specific implementation will have on their 
perception of the directness of the user interface, allowing for greater insight into the construction of optimally 
effective novel Augmented Reality interfaces. 

Keywords: LaTeX style, conference paper, New Zealand conference 

1 Introduction 
Direct Manipulation is an approach to designing user 
interfaces, which forms the basis of Graphical User 
Interfaces.  

A good understanding of how Direct Manipulation 
works is essential in engineering optimal user 
interfaces; especially in cases such as Augmented 
Reality, where the interfaces are often novel and 
highly unusual. A model allowing the prediction of 
the effectiveness of such novel interfaces prior to 
construction may save much time in their construction 
and subjective evaluation. 

A previous paper1 presented a model of the 
relationship between the user and computer in a 
Direct Manipulation interface. This model related 
cognitive distance with user familiarity and the novel 
concepts of “tech bias”, “velocity” and “inertia”. This 
model may be used to compare user interfaces and 
explain or predict differences in the degree of 
“directness” or “distance” perceived by the user. The 
model defines the difference between perceived 
distance and directness as being “User Factors” – 
primarily that of “User Familiarity”. 

In this paper these “Human Factors” are examined 
more closely, and studies intended to verify the exact 
effect of these factors are discussed. 

2 The model 
The model describes 2 key indices – the index of 
directness and the index of distance. The difference 
between the index of distance and directness is that of 
the human factors that contribute to a user’s 
perception of how direct a user interface is. 

2.1 Index of Distance 
The first of these indexes is the Index of Distance (S), 
which may be used to predict the distance a proposed 
user interface may present.  

 
Cognitive Distance3 is a measure of the gulfs of 
execution and evaluation – the conceptual gap 
between the user’s ideas and intentions, and the way 
in which they are expressed to, or represented by, the 
system. 

Tech bias (T:(0 < T < 1)) is defined as “a measure of 
how well a given device succeeds in the role for 
which it is intended” 1. 

The index of distance scales the cognitive distance of 
the input and output channels by the Tech Bias of 
those channels respectively, as shown in equation (1): 
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Mature technologies - such as CRT and LCD 
displays, mice and keyboards are effective at 
providing their intended experience and, as such, tend 
to have a high tech bias. Conversely, less 
commonplace technologies usually have a relatively 
low tech bias.  

In most cases the primary aim of developing an 
interface is to minimise distance irrespective of user 
experience, due to the variability of a large user base.  

(1)
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The index of distance is therefore useful for 
comparing or considering user interfaces in terms that 
ignore the user factors, such as in the case of 
engineering a UI for mass-market acceptance. 

2.2 Index of Directness 
The sensation, as perceived by a user, of increased 
usability and interactivity provided by a good DM 
user interface is known as “directness”.  

The components of directness are those of the 
cognitive “distance” between the user and the 
computer (S), and certain user-related factors (U).   

The Index of Directness (D) describes how direct a 
given user perceives a given implementation of a 
given user interface to be. It is computed by scaling 
the index of distance by user factors (U: (0 < U < 1)): 

SUD ×=  

These user factors (U) were previously defined as 
familiarity with the user interface (F:(0 < F < 1)), 
yielding the following complete model:  
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The Index of Directness is an important measure 
when dealing with a specific, specialised user 
scenario; where the overall perceived directness might 
be more relevant than the cognitive distance alone.  

2.3 Application 
The minimum attainable distance of a given UI is 
determined by the semantic and articulatory 
components of cognitive distance of the input and 
output channels, and the degree to which it is possible 
to achieve this theoretical minimum is governed by 
the user factors and tech bias of the hardware used.  

This paper uses two layers of interaction – semantic 
and articulatory, but other common configurations 
could be used5, 6, 7. 

Due to the inherent difficulties of deriving meaningful 
values for any of the coefficients used in the model, 
any evaluation of indices using this model should be 
used relatively rather than absolutely.  

For example, it should not be assumed that an index 
of directness computed for one case may necessarily 
be compared directly with another, unless care were 
taken to use the same scales, assumptions and 
methodology in both cases. 

2.4 Velocity of Mixed Interfaces 
An interesting observation may be made in the case of 
applications where the user is exposed to “mixed 
distance interfaces”, where various elements of the 
interface have differing distances.  

A good example is that of a recording studio 
application, where a part is implemented tangibly as a 
“mixing desk” and a part is implemented via a 
traditional GUI, mouse and keyboard.  

Such mixed-distance interfaces are a sensible 
approach to improving directness, as they allow a 
commonly used subset of tasks or operations to have a 
lessened cognitive distance without sacrificing the 
flexibility of a more traditional user interface for the 
less common tasks. 

In such cases, it is useful to consider the change of 
distance that the user must overcome when switching 
focus between the interface elements. Such variations 
in distance within an interface can be described as 
“velocity”. 

By taking a weighted average of the Index of Distance 
for each of the interface types, we can derive a single 
overall Index of Distance and Index of Directness for 
the whole interface. This in turn means the 
theoretically optimal “blend” of interface types can be 
determined using linear programming. 

 
Figure 1: A typical recording studio application 
represents a good mixed-distance user interface. 

2.5 Inertia 
If a user interface is significantly altered in order to 
improve distance, it must be determined if the gains in 
directness due to decreased distance are greater than 
the loss of directness caused by the decreased user 
familiarity. A small improvement in the distance of a 
system used by very expert users may not be enough 
to counter the expertise lost in changing the interface, 
resulting in a net loss of perceived directness to the 
user. 

Thus, any reductions of distance in an existing user 
interface must be large enough to overcome the 
“inertia” of the users’ experience if it is to be a 
worthwhile improvement without requiring re-
learning by the users. 

For example, air traffic controllers spend a long time 
attaining expertise in using their systems. Because 
these systems are complex and because the safety of 

(2)

(3)
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hundreds of lives relies on their effective use, there is 
much research on improving the user interfaces in 
order to reduce distance. It would be possible to 
engineer a new interface that greatly reduced distance 
using the Index of Distance; but in doing so, much of 
the acquired directness of the system by the controller 
may be lost.  

In this case the index of directness should be used 
instead, in order to assess the improvements in light 
of the inertia of the controller using the system. 

It is possible to argue that the primary focus should 
always be that of directness, as new systems may be 
re-learned and thus, with time, a new expertise may 
be joined with the decreased distance to achieve the 
most optimal possible usability. But consider that in 
some cases the user may have so much inertia that it 
is almost impossible to overcome.  

For example, surgeons are provided important 
information via auditory cues during an operation, 
such as heart rate. Surgeons become so expert at using 
this system that their use of the interface is almost 
completely subconscious.  

If the interface were re-engineered in such a way that 
this information was no longer provided, it could 
result in life-threatening performance decreases for 
the surgeon that are unable to be re-learned. Any 
replacement would in essence be a substitute, rather 
than a replacement, for the auditory approach. 

2.6 User Factors 
Previous work suggested that the user’s sense of 
directness will be inversely proportional to their level 
of experience2, 3 with the system because, as users 
become familiar with the interface, less cognitive 
effort is required to express their desires3.  

The user factors that differentiate the index of 
distance from the index of directness were therefore 
previously expressed1 as the reciprocal of user 
familiarity: 

F
U 1
=  

3 New Model 
This paper proposes an expanded definition of the 
user factors. It was reasoned that the user’s familiarity 
with the problem domain of the application would be 
equal in effect to that of familiarity of the 
implementation of the application used – all other 
factors held constant - when determining the user’s 
perceived directness with a given application.  

The value of U was therefore updated to take the 
following form: 

id FF
U

+
=
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where Fd represents the familiarity of the user with 
the problem domain, and Fi represents the familiarity 
of the user with the specific application in question. 

4 Pilot study 
A pilot study was performed to gain insight into the 
validity of this model. Participants were provided 
with a URL of a website containing a questionnaire.  

Participants were able to log in to this website and 
answer a series of questions regarding their degree of 
experience with, and perception of, various 
implementations of operating systems and file 
operation environments. Several of these questions 
gave insight into the participant’s experience with 4 
specific operating systems – Windows XP, Mac OSX, 
Linux and Command Line Interfaces such as DOS.  

Table 1: Questions asked in the pilot study. These 
questions were presented to the participant 4 times 

with a different OS replacing "X". 

1 How familiar are you with X? [1 = very 
unfamiliar, 5 = very familiar]       

2 How would you rate your mastery of X? [1 = 
not good, 5 = very good]       

3 How competant do you feel in performing tasks 
with X? [1 = very incompetant, 5 = very 
competant]       

4 How much do you enjoy performing tasks with 
X? [1 = not very much, 5 = very much] 

5 How confident are you when using X to perform 
tasks? [1 = very unconfident, 5 = very 
confident]       

6 If you had to give an overall rating of X, what 
would it be? [1 = very bad, 5 = very good]       

7 How easy do you feel it was to learn to use X? 
[1 = very difficult, 5 = very easy]       

8 How easy do you feel it is to learn new features 
of X? [1 = very difficult, 5 = very easy]       

9 How confident are you in your ability to retain 
your current mastery of X? [1 = very 
unconfident, 5 = very confident]      

10 How eager would you be to demonstrate the use 
of X or train novices in using X? [1 = not very 
eager, 5 = very eager]       

11 How much do you want to explore the more 
powerful aspects of X? [1 = not at all, 5 = very 
much]       

12 How easily do you feel you can achieve a given 
task using X? [1 = not very easily, 5 = very 
easily]       

13 How much do you feel that X is a tool or 
extension of yourself, rather than part of the task 
to be achieved? [1 = not at all, 5 = very much] 

(4)

(5)
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The remaining questions were intended to gather an 
appreciation of the participant’s perceived directness 
of the operating systems, based on the list of proposed 
benefits of a good DM interface described by 
Shneiderman. All questions were to be answered 
using a Likert Scale of 1-5. 

The questions were duplicated exactly for each 
operating system so that, in effect, each participant 
was completing the same questionnaire 4 times for 
different Operating Systems.  

5 Results 
The results from 22 participants were processed in 
such a way that 88 samples were obtained, where each 
sample represented a set of results of one participant’s 
rating of their experience and perceived directness of 
an individual Operating System. Each of these results 
are represented on figures 2, 3 and 4 as a single 
diamond. 

The results of the questions pertaining to the 
participant’s familiarity with a given OS were 
averaged for each sample to obtain a value for their Fi 
for that OS, and the remaining questions of that 
sample were averaged to represent the participant’s 
perceived Directness (D) for that sample.  

The resulting correlation between Fi and measured D 
gave a good correlation (R=0.863, R2=0.745) (fig 2) 
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Figure 2: Fi versus  Measured D 

The Fd of each participant was then computed by 
averaging the Fi of each of the 4 OS samples for that 
participant. Plotting the correlation between each 

participant’s Fd and the D for each of their samples 
gave a low correlation (R=0.448, R2=0.201)(fig. 3). 
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Figure 3: Fd versus Measured D 

Finally, the U for each sample of each participant was 
computed using the method proposed by this paper – 
by averaging the Fd and Fi for each sample.  
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Figure 4: U versus Measured D 

 The resulting U for each sample of each participant 
was very highly correlated (R=0.983, R2=0.967)(fig. 
4). 
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6 Conclusion 
The results of this pilot study suggest that a given 
user’s perception of directness of a given user 
interface may be accurately predicted using the model 
described in this paper. 

This model is significantly more accurate than the 
traditional approach of simply assuming perceived 
directness will be proportional to their familiarity with 
the interface alone. 

The pilot study suggests that the model described may 
allow confidence of over 90%, although this needs to 
be verified with more rigorous experimentation. 

A good understanding of how this effect works is 
essential in engineering optimal user interfaces; 
especially in cases such as Augmented Reality, where 
the interfaces are often novel and highly unusual. A 
model allowing the prediction of the effectiveness of 
such novel interfaces prior to construction may save 
much time in their construction and subjective 
evaluation. 

7 Future Work 
This study was an initial stage in verifying and 
examining the theories described by Gough et al.  

More exhaustive studies are currently being carried 
out to provide greater insight into the results indicated 
by the pilot study described in this paper. These 
experiments are as follows: 

7.1 Experiment 1: File operations 
This experiment is to be a more exhaustive and 
rigorous version of the pilot study described in this 
paper.  

The problem domain will be restricted to that of file 
operations alone, rather than more general usage of 
Operating Systems.  

Participants will be asked to perform a variety of file 
operation tasks using a variety of approaches, 
including some approaches that will be custom-
implemented so as to allow greater focus on the 
relationship between Fd and Fi.  

The purpose of this experiment is to gain insight into 
the role of user familiarity with a problem domain and 
implementation, and to replicate the results of this 
paper with more accuracy and rigour. 

7.2 Experiment 2: Creative content 
Participants will be asked to “mix” a song based on 
content provided to them.  

Participants will have varying experience in the use of 
computers, audio editing and mixing, and in 
performing and creating music. 

Mixing will take place on a mixing desk alone, a 
computer alone, and a mixed-distance interface 
consisting of an automated mixing desk coupled with 
an interoperable software environment on a connected 
computer. 

Once again, the purpose of the experiment is to gain 
insight into the role of user familiarity with a problem 
domain and implementation, and to replicate the 
results of this paper with more accuracy and rigour.  

There will, however, be additional scope to gain 
insight into the effect of the effect of mixed-distance 
user interfaces on perceived Directness, and 
specifically the interrelation between the indices of 
distance and directness under a mixed-distance 
situation. 

7.3 Experiment 3: DB Query 
Participants will be asked to perform a series database 
search queries. The queries will be via traditional user 
interfaces such as a web-based search engine, an SQL 
command string and a form-based Access GUI. 

Participants will also be provided with several new 
graphical and tangible approaches based on both new 
existing metaphors. 

The benefit of this research will once again be 
primarily that of verification of the existing model, 
but will also allow unique insight into other potential 
factors unaccounted for at present, as well as into the 
interplay of the indices of directness and distance.  

7.4 Experiment 4: IDE Usage 
The final experiment will require users to perform a 
series of common tasks using development 
environments. The questions listed in table (1) will be 
asked of the participants, and correlated in the same 
way as the pilot study and previous experiments. 
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Abstract
In this paper, we propose an iterative denoising algorithm using a line-field based filter with the
Simulated Annealing scheme. Different from the line field introduced by Geman and Geman [1], our
modified line field corresponds to a limited interval of the intensity difference between a pixel and its
neighbors. By applying the maximum a posteriori approach, an adaptive filter is constructed based on
the modified line field to remove the noise while preserving the edge of image. The convergence of the
modified line field and the annealing schedule guarantee the convergence of the algorithm. The proposed
algorithm is efficient when compared with many existing methods such as VisuShrink [2], SureShrink
[3], and BayesShrink [4].

Keywords : Markov random field (MRF), simulated annealing scheme, line field, maximum a posteriori.

1 Introduction

In the field of image denoising, there are two main
approaches: processing the image in the spatial
domain or in the time-frequency domain using the
wavelet transform.

The wavelet transform is appreciated for denoising
images because the white noise in the signal is still
the white noise in the transform domain while it
will concentrate into few coefficients in the wavelet
domain [5]. This important principle which is
capable for separating the signal from noise makes
wavelet transform be appropriate for estimating
data with sharp discontinuities such as the edge of
images. The efficiency of the approach depends on
choosing a proper shrinkage threshold. There were
many efforts to estimate the shrinkage threshold
such as: RiskShrink [2] using a soft-threshold
operator and minimizing the mean squared error;
VisuShrink [2] applying a global optimal threshold
in the mini-max sense of RiskShrink; SureShrink
[3] minimizing Stein’s unbiased risk estimate;
or BayesShrink [4] performing a data-driven,
subband-dependent threshold. However, this
approach costs much computational time for
wavelet and wavelet inverse transformation.

The approach in the spatial domain might be more
competent in term of computational time. Further-
more, its algorithms are easy to be generalized and
combined with the other image processes such as:
segmentation, pattern recognition, or deblurring.
The algorithms in the spatial domain are based
on the idea of locally smoothing the image with
different smooth coefficients. A classical method is

using a median filter to suppress the noise but it
also blurs edges and details of image. Many consid-
erable works have overcome this effect by switching
among several median-filters based on some crite-
ria [6], [7], and [8]. Recently, Katkovnik [9] has
proposed an efficient denoising method using the
local polynomial approximation (LPA) with the
adaptive window size estimated by the intersection
of confidence intervals (ICI) rule. However, these
works often estimated the image by the average of
various smoothing directions that could blur the
image at its edges [6], [9].

Inspiration from the similarity about the locally
dependent characteristic of the image and the
Markov chain, Besag [10] has proposed a valid
probability structure to model mathematically
the image. By adding a new process, called the
line process, to this model, Geman and Geman [1]
has made the model more powerful in removing
the noise while preserving the detail of the image
since the line process has driven the smoothing
process appropriately. Applying different iterative
schemes, such as Simulated Annealing (SA)
scheme [11] or Iterated Conditional Modes (ICM)
scheme [12], to these models has resulted in the
efficient denoising algorithms that have had a
better capability for preserving the detail of the
image. However, because of the convergence
condition, these algorithms required hundreds
of iterations. It will result in a considerable
computational time. By using a variant line
field instead of the original line field, we could
distinguish a pixel at the edge of image from the
noise. Therefore, it is capable for accelerating the
convergence speed and reduce the computational
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time significantly. The fact that the stop criterion
is reached after about ten iterations makes our
algorithm less able to blur the image while
removing effectively the noise.

This paper is organized as follows. Section II de-
scribes briefly the image model based on the MRF
model and suggests a modified line field which dis-
tinguishes a point at the edge from the noise effi-
ciently. Section III proposes an iterative denoising
algorithm using the SA scheme. Some experimen-
tal results and its comparison with the other works
could be found in this part. Section IV concludes
the paper.

2 Theoretical Developments

2.1 MRF and Image Modeling

We model here our problem as the following form:

g = f + n (1)

In equation (1), g is the observed image, f is the
noisy-free image, and n ∼ N(0, σ2

n) is an addi-
tive white Gaussian noise. Hence, the conditional
probability of the observed image given the original
image is correspondent to a Gaussian distribution
(equation (2)):

P (gi|fi) =
1√

2πσ2
n

exp
{

1
2σ2

n

[gi − fi]2
}

(2)

In this model, the image is regarded as a pair of 2-
D Markov random fields, the intensity field F and
the line field L, for the meaning that each element
only depends on its neighbors. While F is the real
field representing the intensity at each pixel, L is
the imaginary field representing the bond between
pixels. By adding the line field to the image model,
the edges of the image are distinguished from the
noise thank to the number of bonds that a pixel
has with its neighbors. Therefore, the denoising
process does not oversmooth the image while re-
moving the noise effectively. Besag (1974) [10]
has proposed a valid probability structure of the
intensity process F in order to model an image.
The probability has the form:

P (fi|fj : j 6= i) = P (0) exp
{ ∑

1≤i≤n

fiGi(fi)

+
∑

1≤i≤n

∑

i≤j≤n

fifjGij(fifj)

+ fi...fnGi...n(fi, ..., fn)
}

(3)

Figure 1: Line-field model: the neighbors of a pixel
and the bonds between them (l(i, j) = 1 if existing
the bond; otherwise l(i, j) = 0).

From this general form, we can construct specific
models. Regarding a simple case in which the first
order terms of G are linear, the second order terms
of G are constant, and the others are equal to zero,
we obtain an auto-normal model [13]:

P (fi|fj : j 6= i)

= 1√
2πσ2

i

exp
{
− 1

2σ2
i

(
fi −

∑

j 6=i

βijfi

)2
}
(4)

where βij is equal to zero unless j is a neighbor of i
and there is a bond between them. The conditional
variance σ2

i characterizes for the local smoothness
at the pixel i and should be increased at the edges
of the image. These parameters are determined by
bonds around the pixel, generally speaking, by the
line field. The line field of an image is an imaginary
field which is constructed from the intensity field
of that image. If there is ”no difference” between
the intensity of a pixel and that of its neighbor, it
is said that it does not exist a bond between them
(l(i, j) = 0); and otherwise l(i, j) = 1 (as shown in
figure 1). Then, the line field is a binary random
field.

2.2 MAP Approach

The problem can be solved with the maximum a
posteriori (MAP) approach by applying the an-
nealing schedule into (4). The annealing schedule
implies an iterative algorithm controlled by a ”tem-
perature” parameter T which decreases slowly with
respect to the iteration step k. The conditional
probability of the intensity at a pixel given that at
the others can be modified as:

P (fi|fj : j 6= i)
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=
(

1√
2πσ2

i

exp
{
− 1

2σ2
i

[fi −
∑

j 6=i

βijfi]2
}) 1

T (k)

It is proved that the temperature T (k) should be
satisfied the bound:

T (k) ≥ c

log(k + 1)
(5)

Adding the parameter T (k) is to guarantee the con-
vergence of the iterative algorithm. The constant
c is independent to the step k and is capable for
controlling the speed of convergence. It is neces-
sary to choose an appropriate value of c to achieve
the desired precision while requiring as less effort
of computation as possible. Following the MAP
approach, we apply the Bayesian formula:

P (fi|gi, fj : j 6= i) = P (gi|f)P (fi|fj : j 6= i)

or

− logP (fi|gi, fj : j 6= i) = const

+
1

2σ2
i T (k)

[fi −
∑

j 6=i

βijfi]2 +
1

2σ2
n

(6)

Then, the problem becomes an easier one to solve.

2.3 Modified Line Field

In the model suggested by Geman and Geman [1],
the probability of the existence of a line between
two pixels (l(i, j) = 1) is an invariant distribu-
tion which covers the whole variation interval of
intensity difference. It may lead to the confusion
between a noise and a point at the edge. In our
model, we call a pixel is a noise if its intensity
differs from those of its neighbors at the same level
while the intensity of a point at the edge might
differ from those of its neighbors at various levels.
Thus, by modifying the distribution which covers
a limited interval, a point at the edge could be
distinguished with the noise. At each iteration step
k, the distribution covers at a different interval and
the summation of them must cover the whole vari-
ation interval of intensity difference. To guarantee
the convergence of the algorithm, the variance of
the distribution σ2

∆(k) should decrease following
the decrease of its mean µ∆(k). The probability of
the line is given in equation (7):

P
(
l(i, j) = 1|f, l(m,n) : (m,n) 6= (i, j)

)

∼ exp
([|fi − fj | − µ∆(k)

]2
2σ2

∆(k)

)
(7)

Figure 2: The noise-free Lena image (top-left),
the noisy image (top-right) σn = 20(PSNR =
22.14dB), and the results of denoising processes us-
ing (6) with the original (bottom-right)(PSNR =
29.70dB) and modified (bottom-left) (PSNR =
30.77dB) line field.

Once the line field is determined, the parameters
βij and σ2

i could be calculated from the line field.
As stated above, βij different to zero implies a
bond between pixel i and pixel j (l(i, j) = 1):

βij =
l(i, j)∑
j 6=i l(i, j)

(8)

We also know that σ2
i increases when scanning

toward the edges of the image. We construct here
a new coefficient to distinguish a point at the edge
and a noise:

αi = exp

[(∑
j 6=i l(i, j)−N

)2

2σ2
l

]

where N is the number of neighbors around the
pixel i and σ2

l is the variance of the distribution
of the number of lines around a pixel. αi is called
the noise coefficient. It is high if the noise exists at
the pixel i and low if otherwise. Hence, σ2

i varies
inversely with αi. For instance, σ2

i might be chosen
simply:

σ2
i = σ2

n(1− αi) (9)
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Table 1: PSNR[dB] Results of VisuShrink, SureShrink, BayesShrink, equation (6) with Geman’s line filed
and the proposed algorithm.

σn = 10 σn = 20 σn = 30
Noisy Image 28.18 22.14 18.62
VisuShrink 28.76 26.46 25.14
SureShrink 33.28 30.22 28.38
BayesShrink 33.32 30.17 28.48
Equation (6) 31.78 29.70 28.12

Our algorithm 34.18 30.77 28.95

3 Experiments and Results

Following the theoretical developments above, an
iterative algorithm is proposed to solve the denois-
ing problem:

• Step 1: Set k := 1;

• Step 2: Define the temperature T (k), the vari-
ance σ2

∆(k) and the mean µ∆(k) of the modi-
fied line field distribution;

• Step 3: Calculate the binary line field l(i, j)
following (7);

• Step 4: Determine the parameters βij and σ2
i

following (8), (9);

• Step 5: Estimate the intensity at each pixel
from (6) by applying the MAP approach;

• Step 6: Set k := k + 1 and go to step 2 if the
stop criterion is not satisfied.

For simplicity, we can choose the stop criterion
being the number of iteration steps. In the other
word, the algorithm is finished after a specified
loop number Nloop. The accuracy and effectiveness
of the algorithm is resulted from choosing properly
the parameters T(k), σ2

∆(k), and µ∆(k). In our
experiments, we fix the decrement of µ∆(k) and
σ2

∆(k) at k−2 and change T (k) according to the
noise variance σ2

n. From experiment, we found
the relationship between the noise variance and
the constant c of the ”temperature” T (k) to op-
timize the algorithm. The theoretical study about
this relationship could be an interesting prospec-
tive work.

To compare effectively with the existing methods,
the proposed algorithm is applied in the famous
Lena image corrupted by additive white noises
with different variances (as shown in figure 2). The
image size is 512x512. The experimental results
were compared with those of the other methods
in term of Peak Signal Noise Ratio (PSNR). The
quantitative performance comparison in Table 1
shows that our method is highly competent

with denoising techniques in the literature
such as VisuShrink, SureShrink, BayesShrink.
Moreover, our proposed algorithm, which is
realized without steps related to the wavelet and
wavelet inverse transformation, requires less efforts
on computation. In addition, the modified line
field, whose distribution has been changed at each
iteration, has increased the convergence speed
and reduced the computational time significantly.
Another advantage of the algorithm is that the
stop criterion is reached after about ten iterations.
This fact makes our algorithm less able to blur
the image while removing effectively the noise.

4 Conclusions

The MRF is an appropriate tool for modeling the
image. Adding the line field to the model makes
it more powerful in processing the image while
preserving image details. The suggested line field
helps to distinguish between the noise and the edge
of images and results in an efficient denoising al-
gorithm. However, the result might be better by
finding a proper scheme for the line field distribu-
tion.

To improve the proposed algorithm, we also sug-
gest to combine it with the local polynomial ap-
proximation (LPA) driven by the line field so that
the denoised image would be even smoother.
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Abstract 
Augmented imagery commonly viewed as a subset of augmented reality, is the modification of still images or 
video through the addition of computer generated virtual objects.  Over the last decade augmented imagery has 
demonstrated its value through commercial, medical and other popular applications such as video games, public 
television broadcasting and commercial simulations.  In this paper we present an augmented imagery application 
for virtual advertisement which replaces a blank planar region in a given video sequence with commercial 
advertisement content.  The application is built using relatively cheap and in some cases freely available tools 
which will show the affordability and ease with which such applications can be built.  The application uses 
OpenCV library to capture, manipulate and render in real-time, commercial content within digital video the 
video stream as well as the accuracy of ARTag tracking libraries to track fudicial markers representing the 
overlay region.  We also address the issue of occlusion using a background-foreground segmentation algorithm 
to render our overlay as part of the background whenever it coincides with a foreground object.  The paper 
presents details of the requisite concepts and technical implementation which utilises real time video from a USB 
camera with no specialized hardware support. 

  

Keywords: Augmented Reality, ArTAG, advertisement, Background-Foreground Segmentation, Occlusion 

1 Introduction 
Augmented reality falls second within the virtuality 
continuum proposed by Milgram and Kishino [12] 
and deals with the joining of real and virtual objects 
within a real environment setting such that virtual 
objects appear to be seamlessly integrated.  It has over 
the past decade grown tremendously in popularity as 
it lies closer to the real world than the virtual world 
and as such is being applied across industries in 
medical, military, and commercial applications 
particularly in video broadcasting of sports and 
commercial advertisements.  In this paper we will 
look specifically at augmented imagery, a subset of 
augmented reality which encompasses the 
enhancement of digital imagery.  

 
Figure 1: Milgram’s Virtuality Continuum. 

As illustrated in Figure 2 [6], augmented imagery 
involves a number of complex processes not limited 

to but primarily involving modelling the real 
environment, determining the relationship between 
the real and virtual models, calculating the 
transformations to accurately render virtual objects 
such that they accurately coincide with real objects 
and finally the blending of all images into one 
seamlessly integrated image. 

 
 Figure 2: The Basic Augmentation Process. 

Our applications seeks to achieve the above at 
minimal cost  requiring no special preparation of the 
background scene, no excessive camera calibration 
techniques and employs the use of simple marker 
based tracking techniques to overcome the complex 
issues of registration.  We also noted in [9] but did not 
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implement the idea of user invisible marker detection 
such that content could be rendered more realistically.   
Below we consider how our application conforms to 
the basic development model outlined above and then 
present a more detailed outlay of the application. 

1.1 Modeling 
Modeling involves expressing both the virtual and 
real elements of the environment in mathematical 
terms and storing these expressions as data structures.  
These descriptions can potentially become quite 
complex depending on the nature of the augmentation 
exercise.  The modeling process can be broken into 
two main categories 2D and 3D.   In this paper we 
present a very simple implementation of 2D modeling 
which will involve storing a rectangular region 
description of our real environment and destination 
images, and the virtual overlay images to be rendered.  
Our virtual advertisement will be described simply as 
a preformatted image and the destination location as a 
quadrilateral marked and tracked in the real 
environment.   Realistic 3D augmentation requires 
description of attributes such as geometry, lighting, 
surface characteristics and more complex shapes 
which are outside the scope of this paper. 

1.2 Registration 
The process of determining the series of 
transformation required to accurately align virtual and 
real objects is known as registration and this is 
essential to producing a realistic and natural effect.  
Our virtual advertisement replacement program uses 
2D to 2D registration which will transform pixel 
coordinates in the advertisement image to pixel 
coordinates in our destination image.   In order to 
obtain accurate registration we will use optical 
tracking through the use of ARTag fiducial markers.  
We track the centre of the marker to obtain the four 
vertices where the overlay is to be placed. 

1.3 Composition 
This refers to the blending of the source and 
destination images to produce a single seamless 
image.  Each pixel in the final image can be viewed as 
a combination of the related pixels of the original 
images.  Alpha maps are frequently used to produce a 
final image that appears real and they function 
primarily by determining which portions of an overlay 
image should remain opaque and which portions 
should be made transparent.  Other techniques are 
used to produce adequate maps and these include 
static mattes, luma keying, difference mattes and 
constant colour matting [6].  In this paper we use 
alpha maps to render the image more realistically. 

Composition will also involve the use of background-
foreground segmentation to detect those areas of the 
overlay which occlude foreground objects and to 
render those pixels into the image background.   

2 Applications and Related 
Work/Current Developments 

In this section we look at current and related work 
being done in the area of augmented reality in general.  
The Eye-Toy add-on for the Sony Playstation console 
is a camera which recognizes player’s movements and 
is a first approach to a commercial product. The 
number of research projects involving augmented 
reality continues to grow primarily with development 
environments such as ARtoolkit, ARTag and 
ARstudio.    In [9] Dennis Joele proposes 
development of a AR system using ARtoolkit, 
infrared cameras and user invisible markers created 
by ink which is only visible in the infrared spectrum. 
VTT Information technology a multimedia group is 
currently working on several projects including 
IMMOVE which enables the provision of a new range 
of intelligent video based services to end users in 
various mobile/wireless networks including CamBall 
an augmented virtual table tennis game over 
Internet/LAN using real rackets and Virtual interiors 
an interior designing application.  In 2003 David 
Sickinger conducted some work in biomedical field 
using augmented reality in rendering a virtual skull 
over a real face.   

Augmented imagery applications are being seen from 
sports to medicine to assisting soldiers out in the field, 
augmented reality is being applied widely.  Popular 
implementations include first down lines visible 
during an American football game or superimposed 
ball trajectory diagrams during cricket broadcasts and 
virtual studios which have evolved from blue screen 
compositing techniques replacing virtual sets with 
computer generated virtual sets which are integrated 
seamlessly.  

An approach very simpler to the one taken here is also 
presented by Wang, Sengupta, Kumar & Shamar 
(2005) who utilise Tamasi and Kanade’s (1981) 
method for strong point detection for tracking vs. our 
chosen fudicial marker system. 

3 Design Tools 
The two main tools used in the design of this 
application and the implementation of our approach 
are OpenCV, a library of programming functions 
facilitating real time computer vision and ARTag, a 
fiducial marker system similar to ARtoolkit but with 
some improvements.   In this section we focus on 
ARTag and the marker detection process and take for 
granted that you the reader are familiar with OpenCV. 

3.1 ARTag 
ARTag is a fiducial marker system, a 2D marker and 
computer vision system.  Fiducial marker systems are 
consist of digitally generated pattern images mounted 
in an environment and the accompanying algorithm 
used to detect the patterns.   They are used in a 
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number of systems where the relative position 
between a camera and an object is required.   

ARTag uses digital coding theory to get a very low 
false positive and inter-marker confusion rate thus 
allowing it to work with a very small marker size.  It 
also utilises an edge linking method to give greater 
consistency under poor lighting conditions and to 
provide occlusion immunity.     

Markers patterns are created using a square outline for 
the exterior and a 36-bit word encoded in the interior 
of the square all position on a bi-tonal planar surface.  
To prevent false detection of marker patterns, 
checksums and forward error correction (FEC) are 
used to protect a unique identification number 
contained in each digital word of a pattern providing 
very low and numerically quantifiable error rates.  

 

     
Figure 3: Examples of ARTag markers [2]. 

ARTag was used in the development of this project 
because it represents an improvement over its 
predecessor ARToolkit another marker system.  
While ARToolkit is very successful and widely used, 
ARTag represents a significant increase in 
performance in the area of false positive detection and  
inter-marker confusion thus decreasing the number of 
times markers are either confused for one another or 
falsely detected because of background noise. 

ARTag can encode up to 2046 unique IDs without the 
need to store patterns as is the case with ARToolkit. 

3.1.1 ARTag Marker Detection 
ARTag uses the four prominent corners of its square 
border markers to allow the full extraction of the 6 
degree of freedoms (DOF) of the relative marker to 
camera position.  ARTag allows both a black border 
on a white background and a white border on a black 
background.   

Each square border is divided into a 6x6 square grid 
holding 36 information carrying cells, the whole 
marker being 10x10 units and having a border 
thickness of 2 units.   Each of the 36 cells are capable 
of carrying exactly one bit of digital information.   

The boundary of the marker is detected by 
thresholding a greyscale version of the image, 
performing connectivity of pixels above and below 
this the obtained threshold and finding those 
connected objects with a quadrilateral boundary.   
Once the border has been located the internal region is 
sampled with a 2D 6x6 array and assigned digital 
symbols ‘0’ or ‘1’ using the same threshold as above 

and to output four 36 bit sequences one for each of the 
four possible rotation positions.  Each 36 bit sequence 
passes through the FEC stage which can detect and 
correct some bits.   

 
Figure 4: Digital Decoding Process [2]. 

The result is then analysed by a CRC checksum 
procedure which verifies its membership within the 
ARTag marker set.  If it does belong to the set then 
the encapsulated 10-bit ID (sub-ID) number is 
extracted, combined with the border polarity and a 
detected marker is reported.   This entire process 
represents the decoding phase.  

3.1.2 ARTag Library 
In this section we will review some of the more 
critical and frequently used function within the 
ARTag library.  These functions primarily implement 
the marker detection and identification process.   

In ARTag an object is either a single ARTag marker, 
or a 2D array.  In order to locate markers the 
following steps are performed: 

1. Initialisation 

- first call init_artag() 

- load an array (.cf) file with load_array_file() 
if you want to use arrays 

- associate single markers or arrays with 
objects 

2. Frame Processing 

search the image for objects using 
artag_find_objects() 

for all associated objects, determine whether object 
can be found in the current frame by calling 
artag_is_object_found(), 

if the marker object can be found proceed with 
relevant action e.g. image rendering 

The init_artag function is used to initialise the 
background environment before calling any other 
functions.   init_artag takes as argument the width and 
height of the camera image where the marker is 
located. The function also take a variable which stores 
the bytes per pixel (bpp) or colour depth of an image 
(bpp=1 for greyscale 8-bit, 3=24-bit, 4=32-bit.   

char init_artag(int width, int height, int bpp); 
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ARTag allows you to associate objects with either 
single markers or arrays.  In order to use arrays, the 
file containing the array definitions must first be 
loaded.  This is accomplished using the function 
below. 

int load_array_file(char *filename); 

artag_associate is used to associate an array with an 
object and returns an ID to use in future calls.  
"frame_name" is the array name as in appears in the 
.cf file which must be previously loaded.  A return 
value of -1 indicated that the object could not be 
initialized. 

int artag_associate_array(char *frame_name); 

artag_find_objects() is the main call that does all the 
work.  It searches the image passed to it for markers, 
and then finds those that belong to defined objects.  It 
internally calls the artag_find_marker() function 
which locates all markers in the image.  

void artag_find_objects(unsigned char *, char ); 

rgb_greybar is set to 1 for RGB images and 0 for 
greyscale. 

char artag_is_object_found(int artag_object_num); 

This funcation is used to determine the presence of a 
given object within an image.  It receives a unique 
object number previously associated with a given 
marker or array and uses this number to determine 
whether that marker is present in the image.  

artag_project_point(int,float,float,float*,float*); 

The project point function can be used to find what an 
(X,Y,Z) coordinate in an object maps to in camera 
image coordinates.  The camera image coordinates 
can then be used to accurately map your virtual image 
unto the correct position within that video frame.  
This is repeated for every frame thus producing the 
effect of a virtual object superimposed on our real 
environment as captured by the camera. 

4 Image Reprojection 
Essential to our approach is the ability to project our 
overlay onto the required portion of the real world.  It 
is necessary to obtain the coordinates of a point (x`, 
y`) of one frame given its corresponding coordinates 
(x, y) in another frame.  We need this ability to 
reproject our augmented overlay image from one 
position within the current frame to another set of 
coordinates in some future frame providing seamless 
augmentation under camera motion.  It also enables us 
to determine the appropriate region within the 
background to be occluded.   

We use ARTag to locate potential marker projections 
in an image by first finding four sided border 
contours.  This is achieved using an edge detection 
algorithm which thresholds edge pixels, links then 
into segments and grouped them into quadrilaterals. 

The corner points of these contours are then used to 
define a homography to create a sampling grid.   

An homography is defined in 2 dimensional space as 
a mapping between points on a ground plane and as 
seem from one camera to the same point as seen from 
another camera or another location.  When 
homogenous coordinates are used, it is a linear 
mapping described by a 3x3 non-singular matrix such 
that u` = Hu` for some homography H.   A 
homography has eight degrees of freedom, but for 
every point to point correspondence u – u`, two 
constraints are imposed on H corresponding to the x 
and y coordinate coordinates of that point.  This 
allows ARTag to specify at least four coordinates as 
obtained from edge contours to define the appropriate 
homography. An homography can be represented 
mathematically as follows: 

 

  (1) 

where pa and pb are the homogenous coordinates 
representing the original and transformed space 
respectively. 

Once the sampling grid is obtained, it can be used to 
analyse the interior region to determine the 
authenticity and identity of the potential marker.  

Once the marker is detected we determine the centre 
of the marker based on the projected coordinates of its 
four vertices.  This is repeated for each frame 
allowing us to track and update a given pixel position 
from frame to frame. 

5 Background-Foreground 
Segmentation 

In this paper we use a background modeling 
algorithm based on “An Improved Adaptive 
Background Mixture Model for Real-time Tracking 
and Shadow Detection” presented by Trakulpong and 
Bowden [4] and implemented in OpenCV’s library.  
This model was a further improvement of the one of 
the more successful background models by Grimson 
et al [13] which used a multi-colour per pixel 
approach. 

This method uses the work presented by Grimson et al 
which show that pixels usually have a bimodal 
distribution and can thus be actively modeled using 
Gaussian distribution.  Each pixel in the scene is 
modeled by K Gaussian distributions where the 
probability that a certain pixel has a value Xn is given 
by 

  (2) 
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where wk is the weight parameter of the kth Gaussian 
component.  Given Xk as the random variable 
corresponding to the pixel value for component k, we 
assume it follows a normal distribution defined as 
follows: 

  (3) 

Different Gaussians are used to represent different 
colours.  The weight parameter wk models the 
proportion of time that a given a given colour 
assuming A highest probabilistic colours. The model 
contains an update system to facilitate real time 
running and also to account for changes in lighting 
conditions.  This works by comparing every new pixel 
value against existing model components and 
updating the first matched model component. If no 
match is found, a new component is added.  More 
details of the theoretical approach can be obtained 
through reading [4].  

The background model is first initialised using the 
first frame captured by the camera which acts as our 
background frame.  Additional frames are added to 
the model to provide real time updates of the 
background as the scene changes. A foreground 
contour mask is created using the model to highlight 
foreground pixels based on the current background.  
This is then used to determine what regions of the 
overlay need to be occluded. 

6 Implementing Virtual 
Advertisement 

6.1 Development Environment 
The implementation of the augmented reality sports 
advertisement replacement application was carried out 
using a Compaq Presario V2000 laptop, a quite 
affordable consumer level PC.  It ran Microsoft 
Windows XP Professional Service Pack 2, running on 
AMD Turion 64 Mobile 1.8GHz processor, 512 MB 
main memory and 100 Gbyte hard-drive.   

To capture the required video image, a Logitech 
QuickCam Pro 5000 USB camera was used, having a 
shutter speed of up to 30 frames per second live 
video, true 640x480 pixel live video and high-quality 
VGA sensor using RightLight technology.   

Capturing resolution was set to 320x240 and using 
OpenGL the image was stretched to 1024x1024 but 
fitted in an 800x600 OpenGL generated window.   

Microsoft Visual C++ 8 part of the Microsoft Visual 
Studio 2005 software development suite was used for 
programming the application.     

6.2 The Application    
The advertisement replacement application works by 
loading and augmenting ordinary digitally designed 

jpeg, gif or bitmap images into a real environment 
such that they appear as part of the environment. In 
this way advertisements can be designed by image 
experts and directly rendered into a real environment 
using the program. 

As previously mentioned, ARTag and OpenCV 
libraries were all used to implement the program.  All 
these libraries are based on the C programming 
language and so by extension this was the main 
language of development.   

 
Figure 5: Overview Flowchart of Application 

System. 

6.2.1 Capturing and rendering the 
The video stream from the QuickCam Pro 5000 USB 
camera was opened using OpenCV’s 
cvCaptureFromCAM function and individual frames 
captured using cvQueryFrame. 

Importing Images 

OpenCV’s cvLoadImage is used to load the 
advertisement banners, a series of images (jpeg, bmp 
and gif) located in the project directory.  These 
images were designed and created using Adobe 
Photoshop CS2 and exported in the required format.  
The images contained no specialised content related 
to the performance of the system, but simply 
represented simulated commercial content. 

Tracking Marker 

A single ARTag marker was used to demonstrate the 
application.  The marker was printed on ordinary 
paper and placed against a solid cardboard surface to 
act as a place holder and to prevent distortion of 
marker surface.  This was then positioned on a wall 
surface at the point where the advertisement would be 
rendered.  The surface chosen was an arbitrary point 
in my room so as to represent nature conditions under 
which such content would usually be rendered.  Apart 
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from marker placement, no special constraints were 
imposed on the real environment. 

7 Results 
This represented the actual running of the application 
and consisted of a series of tests aimed at evaluating 
the performance of the system.   All tests were 
conducted without any prior special camera 
calibration techniques and within the development 
environment as described above.   

 
Figure 6: Accuracy of ARTag markers under 

occlusion conditions. 

The first test consisted of waving my hand at various 
marker positions to test the accuracy of ARTag 
marker detection particularly under near marker 
occluded conditions.  As shown in figure 6, these tests 
were very successful as ARTag proved to be very 
accurate.  The second test involved continuously 
augmenting the overlay advertisement images in the 
background to ensure that the system was correctly 
and accurately performing augmentation.  This was 
analysed for accuracy in terms of marker detection, 
and accurate calculation of overlay positioning 
coordinates as shown in Figure 7 below.  

 
Figure 7: Augmentation under motion and changing 

overlays. 

The third series of tests involved performance of the 
background foreground segmentation algorithm.  This 
involved running the background modeling algorithm 
on is own and waving a pen object in front of the 
camera.  The foreground image was captured 
displaying the background in black and all foreground 
objects in white. 

 
Figure 7: Background-Foreground segmentation 

using a waving pen. 

Finally the entire system was tested running the 
overlay program within the context of a stationary 
background and moving hands within and out of the 
overlay region to observe occlusion of the 
advertisement.  The ability to detect and address 
occlusion under conditions of camera motion was also 
tested and it was observed that the background model 
was able to update itself fairly rapidly under motion.  
This caused those regions of the overlay image which 
were rendered occluded under motion to be once 
again unoccluded once the model had been updated.   
Updates were however still so slow that full and 
seamless occlusion was not always obtained. 

 
Figure 8: Accuracy of ARTag markers under 

occlusion conditions. 

8 Conclusion and Future Work 
We have presented in this paper a method for 
augmenting 2D virtual content into real time video 
feed using an off the shelf affordable web camera, 
ARTag fiducial markers and the OpenCV library.  
Other than that presence of a physical marker, the 
method used has imposed no restrictions or 
constraints on the real world rendering the 
augmentation in real time, under the camera motion 
and often in a very seamless way.  We have 
furthermore improved on the realistic rendering of the 
augmentation by implementing background-
foreground subtraction to identify foreground objects 
and render them unoccluded in the presence of the 
augmentation.  This has been achieved not at the 
expense of significant modeling of the environment.  
Recent applications seek to combine ARToolkit with 
modeling libraries such as OpenSceneGraph (OSG) 
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[14] while other systems develop quite complex 
models of the environment.   Our approach has 
demonstrated also that while ARToolkit is widely 
used, ARTag can also be used successfully to provide 
accurate tracking for such systems and achieve higher 
accuracies. 

Further work should be considered in using multiple 
markers to render multiple adverts as well as 
improving on the virtual realism of the augmentation, 
possibly through anti-aliasing, lighting effects and 
alpha maps.  The approach used also has some 
limitations related primarily to the rendering and 
occlusion of foreground objects.  These include 
marker occlusion specifically under conditions where 
multiple objects are rendered.  Successful occlusion 
handling also depends on the background-foreground 
segmentation which takes some time before the 
background model is accurately updated.  This leads 
to inaccuracies in occlusion detection and poses a 
problem under rapid camera movement.   

The limitations and possible improvements mentioned 
above, pave the way forward for this approach which 
can be further tailored to achieve better performance. 
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Abstract
Applications requiring the accurate identification of eye pupil position in a two dimensional image
can be found in many areas, ranging from gaze based computer interfaces to motion capture. Many
possible solutions have been put forward to this problem including approaches involving Haar cascades,
thresholding, Hough transforms, templates and pattern matching. We present a hybrid pupil tracking
algorithm combining Haar face detection, anthropometric localisation, pattern matching and row vs
column intensity histograms. We test the performance of our approach on a 285 frame video displaying
a variety of gaze directions. Our hybrid approach performs well, resulting in a very low pixel error.
Some steps in our technique show similarity with work done by Jin et al but were developed without
knowledge of this work.

Keywords: Eye Tracking, Pupil Tracking, Haar Cascades, Histogram, Pattern Matching

1 Introduction

Applications requiring the accurate identification
of eye pupil position in a two dimensional image
can be found in many areas, ranging from gaze
based computer interfaces [1] to motion capture.
Many possible solutions have been put forward
to this problem including approaches involving
Haar cascades, thresholding, Hough transforms,
templates and pattern matching.

Kapoor and Picard [2] present pupil tracking by
using the red-eye effect. This uses an IR sensitive
camera viewing IR light from an LED shining on
the face. They publish a high degree of accuracy
but such systems suffer from requiring specialised
equipment.

Tian et al [3] propose a dual state, convergent
tracking approach to determine many eye param-
eters. While their approach is published to deter-
mine accurate eye features in 98% of test frames,
a frame rate of only three frames per second is
achieved.

Many other techniques exist. The authors direct
the interested reader to [4, 5, 6, 3, 7].

We present a hybrid pupil tracking algorithm com-
bining Haar face detection, anthropometric locali-
sation, pattern matching and row vs column inten-
sity histograms. We test the performance of our
approach on a 285 frame video displaying a variety
of gaze directions. Our hybrid approach performs
well, resulting in a very low pixel error.

2 The Hybrid Algorithm

We present an algorithm, created out of several
techniques, that recursively narrows the region of
interest from the full frame to the pupils. Figure
1 outlines our technique and the separate steps
are outlined in more detail in the sections below.
We begin by using Haar-like features to detect the
face region (section 2.1). Known anatomical pro-
portions of the face allow us to further narrow
the region of interest to the area around the eyes
(section 2.2). Pattern matching using grayscale eye
like images is now used to identify the left and right
eye separately (section 2.3). Finally, we use thresh-
olding and vertical and horizontal histograms to
find the location of the pupil within the eye (section
2.4).

2.1 Haar Face Detection

The use of statistical cascade classifiers based on
Haar-like features have a long history in object
detection, particularly in face detection[8, 9, 10,
11, 4]. So widespread is their use that many com-
puter vision APIs, such as OpenCV [12], ship with
example Haar classifiers and the functions to ac-
cess them. The OpenCV implementations of Haar
classifiers were used by our system.

Such techniques involve training a cascade of
boosted tree classifiers via several thousand
positive sub-images (often 24x24 pixel) and
negative images. In the OpenCV implementation,
simple features are described by a number of
templates as shown in figure 2 and described in
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Figure 1: Hierarchical Methodology for Pupil
Detection

Figure 2: Extended Set of Haar-like Features used
in OpenCV’s Implementation of Face Detection
(taken from [9])

[9]. Detection involves moving the classifier in a
sliding window around the image in an attempt to
find regions of the image that match the classifier.

Haar cascade face detection makes up the first step
of our algorithm. This step narrows the region
of interest in the frame to the face of the subject
(see figure 1 step 1). Subsequent steps below only
consider this localised region.

Figure 3: Anatomical percentages used to isolate
the eye region.

2.2 Anatomical Eye Region Selection

An assumption in our system, that the above
Haar cascade relies upon, is that the user is facing
the camera with reasonably little rotation around
the three primary axes. Such an assumption
allows us to further narrow the region of interest
using known anthropometric proportions of the
eyes within the face region. Figure 3 shows the
proportions used to isolate the eye region. Several
different ratios were considered. It was found
that the 1:8:1 horizontal and 3:2:5 vertical ratios
defined the smallest eye region that robustly
segmented the eye region given an image with a
successful Haar based face segmentation.

2.3 Individual Eye Detection Through
Pattern Matching

By dividing the eye region (see 3rd image of figure
1) in half with a vertical line we have relatively
(to the original image) small regions of interest
containing the left and right eye. If we make the
assumption that these regions contain only the eye
we may step directly onto the histogram technique
described in section 2.4. However, in many cases
these eye regions also contain part or all of the
eyebrows. Since, commonly, eyebrows are dark in
colour, if we do not remove them from the region
of interest the histogram technique will fail.

We further narrow the region of interest for the left
and right eye by using a generic, low resolution,
grayscale eye image. An attempt is made to find
the area in the eye region which best matches this
pattern. The process takes place with a grayscale
version of the original frame.
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Figure 4 shows the images used as patterns
throughout investigations of this technique.
Pattern 4(b) was eventually used in all
experiments.

We wish to find a rectangle of pixels, in the s × t
eye region I, that best matches the n×m pattern
P. If we define the top left corner of this best match
to be C and put Xx,y as the pixel of some image X
intersected by the xth column and yth row, then the
best match in the eye region is defined as C = Ix,y

where 0 ≤ x ≤ s−n and 0 ≤ y ≤ t−m and E(x, y)
is the minimum across all x, y as given by equation
1.

E(i, j) =
n

∑

k=0

m
∑

l=0

|Ii+k,j+l − Pk,l| (1)

(a) (b)

Figure 4: Examples of grayscale eye patterns.

2.4 Pupil Detection Through Row vs Col-
umn Histograms

Having narrowed the region of interest to two small
rectangles representing the left and right eye (see
image 4 of figure 1), we consider a technique for
finding the pupil. As the left and right eye re-
gions do not contain eyebrows, we may make the
assumption that the pupil is the darkest region in
the eye. As such, we threshold the image into a
binary image so that the pupil area appears black
or ’on’, while most other areas are white or ’off’.
We count the number of ’on’ pixels in each row
and column and consider the pupil to be at the
intersection of the column and row with the most
’on’ pixels. Formally, given an n×m eye region R,
we define the pupil location P as;

P =

⎛

⎝argmax
i

⎛

⎝

m
∑

j=0

Ri,j

⎞

⎠ , argmax
j

(

n
∑

i=0

Ri,j

)

⎞

⎠

This concept is clarified in figure 5.

3 Results

We tested our implementation of this hybrid ap-
proach over 285 frames of a sample 320 x 240 avi
video on a 2.8GHz Intel Pentium 4 with 448MB

Figure 5: Vertical and horizontal histograms show-
ing the location of the pupil.

Average pixel error 3.19
Maximum pixel error 12.5
Minimum pixel error 1
Average Frames Per Second 4.75

Table 1: Results for experiment on 285 frame test
video.

of RAM. The video showed a subject moving their
eyes left, right, up and down as well as moving
their head left, right, up and down with respect to
the camera. No artificial lighting was used in the
recording of the video though the room was well lit
with natural sunlight diffused by cloud. The pupil
locations in all 285 frames were manually recorded
and these values were compared with the values
returned by our algorithm. Examples of correct
and incorrect pupil segmentations are shown in
figures 6 and 7 respectively.

Results for the test video are shown in table 1.
We see that the algorithm achieves an excellent
average error of only 3.199 pixels, compared to the
average width of the eye in the frame of 21 pix-
els. The maximum error measured between actual
pupil and detected pupil was 12.5 pixels. Such a
low error is due to the hierarchical nature of the
algorithm. That is, should the final stage of the
algorithm be unsuccesful at locating the pupil, a
succesful eye region detection by the previous step
will have reduced the possible error.

While the number of frames per second is higher
than some approaches, it is still too low to be con-
sidered for real time applications of either motion
capture or gaze based input. The low frame rate
is due primarily to the Haar face detection.

4 Conclusion

Applications requiring the accurate identification
of eye pupil position in a two dimensional image
can be found in many areas, ranging from gaze
based computer interfaces to motion capture. We
present a hybrid pupil tracking algorithm combin-
ing Haar face detection, anthropometric localisa-
tion, pattern matching and row vs column intensity
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(a)

(b)

(c)

Figure 6: Examples of successful pupil location.

histograms. We tested our implementation of this
hybrid approach over 285 frames of a sample 320
x 240 avi video. The system achieved an average
pixel error of 3.199 pixels and ran at a speed of
4.75 frames per second.

Further development will tune this system,
addressing its limitations. Most notably, these
include a frame rate that makes real time tracking
difficult and high error results when the user
blinks. Improving the speed of the Haar face
detection algorithm (the slowest part of the
system) and including a technique to detect a
blink state will address these issues.

Figure 7: Example of unsuccessful pupil location
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Abstract
The class of geometric deformable models, also known as level sets, has brought tremendous impact
on medical imagery due to its capability of topology preservation and fast shape recovery. Ultrasound
images are often characterized by a high level of speckle causing erroneous detection of contours. This
work proposes a new stopping term for level sets, based on the coefficient of variation and a multilayer
perceptron, in order to robustly detect the contours in ultrasound images. Successful applications of the
MLP-Level Sets to detection of contours on synthetics and real images are presented.

Keywords: Ultrasound images, segmentation, level sets, multilayer perceptron

1 Introduction

The original level sets method has been introduced
by Osher and Sethian in [15]. Since its introduc-
tion, this technique has been used to solve various
problems, such as image enhancement and noise
removal [11, 12, 13], and contours detection [10].

Speckle is a multiplicative locally correlated noise.
The speckle reducing filters have originated mainly
in the synthethic aperture radar community. The
most widely used filters in this category, such as the
filters of Lee [7], Frost [3] , Kuan [6], and Gamma
Map [8], are based on the coefficient of variation
(CV). For ultrasound images, the use of anisotropic
diffusion and CV have been proposed to increase
the edge detection effectiveness [19, 20].

The multilayer perceptron (MLP) and the
backpropagation algorithm (BP) [17] have been
successfully used in classification and functional
approximation. An important characteristic of
MLP is its capacity to classify patterns grouped
in classes not linearly separable. Besides that,
it has been shown that a one-hidden-layer
perceptron is a universal function estimator [4, 5].
Moreover, there are powerful tools, such as the
Levenberg-Marquardt optimization algorithm
[2], and bayesian approaches for defining the
regularization parameters [9], which enable the
efficient training of MLP.

Our work proposes a level set method based on
an original stopping term. We create a specific
edge stopping term from the weight function of the
Tukey’s biweight error norm. This term adopts the

coefficient of variation instead of classical gradient
for a more robust edge detection. We enhance
the performance of the stopping term by estimat-
ing the scale parameter automatically and design-
ing a multilayer perceptron trained to differentiate
homogeneous areas from edges. This supervised
method is designed for segmentation of sequences
of ultrasound images. It allows easy robust detec-
tion of the contours in subsequent images of the
same sequence.

The outline of the paper is as follows. Section 2
describes the level sets principle and its ineffec-
tiveness to segment ultrasound images. Section
3 develops a CV based stopping term robust to
speckle. In section 4 we present the MLP based
stopping term. Section 5 contains the results on
synthetic and real ultrasound images. Finally, sec-
tion 6 provides some conclusions and perspectives.

2 Shape modeling using level sets

Shape modeling using a level set approach consid-
ers a closed curve δ(t) moving in the plane, where
δ(0) is the initial curve. The curve is represented
implicitly via a Lipschitz function. The main idea
is to embed this propagating curve as the zero
level set of a higher dimensional function Φ(δ, t)
[10]. The equation representing the motion of the
surface Φ(δ, t) in the normal direction of the prop-
agating curve is:

∂Φ
∂t

+ F |∇Φ| = 0, (1)

325



where F is the propagation speed function. For
certain forms of F , equation (1) reduces to a stan-
dard Hamilton-Jacobi equation. The speed func-
tion is defined by two terms:

F = FA + FG, (2)

where FA represents a constant advection term
that will force the curve to expand or contract
uniformly based on its sign. The second term FG

depends on the geometry of the curve and acts to
smooth out high curvature regions. For details on
FA and FG see [10].

In order to stop the evolution of the curve at the
edges, a function of the image gradient is classically
used. This stopping term g is defined as follows:

g(∇I) =
1

1 + |∇(G ∗ I)|p , p ≥ 1. (3)

The term G∗I in (3) is the convolution of the inten-
sity image I with a gaussian filter G. The function
g has values that are close to zero in regions where
the gradient of the image is high, and values that
are closer to one in the homogeneous regions.

The traditional edge stopping term g based on gra-
dient has disadvantages. First, the stopping func-
tion is never exactly zero and the moving curve
may cross the boundaries of the object. In addi-
tion, gradient-based edge detection is not adapted
to speckle. In images affected by multiplicative
noise, the gradient detects outlier contours, result-
ing in many false positive. This work addresses
these issues by using a stopping term based on the
CV and an MLP.

3 A stopping term based on the coef-
ficient of variation

The techniques used to reduce the multiplicative
noise in radar images use the CV to characterize
the noise. The CV, noted ξ can be estimated as:

ξ2 =
var(I)

I
2 , (4)

where var(I) is the variance of the intensity image
and I is the mean.

The local version γ of the CV calculated in the
vicinity of a pixel s = (i, j) is:

γ2(s) =
1
|ηs|

∑
p∈ηs

(Ip − Is)2

Is
2 , (5)

where ηs is a neighbourhood of s, Is is the mean
intensity of ηs.

The M-estimator from robust statistics and the
edge stopping term controlling the level set evo-
lution can be directly related. In fact the classi-
cal stopping term is an adaptation of the weight
function of the Fair estimator. To build our new
stopping term, we adapted the weight function of
the Tukey’s biweight error norm [16]. This function
neglects the influence of outliers above a predefined
threshold. The weight function of the Tukey’s error
norm expression is:

w(x, σ) =





1
2 [1− ( x

σ )2]2 if x ≤ σ

0 otherwise
(6)

Introducing the CV in (6), and considering the
edges in images as outliers, allow to totally stop the
evolution of the curve on the edges. The expression
of the contours detector based on the CV is:

gCV =

{ [
1− γ2

i ,j
γ2

s

]2

if γi,j ≤ γs

0 otherwise
(7)

where Ii,j is the intensity of pixel (i, j), γi,j is the
local CV of that pixel, and γs is a scale parameter
based on the global CV [19]. Edges correspond to
pixels where the values of local CV are greater than
the global CV.

We propose to enhance the estimation of the scale
parameters γs by incorporating a MLP edge detec-
tor. The method is described in the next section.

4 MLP-based stopping term

In order to improve the performance of our stop-
ping term, we improve the test in (7) by using an
MLP trained to detect contours. The training is
made with a method that allows a suitable gen-
eralization, to correctly classify patterns that do
not belong to the training set. The parameters of
the MLP are calculated during the learning pro-
cess, considering a training set that comes from a
single image. We generalize the MLP to correctly
detect contours in subsequent images of the same
sequence, or in images which have been acquired
with similar parameters.

The learning process of MLP supposes the exis-
tence of 2 classes in the image: contours and homo-
geneous regions. The development of our stopping
term considers the following stages:

1. Constructing the training set;

2. Training the MLP using the patterns of the
training set;
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3. Computing the stopping function.

4.1 Constructing the training set

The image of the coefficients of variation, noted
Icv, is computed from the original image I. The
training set S of the supervised learning neuronal
network is:

S = {(p1, t1), (p2, t2), ..., (pi, ti), ..., (pn, tn)} (8)

where each pattern pi is a vector that corresponds
to the vicinity of a pixel (i,j) of the matrix Icv, and
each ti is the class of the pattern pi. If pi belongs
to a contour ti is equal to 0; otherwise it would be
equal to 1.

Figure 1 shows the structure of the MLP. The neu-
ral network has one output that indicates the class
of the inputs. The number of inputs depends on
the size of the fixed vicinity.

Figure 1: Structure of MLP.

4.2 Training of the MLP

We train the MLP with a Bayesian Regularization
Backpropagation (BRBP) [2]. Generalization al-
lows for suitable classification of patterns not par-
ticipating to the training set. The BRBP provides
the number of effective parameters used by the
network. This characteristic allows to define the
amount of neurons in the hidden layer of the net-
work.

4.3 Computing the stopping function

The MLP described above has been used to design
an adaptive stopping term that improves the level
set method. The expression of this new stopping
term is:

gmlp =





0 if γi,j > γs

or MLP=1[
1− γ2

i ,j
γ2

s

]2

otherwise
(9)

This term (9) has two interesting properties: it is
exactly equal to zero at the edges, and it is robust
to speckle.

5 Results

A well known issue with the standard level-sets
algorithm is its high complexity. In order to reduce
the computation cost, some methods have been
proposed as the fast marching approach [18] and
the narrow-band approach [1]. We use the latter
approach for the experimentations.

5.1 Properties of our stopping term

The effectiveness of our stopping term is illustrated
in figure 2. It shows that CV stopping term is no
zero on all the contours of the synthetic image,
whereas the CV-MLP stopping term in figure 2f is
exactly equal to zero on all the extension of contour
of the circular object. Figure 2a shows the initial
synthetic image without noise; figure 2d shows the
initial image affected by speckle; figure 2b shows
the stopping term based on the CV; figure 2e shows
the zeros of the stopping term based on the CV;
figure 2c shows the stopping term based on the
CV-MLP; figure 2f shows the zeros of the stopping
term based on the CV-MLP.

5.2 Results on synthetic images

We compare the classic stopping term based on
gradient, the CV-based stopping term and our
original MLP and CV-based stopping term on a
synthetic noisy image. The sequence of figures
3a-3h shows the edge detection using narrow-band
level set with a gradient based stopping term. The
sequence of figures 3i-3p shows the edge detection
using a CV based stopping term. The sequence
of figures 3q-3x shows the edge detection using
our CV-MLP based stopping term. All the figures
have as subcaption the iteration number of the
evolution process of the curve.

The sequence of figures 3a-3h shows that the mov-
ing curve does not suitably detect the objects when
the stopping criterion is gradient based. The noise
prevents stopping the evolution of the curve at
the edges of the objects. The sequence of figures
3i-3p shows that by using a stoping term based
on CV, the curve enfold a part of the contour of
the circular object. The sequence of figures 3q-3x
shows that our stopping term based on an MLP
allows to detect all the contours of the object.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Stopping terms. (a) Original image (b) CV stopping term (c) CV-MLP stopping term (d)
Noisy image (e) Zeros of CV stopping term (f) Zeros of CV-MLP stopping term.
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Figure 3: Results on synthetic noisy image. (a-h) Level sets curve evolution with gradient based stopping
term. (i-p) Level sets curve evolution with CV based stopping term. (q-x) Level sets curve evolution
with MLP-CV based stopping term.
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The results presented in figure 3, show that the
new stopping term improves the precision of the
segmentation. In addition, comparing the number
of iterations for the three methods, we observe a
better performance of the CV and MLP stopping
terms. Less iterations are required to detect the
contours in the image.

5.3 Results on real ultrasound images

In this section, we show the performance of our
method on an ultrasound intra cavity image. The
first row shows results obtained using classical
level sets. The second shows the results of
our method using the multilayer perceptron
classification. These are clearly more precise, our
method allows to completely stop the curve on
the edge of the heart cavity. The classical method
fails to segment the cavity, mainly because of the
speckle and the fact that its stopping term never
exactly reaches zero.

6 Conclusion

This paper presented a new stopping term adapted
to speckle for the level sets algorithm.

The classical edge stopping term based on gra-
dient is not adapted to speckle and never equals
zero, making the moving curve pass through object
boundaries.

Our stopping term is equal to zero at the edges
and it is adapted to speckle. This prevents the
moving curve from crossing the boundary of the
cavities and increases its precision. In addition,
the proposed stopping term reduces the amount
of iterations to detect the contours. It brings sig-
nificant enhancement in the contours detection in
ultrasound images using level sets.

The results of this study are promising. Future
work will consider the use of an unsupervised
model of neural networks (e.g. SOM) for a
automated solution of the problem, and the use
of other efficient level sets methods for ultrasound
image sequences.
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Abstract
In this paper we present an automated microscopy system that can be used for the scanning and analysis
of large collections of histology slides, yielding large mosaic images of entire slides. We present an
application of this system in a study of lamb meat texture which aims to link factors such as the growth
history and genotype of the sire to morphology of intramuscular connective tissue. For the study, 320
histology slides with stained muscle tissue sections were imaged, and mosaic images of the whole slides
were assembled. We analysed the mosaics at different resolutions to detect objects of interest, which
were then segmented into muscle tissue, connective tissue and background. We also report initial results
for the segmentation of fat cells using seeded watershed transforms.

Keywords: automated microscopy, colour segmentation, meat imaging

1 Introduction

1.1 Automated Microscopy

Many modern laboratory microscopes are
equipped or can be retrofitted with motorised
components, thus enabling automated microscopy.
In addition to enabling researchers in the biological
sciences to image and analyse much larger numbers
of samples, automation allows for tight control
of the imaging parameters and therefore yields
images that may be more consistent than those
acquired by a human operator. Similar to classical
machine vision applications in quality control and
parts inspection, consistency in imaging conditions
greatly facilitates the subsequent image analysis.

Scanning of entire microscope slides is one
of the more common applications of automated
microscopy, with a number of commercial products
being available for this purpose. Even at relatively
low magnifications the size of the resulting image
mosaics, often on the order of hundreds of mega-
pixels, poses a data handling challenge. If the
purpose of scanning the slides is to further analyse
the resulting mosaic images, it is crucial that the
image mosaics can be quickly resampled to allow
analysis at different scales.

1.2 Aim

This paper reports on the imaging aspects of a
project in which we have applied automated mi-
croscopy to a study by the Australian Sheep Indus-
try Cooperative Research Centre. The study aims
to relate characteristics of the fascicular structure
of lamb meat to factors such as the genotype of the
sire, nutrition and growth history. It is a follow-
on study to the one reported in [1] with a larger
sample size.

The automated microscopy system was used to im-
age sheep meat histology sections and automated
image analysis was applied to segment muscular
and connective tissues. The segmented images will
be used for further analysis, which is not described
here. Due to the lenses at our disposal, the images
were acquired at a magnification that was higher
than needed for the texture characterisation. Be-
cause this high magnification should in principle
allow for the characterisation of fat cells, a capa-
bility that might be useful in future studies, we
conducted preliminary experiments on segmenting
fat cells.

The paper is organised as follows: section 2
presents the sample preparation and gives a brief
overview of the microscope hardware. Section 3
details the methods that were used for image
acquisition, handling of image mosaics, and
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tissue segmentation. The results are presented
in section 4. We conclude with a discussion in
section 5.

2 Materials and Acquisition Hard-
ware

2.1 Histology Samples

For this study, 320 standard microscope slides were
imaged and analysed. On each slide, thin histol-
ogy sections (4.5 thickness) taken from the muscle
longissimus thoracis et lumborum from lambs were
mounted, with a variable number of sections per
slide (between one and four). The size of the tissue
sections ranged from 7×7mm2 to 16×16mm2. An
example slide is shown in figure 1.

Figure 1: Example slide with bar code and two
sections of muscle tissue.

The histology sections were prepared by the same
method as reported in [1], using Wiegert’s iron
heamatoxylin and Van Geison’s stain. This results
in a differential stain with different hues for intra-
muscular connective tissue (dark pink/purple)
and muscle fibres (brownish). While there was
not much variation in hue between the different
samples, there was some variation in the intensity
of the stain, both between and within samples.
The most probable cause for these variations
in intensity are differences in thickness of the
sections and differences in absorption of the stain.
In some regions, the connective tissue encloses
fat cells. These regions can be recognised by
their compartmentalised, foam-like structure. The
different tissue types are shown in figure 2.

2.2 Hardware

Images for this study were captured using a
Qimaging Micropublisher 3.3RTV colour camera
mounted on an Olympus BX61 microscope. The
microscope is equipped with a motorised stage
(Prior H101). In addition, a robotic slide loader
(Vision Biosystems SL50) with a capacity of 50
slides was used to automate the slide handling.
The setup is shown in figure 3. The Micropublisher
camera has a CCD chip with 2048 × 1536 pixels
and uses a Bayer filter pattern for colour imaging.

Figure 2: Microscope image of a lamb muscle
tissue section showing a single field of view with
illustration of the different tissue types.

Figure 3: Microscope (right) with robotic slide
loader (left).

3 Methods

3.1 Image Acquisition

The slides were imaged using a 4x lens, the low-
est magnification lens at our disposal. This mag-
nification is higher than required for this study,
and we scaled down the acquired images by a fac-
tor of two to save disk space. However, the high
magnification opens up the possibility of automat-
ically detecting and characterising fat cells (see
section 3.4.3) which may be of interest for future
studies.

Each slide was imaged in its entirety, by moving
the stage to 11 × 24 positions on a regular grid,
with a grid spacing of 2.4mm × 1.8 mm, equal to
the field of view of the camera.

The slides were imaged in batches of 50, the max-
imum capacity of the robotic slide loader. With
the acquisition time per slide being just below 30
minutes, we were able to scan each batch in a day
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and to complete imaging of the whole set of 320
slides within 7 work days.

To auto-focus we searched for the stage position
which maximised the intensity variance across the
image. Due to the rich texture of the muscle tissue
sections, this simple focus measure worked very
reliably.

3.2 Intensity Calibration and White Bal-
ancing

To facilitate the colour-based segmentation (see
section 3.4) care was taken to keep the colour
balance and intensity consistent across all images.
To this end we acquired calibration images before
scanning each batch of slides.

Using a stack of 10 to 15 images, captured at dif-
ferent positions in empty regions of a sample slide,
a calibration image was computed by taking the
median value for each pixel and each colour chan-
nel across the stack. The median rather than the
mean was used to avoid any effect of dust that was
present in the otherwise empty fields. The inverse
of this calibration image (multiplied by a constant
factor) was used to scale each pixel value to the
same intensity across the image for each colour
channel, thus providing flat-fielding and white bal-
ancing.

3.3 Assembling Mosaics using Summed
Area Tables

The images were acquired on a regular grid
with adjacent, non-overlapping fields of view
as described in section 3.1. For each slide, we
created a full-resolution mosaic image of the
slides by tiling the individual fields of view.
We did not employ image registration methods,
because alignment errors were small enough to
not justify the considerable amount of processing
time required. The resulting mosaic images were
of the size 18432 × 11264 pixels. Working with
such large images poses some challenges in terms
of efficient access and scaling. To address these
data handling challenges we developed a storage
format which is based on representing the images
as summed area tables, reported elsewhere [2].
Figure 4 shows an example mosaic.

3.4 Tissue Segmentation

The tissue segmentation was performed at different
scales. First, the position and size of the tissue sec-
tions on the slide were determined at low resolution
(see section 3.4.1). Second, the sections were ex-
tracted at medium resolution and segmented into

Figure 4: Downsampled mosaic image, assembled
from 24 × 11 individual microscopy images of a
slide. This mosaic is of the slide shown in figure 1.

muscle fibre and intra-muscular connective tissues
(see section 3.4.2). These steps are illustrated in
figure 5. Finally, the detection of fat cells was
performed at full resolution (see section 3.4.3). Be-
cause our detection of objects was based on inten-
sity and the segmentation of tissue types was based
on hue, we converted the images from RGB colour
space to hue, saturation and lightness (HSL) colour
space.

3.4.1 Extraction of Muscle Tissue Sections

To detect the number and position of the tissue
sections on the slide we downscaled the mosaic
image of each slide by a factor of 10 along each axis.
In contrast to the tissue, the white background has
very low saturation. Thus we employed thresh-
olding on the saturation channel in HSL colour
space to obtain a binary map of the foreground
objects. Small gaps in the foreground objects were
filled by applying a morphological closing operator
with a 7 × 7 pixel structuring element to the bi-
nary map. The resulting foreground objects were
further thresholded by area, to exclude small dirt
particles and meat debris. Bounding boxes for
the remaining objects were calculated and slightly
dilated to provide a margin around the tissue sec-
tions.

3.4.2 Hue-based Segmentation of Muscle Fi-
bre and Connective Tissue

Based on the bounding boxes of the detected
objects, we extracted medium-resolution (4 times
downscaled) rectangular sub-windows containing
the individual tissue sections from the full-
resolution mosaic. To segment the intra-muscular
connective and muscle fibre tissue, each extracted
image patch was then processed as follows:

1. The foreground regions were determined by
setting a saturation threshold and small,
isolated objects were removed using an area
opening, as described in the previous section
for the low resolution image.
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2. As mentioned in section 2.1, the hues of muscle
fibre and connective tissue are visually quite
distinct. We used this property for segmenting
the two tissue types by applying an empiri-
cally determined, fixed threshold to the hue
channel of the foreground regions to segment
these two tissue types.

3.4.3 Segmentation of Fat Cells using Water-
sheds

We performed some preliminary work to explore
the feasibility of segmenting fat cells. The fat cells
appear as regions of background surrounded by
connective tissue, as illustrated in figure 2. The
compartmentalised structure of the fat cells lends
itself to segmentation using a watershed transform
[3], which we employed as follows:

1. We used hue-based segmentation as described
in the previous section to determine candidate
regions for the detection of fat cells. The
objects classified as connective tissue were
filtered by area, to remove small, unconnected
regions. A morphological closing operator
with a large circular structuring element (40
pixel radius) was then applied to create a
region mask.

2. We smoothed the lightness channel of the HSL
image with a Gaussian kernel (3× 3) and de-
tected the local lightness maxima in the can-
didate regions.

3. Using the lightness maxima as seeds, we per-
formed a marker-based watershed transform
on the lightness channel in the candidate re-
gions.

4 Results

4.1 Mosaicing

The mosaicing was performed by simple tiling of
adjacent fields, without registration. Not using
registration led to minor misalignment of objects
at the image boundaries. For the purposes of our
analysis, this did not pose a problem. Due to the
flat-fielding (see section 3.2), intensity differences
at the image boundaries were barely noticeable.
However, for images covering the meat regions, we
noticed a minor colour shift towards the red within
a small circular area in the top-right part of each
field, despite the calibration. Because of this, a
slight colour gridding effect is visible in the mosaic
images. The shift to the red was not observed
in the background regions, which appeared homo-
geneously grey after flat-fielding. As the back-
ground regions are brighter than the meat regions,

Figure 5: Flow diagram: A low-resolution overview
image is used to locate the meat patches on
the slide (top). Rectangular image patches are
extracted from the original mosaic at higher res-
olution (middle). The extracted image patches are
segmented into intra-muscular connective tissue,
shown in black, and muscle fibre, shown in grey
(bottom). The region enclosed by the dark square
is shown as a close up in figure 6.

this suggests that the balance between the different
colour channels of the camera varies with bright-
ness. This may have been due to a defect with the
CCD sensor and needs further investigation.

4.2 Extraction of Muscle Tissue Sections

The extraction of tissue sections from the down-
scaled mosaic images (see section 3.4.1) worked re-
liably, with none of the sections being missed. For
a small number of slides, excess blobs of the glue
used to attach the coverslip were also detected as
objects and extracted at high resolution, a problem
that could easily be addressed by taking the hue
into account at this early stage.

4.3 Tissue Segmentation

The hue-based thresholding (see section 3.4.2)
yielded a segmentation of muscle fibre and
connective tissue that was generally in excellent
agreement with visual assessment by a human
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Figure 6: Close-up of the tissue region highlighted
in figure 5 (left) and corresponding segmentation
results (right).

expert. Figure 6 shows the obtained segmentation
for an example section.

Neither the observed intensity variations resulting
from differences in stain absorption between dif-
ferent samples, mentioned in section 2.1, nor the
slight colour shifts of the camera, mentioned in
section 4.1, had a noticeable effect on the segmen-
tation results.

Occasional mis-classification of pixels was observed
where dirt was present on the samples and where
the glue used for attaching the coverslip had seeped
onto the tissue.

4.4 Fat Cell Segmentation

Figure 7 shows the results obtained for the seg-
mentation of fat cells using the method described
in section 3.4.3. While many of the cells were
segmented correctly, the algorithm also detected
some objects that were not fat cells or combined
adjacent cells into single objects. These deficien-
cies can largely be attributed to the method used
for detecting markers, which was based on finding
local intensity maxima and is not very robust.

5 Discussion

We have described an automated microscopy sys-
tem for the scanning of histology slides and its
application to characterising sheep meat texture.
Apart from the obvious advantages of automation,
such as reduced manual slide handling and the
possibility of analysing a larger number of samples,
major benefits result from the high consistency of
the images across all slides. As in most machine
vision applications, consistent input images greatly
facilitate subsequent analysis. In our case, very
good segmentation results were achieved using sim-
ple thresholding of the images in HSL colour space.

One of the technical challenges of imaging and
analysing entire slides is the large size of the
resulting mosaic images. For this purpose, we
developed a storage format based on summed

Figure 7: Segmentation of fat cells as described in
section 3.4.3: original image (top); candidate re-
gions with seed points overlaid in red (centre); cell
regions detected by a seeded watershed transform
(bottom).
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area tables described in [2], which helped us in
analysing the images at different scales.

Even with simple, hue-based thresholding, we
achieved good results in terms of separating muscle
and connective tissues. By taking neighbourhood
information for each pixel into account, the
segmentation results could possibly be improved.

The segmented tissue maps (such as the one shown
in figure 5, bottom) will be further analysed using
stereological methods to derive measures charac-
terising the tissue morphology. The effect of the
various factors on the meat texure will be reported
in [4].

Characterising fat cells was not a goal of the cur-
rent study, but our preliminary work on segment-
ing fat cells indicates that this is feasible. How-
ever, the algorithm for segmenting fat cells out-
lined in section 3.4.3 needs to be improved before
being used in practise, for example by employing a
more robust method to select seed points, and by
splitting segmented objects which have the shape
characteristics of two connected cells.
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Abstract 
Our goal is to obtain robust, morphological averages of anatomical features from a normal population.  We 
present a method for true-morphological, shape-based averaging in three dimensions, consisting of a suitable 
blend of 3D distance transforms, which code the shape information for N objects, and obtain a progressive 
average. It is made robust by penalizing, in a morphological sense, the contributions of features less similar to 
the current average. The morphological error and similarity, as well as penalization, are based on the same 
morphological paradigm, by defining the squared-difference error in distance transform domain.  We present 
current results for the shape of the human ear in 24 subjects. 

Keywords: Morphological average, distance transform, anatomical shape. 

1 Introduction 
Computer models of anatomical shapes are becoming 
more representative of a specific population of 
individuals; they bear complex information providing 
references for identification of common features 
which are mapped to and from the atlas and then 
geometrically and photometrically registered. This 
allows to make, for example, inter-comparisons, and 
identification of abnormal conditions. Model-based 
morphometry is thus a timely strategy for detection of 
disease-specific variants [1].  Multi-modality atlases 
allow also to assess pathology and treatment response, 
when combining several medical imaging techniques 
[10]. Data to be analysed is multidimensional and 
complex, hence, atlases provide a reference, a “base 
truth”, and a priori information used for 
anatomically-driven methods of analysis [2].  Models 
for the simulation of surgery procedures and 
augmented reality are also derived from annotated 
models. 

Besides medicine, anatomical models are also used in 
industry, ergonomics and environmental studies.  For 
instance, the shape alone of the head is considered in 
the study of power absorption and to design safe 
communications devices [1].  Concerning dosimetry 
of hand-held phones, the radio-frequency wave 
absorption by the human body not only depends on 
phone terminal positioning, but also depends on 
anatomical complex features, in particular at the ear 
and mouth regions. Homogeneous phantoms have 
been previously used [3], and accuracy improvements

up to 2 mm precision resolution from MRI scans have 
been made [4].  Representative phantoms from 3D 
laser-scan acquisitions allow both simulation and 
experimental analysis of power absorption in a 
specific population.   

Atlas construction must represent a set of individuals 
and its variability, by considering contributions from 
each individual according to some similarity with the 
average features.  Shape averages of organs and 
features are traditionally built by a standard arithmetic 
averaging of the coordinates of more specific features, 
such as sets of landmarks and crest-lines [5]. These 
constitute averages in the object domain. A related 
approach to atlas construction is that of statistical 
shape models or active shape models [17], where 
statistical properties are extracted from landmark 
information. The statistical and the fuzzy approaches 
give rise to “soft” models and atlases.  

Our goal is to extract a representative instance of a 
specific facial feature from a large population, or from 
selected subsets. We developed a morphological, or
shape-based averaging, generalizing the shape-based 
interpolation methods from two to N objects.  It is an 
average in the distance transform domain, giving rise 
to “hard” models, where the average itself is an 
instance of the represented class of features. We also 
used a robust penalization of outliers (rare variations), 
and test a simple framework for local penalization, 
i.e., to penalize local infrequent variations, in order to 
take into account only the most common sub-features.  
As a case study, we present results for a shape 
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average of the external ear, from a set of 24-
individuals. 

2 Methods 

2.1 Laser-scan acquisition protocol 
Laser-scan acquisitions were obtained from human 
heads and processed for the construction of 
anthropomorphical phantoms. A 3D laser scanner 
from Cyberware [7] was employed; it rotates around 
the head and obtains distance information.  In total, 40 
subjects were scanned.  Raw data were converted to 
cylindrical range images, and image processing was 
applied for 3D-model construction [9] to filter out 
artifacts and noise, and to locate morphological 
features in image space and then in object space [8].  
A triangulated surface was obtained for rendering and 
for CAD; it is based on the VRML version 2.0 
(Virtual Reality Modelling Language) format. 

The ear region was then isolated and an average 
thickness of the ear was estimated on 24 individuals; 
further details are found in [9].  Head models “with” 
or “without” ears were built for assessing dosimetry 
and anthropometry problems. The range-image 
representation was convenient for other manipulations 
and measurements, since all 3D information is 
displayed in the Mercator cylindrical projection as 
standard grey-level images. A base surface was 
defined and obtained from boundary information at 
the auricular-temporal region, using bilinearly-
blended Coons patches as described in [9]. 
Cylindrical projections also simplified the 
interpolation of the auricular-temporal region, and the 
3D geometric registration, as explained next. 

2.2 Feature-Based Registration 
Morphological tasks such as comparisons and 
averaging require geometrical correspondence of 
datasets in a common frame of reference.  In a first 
approach we used a global alignment of principal axes 
for the bounding box of the auricular-temporal region.  
A better registration was obtained by extracting robust 
features of the ears, such as the external crest-lines, 
available from the depth-range images.  In the case of 
brain structures, the atlas construction process has 
been adapted to multi-modal imaging [5], and a 
similar framework is illustrated in Figure 1, where we 
have integrated our approach considering shape-based 
interpolation (bottom right) as a deformation.  An 
affine registration is required, since ears vary in size 
and shape. 

We used the Iterated Closest Point (ICP) algorithm 
[11], which is a general purpose, shape-based 
registration.  To better match local features, it was 
applied on crest line contours from the ear.  The steps 
for registration comprise: 

External ear (pinna) contour (crest lines) 
extraction.  
Bounding-box extraction in 3D, for each contour. 
Principal axes alignment (preliminary step for ICP 
alignment). 
Affine registration of contours by ICP algorithm. 
Average geometric transformation. 
Average ROI (bounding-box); average scale 
calculation.  
Scale normalization of all ears, using the average 
bounding box. 
Hi-resolution mesh (~2mm), and transformation. 
Voxelization of ROIs.  At this step, the registered 
set is ready for morphological averaging. 

Figure 1: Simplified process for the construction of 
average models. The concept of morphological average 
comes from that of morphological interpolation between 

two similar shapes (bottom right), where the transformation 
has to deal with the correspondence problem. 

Figure 2 shows the feature-based registration, using 
the crest-lines of the ear borders, and their bounding 
boxes.   

Figure 2. Local, inter-individual registration of the external 
ear region was based on affine registration of robust 

features: the crest-lines of the ear borders from the range-
images (a,b).  Rotation (c) and homogeneous scaling on the 

3D bounding box (the figure shows a 2D projection) was 
done using the average bounding box as reference (d). 

Cylindrical coordinates of data from the laser-scanner 
acquisitions allow to work with 3D surface data as 2D 
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depth-range images, thus a “2D” bounding box is 
shown, but the process was done in 3D, before 
meshing and voxelization. Matching of local features 
is only approximate, and there may be several 
deformation paths, or, equivalently, several 
interpolation paths, as illustrated by the slightly 
curved arrows of the morphing-shape process of 
Figure 1, bottom right. 

Figure 3. Feature-based registration.  (Left) 3D-reference 
contours  (border of the ear) before affine registration. 

(Right)  After homogeneous scaling and PCA registration. 

The resulting alignment, for a sample of 5 ear borders, 
is illustrated in Figure 3.  In spite of original 
registration of the heads during acquisitions, the ear 
shapes have quite different positions and orientations, 
besides shape and size variation. An average 
bounding box provided a frame of reference and a 
common scale for all ears.   

2.3 From morphological interpolation to 
shape-averaging 

Morphological interpolation techniques have been 
introduced in several fields, from industrial design, to 
medical imaging, with the common goal of effectively 
interpolating shape profiles and binary shapes 
between consecutive image slices, as opposing to 
signal interpolation in a point-to-point basis on grey-
level images.  Specific techniques are described in 
[12], [13], [14]. The concepts of metamorphosis and 
morphing, are special cases of interpolation of very 
different, unrelated shapes, with arbitrary 
correspondence criteria [15], [18]. In inter-slice 
images, linear interpolation between two similar 
shapes is usually done as follows. 

Let A, B be two discrete objects and let  DA and DB
be their discrete, signed, distance fields (also known 
as distance transforms), then the linear blending D  = 
(1- ) DA + DB, with 0 1 provides a simple way 
to interpolate an “intermediary” object D between 
both A, B (these interpolation process is popularly 
known as “morphing”).  The corresponding shape is 
extracted from iso-surface at a threshold distance 
zero.  The last is also known as a zero-level set.  The 
exact average shape corresponds to =1/2.   Since it is 
a linear operation, a third shape C allows 
conceptualizing a triangle in “shape space” (or more 
properly, the distance-transform domain) whose 

vertices are A, B and C, and the central interpolated 
shape is a shape-based average.  Thus, we define an 
N-object average. We first list the following 
definitions: 

V   Digital scene, usually a N M L volume. The 
volume V may be also a scalar field, that is, at 
point (x,y,z), the quantity d = V (x,y,z)  is a scalar. 
V Discrete object in V (e.g., digital information 
of an anatomical structure, represented by an 
array of scalar or vector values, a mesh structure 
or by voxels). 
∂V Boundary of the object V (its discrete 
surface, either the mesh or its voxelised version).  
D(∂V)  Signed distance field (a discrete volume 
with scalar values) associated to boundary ∂V. 
Note that D(∂V) is a scalar field. It is also called 
the Distance Transform. For simplicity we use 
the notation  DV.

Ld=d0 (V )   Level-set (iso-surface at level d=d0 ) 
of a scalar field V. Note that under certain 
conditions, at d=0 it is possible to define Ld=0 as
an inverse transform: ∂V = Ld=0 ( D(∂V)  ).

V  A morphological average of N objects Vi, to 
be defined below. 

With the latter notation, we introduce the Euclidean 
(in the case of Euclidean metric), and the Chamfer (in 
the case of discrete metric for chamfer-distance 
transforms) morphological average based on the 
signed distance field associated to the boundaries ∂Vi
of each object Vi:

1
V ( V )

N

d=0 i
i=

=   DL (1)

The zero-level set is the external iso-surface (or 
boundary) of the average object.  V is the boundary 
of a morphological averaged object among several 
instances Vi , with i =1,…,N.   For precision purposes, 
we used the Euclidean Distance Transform in all 
computations.      

The averaging can be made “robust” in a statistical 
sense, when each shape-term of the sum is penalized 
according to its similarity to the current average, and 
then recalculating the latter.  Let {w1, w2,…, wN} the 
normalized set of weights; the starting condition is an 
homogeneous contribution such that N wi =1, and we 
then define a robust  morphological average:

1
V ( V )

N

R d=0 i i
i=

= w  DL (2)

An iterative method allows to find an optimal set {w1,
w2,…, wN}, from an error measure to be minimized 
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when comparing Vi with VR .  The error space is 
for the moment assumed to be convex (no local 
minima), but a better analysis needs to be done.  A 
mechanism to compare 3D objects is to use the 
distance fields of each shape, in order to define a 
“morphological error”, which can be based on a 
squared difference, voxel-to-voxel and for each scalar 
field.  For all voxel values  u(x,y,z) D( ∂Vi )  and its 

corresponding value v(x,y,z)
N

i 1

wi D ( ∂Vi ) ,

the volume set  Err2 (Vi) is then formed with the 
following individual, voxel-error values: 

err 2 (x,y,z)  =   2( ) ( )v x, y,z  - u x, y,z (3)

Note that Err2(Vi) is a scalar digital scene.  
Integrating over all (x,y,z) we obtain a global measure 
of error, permitting evaluation of a natural weight for 
∂Vi when averaging at iteration k+1.  Note that local 
integration, on any specific region, allows evaluating 
the contribution to the global error.  Thus, weights w1,
w2,…,wN may be variable, either point to point, 
locally, or even defined individually for very specific 
ROIs (a facial feature, for example).   

For testing purposes, an incrementing algorithm, 
modifying each wi (i =1,…, N), at a time, was devised 
to avoid re-calculating the distance-field average 
again, by subtracting the contribution of ∂Vi at 
iteration k-1 and updating it with the new value for wi .
A similar approach works for new shapes to be 
included in the average, which is the essence of a 
population atlas which becomes more representative 
with new contributions.  In this updating process, the 
order in which components are added influences 
slightly the final average result, since old weights are 
preserved while new weights are assigned according 
with the actual morphological error, and they may 
change if a different order is used.  To avoid such 
order dependence, a full population calculation has to 
be done from the start.  We found however useful the 
incremental approach for fast estimations of the 
average shape, and to assess error decreasing rates. 

3 Results and Discussion 
Figure 4 (left) shows sample slices of the 3D distance 
field for the shape of one single ear, Figure 4 (right)  
shows sample slices of the averaged distance fields of 
24 shapes. For displaying proposes, the unsigned 
distance field is shown, but averaging is done over 
signed distance fields.  Figure 5 (right), shows a 3D 
rendering of the resulting average shape, after 
extracting a triangular mesh from the voxel-
representation results, thresholding the average 
distance field at level d=0. There remains the question 
of validating the average as a feasible human ear, and 
the method could be refined by constraining the error 

minimization while respecting some “ear-ness” 
criterion.  An answer to the question “to what extend 
the shape-based average is a valid human ear” lies on 
the size of local mismatches, and is related to spatial 
sampling limits after according to Nyquist criteria, 
considering the smallest features to be averaged:  the 
calculated average is an interpolation among real ear 
features, provided that all their local extrema, or at 
least the most salient, correspond one-to-one, up to 
some minimum tolerance. A correspondence 
mismatch between local extrema (crest lines, in 
general) implies an invalid local interpolation of at 
most the size of that mismatch.  Non-rigid registration 
may help to improve correspondence matching.  To 
reproduce the situation of average users of mobile-
phones, the acquisitions included a version with the 
ear collapsed against the skull.  The thickness of the 
corresponding averaged ear, measured by methods 
reported in [9] was about 6.2  2.5 mm, and agrees 
well with the measure of this thickness in the 
Standard Anthropomorphic Model (SAM) [16], 
obtained by different methods. The present approach 
also permitted averaging the implicit surface that 
interpolates the skull, described in [9].  Thus, a 
morphological-average of the head “without ears” can 
be obtained, too, for dosimetry studies.    

Our method is different from the active shape models 
approach, since we obtain a representative instance of 
the shape population, a shape-based average which 
minimizes differences with respect to each instance, 
and penalizes outlier shapes. Another feature of 
morphological averaging is that it is easier to 
incorporate feature-based weightings or other 
penalization by modifying or steering an associated 
distance-field potential. 

Figure 4 (left) Sample slices of the 3D Euclidean distance 
field for the shape of one single ear;  (right)  sample slices 

of the 3D average distance field from 24 shapes. 

At present, we have tested ellipsoid fitting of the 
head, in order to better align all heads, but the ear 
positioning do not correspond among individuals and 
need local registration methods. Another approach to 
validation of the method is being tested, by directly 
measuring some features in some of the ears, and then 
verifying the average measurement in our resulting 
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morphological average.  This has been done manually 
and we found the average ear thickness (5.9  2 mm) 
to agree with measures from the widely accepted 
SAM model [16]. 

Figure 5. (Left) Elements for the construction of an 
anatomical, robust, morphological-average of the ear from 

24 individuals.  Features are the border lines shown in 
Figure 3, at right. A 3D rendering  of the resulting average 

shape (triangular-mesh representation). 

4 Conclusions 
An innovative method of shape-based averaging was 
presented. It blends the distance-field information 
from several shapes, using distance fields, and a 
robust implementation was obtained, applying similar 
ideas to error measures and morphological similarity, 
calculated also in the distance-field domain, rather 
than from the shape domain. To test our methods, an 
average of the ear from a database of 24 human head 
profiles was obtained.  The database was build in 
voxel format for processing, and in the web-oriented 
format VRML, for browsing. A base surface was 
defined and obtained from boundary information at 
the auricular-temporal region, using bilinearly-
blended Coons patches, and the averages of both 
shapes allowed to measure thickness at various 
regions of the ear.  The ICP algorithm was employed 
for geometric registration of the bounding boxes, and 
then for the external border of each ear. A robust, 
progressive average was then obtained, penalizing at 
each iteration those ears that gave the largest 
morphological error from the current average. 
Averaging of complex and varying shapes has been 
difficult without a reliable geometric registration, and 
the implicit Coons surface has alleviated this problem, 
providing also a baseline for error quantification 
during registration. It has been observed that ICP 
registration does not result in good correspondence, 
and in the present work, a feature-based approach was 

incorporated, using the crest-line contours of the 
external ear, obtaining a more robust registration, 
before averaging in the distance-field domain.  
Registration may be based also on chamfer distance 
fields, a procedure known as “chamfer matching”, and 
a combination with line feature-based registration is 
possible by modulating distance fields.  Future work 
includes these enhancements, as well as averaging 
methods including not only weighted distance fields, 
but also the fields of non-rigid deformations.   Besides 
anthropometric applications related with atlas 
construction, a reference model of any feature, 
obtained by weighted averaging, may be used as a 
representative instance of a specific human 
population. 
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Abstract
An Ising model is used to describe the orientational disorder of the filament array observed in electron
micrographs of vertebrate muscle cross-sections. The model is evaluated by comparing the second-order
statistics from Monte Carlo simulations and data from image analysis of the electron micrographs. For a
specific range of temperatures, the results show that the Ising model adequately describes the disorder.

Keywords: Electron micrograph, triangular lattice, disorder, myosin, muscle, Ising model

1 Introduction

Vertebrate muscle fibers contain the contractile
proteins myosin and actin which are organised
into long thin strands known as myofibrils.
The myofibrils exhibit a striated pattern and
the repeating unit is known as the sarcomere,
which is the basic contractile unit of muscle
[1, 2]. The structure of this complex system is
studied by both electron microscopy and x-ray
diffraction. Myosin filaments pack in a triangular
lattice (Figure 1) and can be imaged directly by
electron microscopy of thin transverse sections
through the so-called bare region. The myosin
filaments are roughly triangular in shape and the
micrographs are ideal for image analysis. Luther
and Squire [3] determined, by visual analysis
of micrographs, that in many muscles, such as
those from fish, the myosin filaments adopt one
of two different orientations that are distributed
in a semi-systematic manner. Using these results,
they described some general characteristics of the
distribution of orientations which were confirmed
by a more quantitative analysis by Millane and
Goyal [4]. The myosin filament disorder has
implications for the contractile mechanism of
the muscle, and a good statistical model of the
disorder is needed for rigorous interpretation of
x-ray diffraction data from muscle fibres. We have
previously described a method for automated
analysis of electron micrographs to estimate the
filament orientations [5, 6]. We describe here
analysis of these orientations to obtain a model of
the statistical distribution of the orientations.

2 Analysis of Filament Orientations

The presence of a semi-systematic distribution of
two different myosin filament orientations was first
observed by Luther and Squire in the sartorius
muscle of a frog [3]. They noticed that the filament
orientations tend to satisfy what they called the
two no-three-alike rules. Rule 1 is that no three
mutually adjacent filaments all have the same ori-
entation. Rule 2 is that no three successive fila-
ments in a row all have the same orientation. Fur-
thermore, they observed that the orientations tend
to form what they called a superlattice. This refers
to the observation that second nearest neighbour
filaments (spaced by

√
2 times the fundamental

lattice spacing) tend to have the same orientation.
The second nearest neighbours form a triangular
sublattice that contains one third of the sites of
the full lattice (Figure 1). We refer to fundamental
(rhombohedral) unit cells of the sublattice whose
four vertices contain filaments of the same orienta-
tion as superlattice cells. Contiguous superlattice
cells form regions of superlattice. The particular
disorder present leads to peaks in X-ray diffrac-
tion patterns from muscle specimens with spacings
reciprocal to those of the superlattice [3]. Such
peaks would be forbidden in an ordered system.
We define the superlattice content, denoted fs, as
the number of superlattice cells present divided by
the maximum possible number (i.e. if all filaments
on the sublattice had the same orientation).

A micrograph from a frog sartorius muscle cross-
section is shown in Figure 2a. It shows five my-
ofibrils, each with an ordered packing of myosin
filaments. Close-ups of two of these myofibrils are
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Figure 1: The myosin filament lattice (thin lines)
and a sublattice (thick lines).

shown in Figure 2b anc c. Myosin filaments (dark
regions that are seen to lie on triangular lattices)
have approximate triangular profiles. Analyses of
the micrographs using methods described previ-
ously [5, 6] allow reliable determination of the posi-
tions and the orientations of the myosin filaments.
The positions are located by convolving a point
spread function that incorporates the salient fea-
tures of the myofibril (i.e. lattice spacing, lattice
rotation and filament size) and selecting the re-
gional maxima. The orientations are estimated by
fitting a triangular template. A close-up of a part
of the micrograph in Figure 2b is shown in Figure 3
with the fitted templates overlayed. A histogram
of the orientations for the whole image is shown in
Figure 4. Inspection of the histogram indicates
that the orientations belong to two populations
that are centered approximately 60◦ apart. As
a result of errors in determining the orientations
(and probably also of imperfections in the muscle
itself) there is a spread of orientations within each
population. The underlying distribution of orien-
tations is modelled as a Gaussian mixture consist-
ing of two normal distributions that are wrapped
on the interval (0◦, 120◦). If the histogram for a
particular micrograph supports the mixture model
(as they do in this case), then each filament is
classified into one of the two populations, which are
referred to as “up” and “down.” This classification
is also shown in Figure 3. Analyses of the distri-
bution of orientations in a variety of micrographs
using these methods give results that are consistent
with the observations described in the previous
paragraph.

In summary then, analysis of a variety of electron
micrographs of vertebrate muscle shows that (1)
the myosin filaments lie on a triangular lattice, (2)

each filament adopts one of two different orienta-
tions (substitution disorder), and (3) the distri-
bution of the two orientations is semi-systematic
with neighbouring filaments tending to have op-
posite orientations and second-nearest neighbours
(on a sublattice) tending to have like orientations
(superlattice).

3 The Antiferromagnetic Ising Model

The most important observation from the muscle
micrographs is that nearest neighbour filaments
prefer opposite orientations. This is analogous to
an antiferromagnetic interaction in magnet sys-
tems where the spins of neighbouring electrons pre-
fer opposite directions as a result of the interaction
energy between neighbouring like states (spins) ex-
ceeding that of unlike states [7]. We therefore con-
sidered a classical two-dimensional Ising model for
describing the orientational disorder. In a general
statistical mechanical setting, this model is used
to describe large lattice systems whose behaviour
is driven by the local intersite interaction energies
and is a function of the temperature of the system.
If only nearest neighbour interactions are present
then the antiferromagnetic Ising model on a trian-
gular lattice is frustrated since it is not possible to
minimise the energy of all pairwise interactions si-
multaneously on an elementary triangular domain
[7, 8]. The result is a large set of minimum en-
ergy configurations. These configurations are not
random but possess a degree of local order.

The only variable in this model is the (effective)
temperature, since the difference in the interac-
tion energy between like and unlike neighbouring
spins is just a scaling factor. At low temperatures
the system exhibits antiferromagnet ordering and
becomes more random at larger temperatures as
entropic effects start to dominate.

In order to determine if the antiferromagnetic Ising
model is a good model of the filament orientations
in the myosin lattice, we conducted energy min-
imisations of the model at various temperatures
and compared the statistical properties with those
derived from the muscle micrographs. The two
systems were compared by comparing their second-
order statistics (correlation coefficients) and the
superlattice content. The correlation coefficient of
the orientations ρ(d) is defined by

ρ(d) = 〈sasa+d〉a , (1)

where sa = ±1 for up or down orientations at site
with vector position a, 〈 〉

a
is the ensemble average

over a, and noting that 〈sa〉 = 0 and
〈
s2
a

〉
= 1. The

energy minimisation was conducted using a simple
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(a)

(b) (c)

Figure 2: (a) Electron micrograph of frog sartorius muscle [3], and (b) and (c) close-ups of two myofibrils.
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Figure 3: A subimage of the frog sartorius muscle
micrograph shown in Figure 2b with the classifica-
tion of filament orientations denoted by black and
white triangles.

Figure 4: The histogram and mixture model for
the image shown in Figure 2b.

Metropolis Monte Carlo simulation as described in
the next section.

4 Monte Carlo Simulation

Monte Carlo simulation is a class of computational
algorithms for simulating large systems and for
locating global minima. We use single-spin-flip-
dynamics and a simple Metropolis Monte Carlo
algorithm [9] to optimise the acceptance ratio. The
acceptance ratio, A(μ→ ν), governing a transition
from state μ to state ν is

A(μ→ ν) =
{
e−β�E if � E > 0
1 otherwise, (2)

where �E is the energy difference between states
μ and ν, β = (kT )−1 where k is Boltzmann’s con-
stant and T is absolute temperature. We set the
difference in interaction energy between like and
unlike neighbouring orientations to unity and k =
1 so that T is a normalised temperature.

We used a finite triangular lattice with hexagonal
lattice shape with 5000 sites and free boundary
conditions for the simulations. For each tempera-
ture, a state is chosen at random, its orientation
is flipped, and the new state is either accepted
or rejected according to the Metropolis criterion.
One sweep refers to N attempted flips. The spins
are randomly oriented up or down for the initial
state. It is important to wait until the system
has reached equilibrium at a particular tempera-
ture before taking measurements. The equilibra-
tion time was estimated by observing how long it
took for system parameters to reach a steady state.
The correlation function and superlattice content
were averaged over samples spaced by twice the
decorrelation time. Measurements were typically
averaged over 100 states.

5 Results

The Ising model simulation and the distribution of
orientations derived from the micrographs are com-
pared by calculating the mean squared difference
e(T ) as a function of temperature where

e(T ) =
1
M

∑
d

[ρdata(d) − ρsim(d)]2, (3)

ρdata(d) and ρsim(d) are the correlation
coefficients for the muscle data and simulation,
respectively, and M is the number of separations
d. The mean square difference as a function of
temperature for Figure 2b is shown in Figure 5.
A clear minimum around T = 0.55 is evident
with a small difference between the measured and
calculated correlation coefficients. Correlation
coefficients for the muscle data and simulation at
T = 0.55 versus the magnitude of the separation
d = |d| are shown in Figure 6. Good agreement
is evident. The proportion of domains for which
Rules 1 and 2 are satisfied are denoted f1 and f2
respectively, and are listed in Table 1 as calculated
from the micrograph and from the Monte Carlo
simulations at T = 0.55. The superlattice content
fs is also listed in Table 1. Good agreement is
evident in all these quantities.

The myofibril shown in Figure 2c was also analysed
and the best match of the correlation coefficients
was also at T = 0.55. The parameters derived from
the micrograph are also listed in Table 1 and are
also consistent with the simulation results. Similar
results were obtained for micrographs from other
specimens with optimum values for temperature in
the range 0.45 < T < 0.65.

346



Table 1: Various parameters for the micrographs in Figure 2 and the simulation at T = 0.55.

Parameter Figure 2b Figure 2c Monte Carlo
observation observation simulation

f1 0.97 0.98 0.98
f2 0.93 0.93 0.93
fs 0.40 0.42 0.38

Figure 5: Mean squared difference of correlation
coefficients for the micrograph in Figure 2b.

Figure 6: Correlation coefficient versus separation
for the micrograph shown in Figure 2b (solid
line) and the simulation (broken line) at T =
0.55. The upper curves are for sites on the same
sublattice and the lower curves for sites on different
sublattices.

6 Conclusions

The myosin lattice of some vertebrate muscles ex-
hibits an interesting form of disorder in which the

orientations of the myosin filaments adopt one of
two orientations that are distributed in a statistical
fashion with short-range order. The characteristics
of the disorder suggest a classical, frustrated, an-
tiferromagnetic Ising model. Comparison of the
second order statistics derived from micrographs
with those from Monte Carlo simulations of the
antiferromagnetic triangular Ising model support
this hypothesis with an effective temperature in the
range of 0.45 < T < 0.65. These results will have
implications for muscle structure and the simula-
tion and analysis of x-ray diffraction from muscle
specimens.
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Abstract 
This paper presents a vision based human movement and activity detection system for home-care environments 
or home security applications. We define an event and spatial relationship based approach to the problem with 
state transition. Using our proposed techniques we detect and track people entering into a room and classify 
actions at 96.1% accuracy. Using the centre of gravity based tracking we detect falling of a person with high 
accuracy.  

Keywords: video based event detection, home-care, security, background segmentation. 

1 Introduction 

Ambient Intelligence in Home-care applications is 
growing at a very fast  pace  in all parts of the world. 
One main requirement of such applications is the 
human detection and activity classification. The 
necessity for the development of human detection 
methods in the field of modern Home-care and 
security systems has become very popular and 
essential. There are many techniques currently being 
used for human detection. It is necessary to detect the 
presence of the human in advance before processing 
the human activities such as falling, standing or 
walking etc[1].  
 
Human detection techniques at present can be either 
video based or any other sensor based. Sensor based 
detections are such as [2], [3] and [4]where infrared 
sensors and carbon dioxide sensors are used to detect 
motion and magnetic sensors are utilized to detect the 
opening and closing of doors. An illumination sensor 
is a type of sensor where once the subject is present, 
the sensor relies on changes in the environment 
caused by the subject to trigger a chain of events in 
the circuit. A more fascinating approach is a system 
called Cenwits [5] Connection-less Sensor-Based 
Tracking Using Witnesses. This is a mobile system 
that emits a signal from time to time using RF 
communication. When two of these mobile sensors 
are close to each other, information is gathered such 
as time and location at that time of the subject 
carrying the sensor and finally all information is 
dumped at an access point. This system would be 
useful for application in a large area where it being 
necessary to keep track of individuals. 
 
A camera based detection approach is given in [7] 
where it involves a single camera tracking a number 

of people. The system works by extracting points and 
identifying feature points from an image, creates a 
path and clusters them and finally each of these 
clusters corresponds to a person. The W4: Who? 
When? Where? What? [8] technique relies on the 
system to solely identify a combination of shapes and 
sizes from the image segmentation of the 
monochromatic imagery to identify a subject’s 
presence and its interaction and time. The system in 
[9] uses multiple cameras to detect human motion by 
selecting the best viewpoints of the images to extract 
a maximum amount of information on the individual 
or multiple amounts of individuals. The results of the 
system are reconstructions of the human position, 
normal axis and body size.  

Our proposed approach involves video pre processing 
to obtain human activities in a room using single or 
multiple cameras. The aim of this project is to design 
a system that can detect the activities being carried 
out in a room by one or several individuals. 
Essentially, we would want to be able to determine if 
there is anyone present in the room, if there is then we 
would like to determine what that person is doing in 
the room.  

2 Approach 

2.1 Video Based Activity Detection 

Many types of vision-based systems for surveillance 
and monitoring of closed environments have been 
described and built over the past 20 years [13]. Henry 
Tan et. al. [14][15] has proposed a simple technique 
for human activity recognition using head movement 
detection. Smart environments are an immediate 
application of human activity detection. Alex 
Pentland’s research group at MIT Media Laboratory 
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designed a smart room in 1991 [16]. This has evolved 
from its initial design to its current state of five 
networked smart rooms in the United States, Japan 
and the United Kingdom. These rooms use several 
machines, none more powerful than a personal 
computer, to identify the location, identity, facial 
expression and hand gestures of the persons in the 
room. Few more related research can be found in 
[17][18]. 
 
Here we propose a system that analyses image 
sequences from multiple stationary cameras, acquired 
from a particular scene, to detect humans and their 
actions, and index the sequence according to these 
activities. The image sequences are indexed using the 
results for faster searching. Key frames are extracted 
from the image sequences for each entry in the index, 
to facilitate visual inspection without browsing the 
image sequence. In addition to the index, 
visualizations of motion paths for humans in the scene 
are created to provide a faster way of tracking human 
movements in the scene. 

2.2 Background Initialization 

An outline of the background initialization phase is 
shown in Figure 1 
 

 
Figure 1 Background Initialization 

2.3  Video segmentation 

Initially we used 10 minutes long video, which  then
divided into several smaller segments. Each segment 
displays different activities being carried out in the 
room. These activities include a person walking, a 
person falling, and two people throwing objects to 
each other.  

The reason for segmenting the video sequence is 
simply so that it can be processed by MATLAB 
easily. Segmenting the video will reduce the 
processing time done in MATLAB. After breaking 
these segments down, we can then analyze each 
activity in the room, and try to extract the 
characteristics of each activity carried out in the room. 
These characteristics can then be used to determine 
the activity carried out in the room, for successful 
human activity recognition in a real time situation. 
Figure 2 shows an activity detection scenario.  

Enter Walk Stand Sit 

Take 
Medicine 

Sleep Exit 

Too 
Much 

Abnormal 

Alarm Alarm 

Fall, Cry, 
Shout 

Alarm 

 
Figure 2 Activity Detection and Alarm Generation 

Scenario 

3 Human detection 
This pat of the project will involve the detection of a 
person in the room, or the detection of a displaced 
object. In each frame after processing, the region of 
interest will be marked around the person in motion, 
or the displaced object. 

3.1 Background analysis 
The technique we used here to detect a human in the 
room or a displaced object was a background 
subtraction technique. When analyzing the 
background with no disturbance, we find that over 
several frames, the value for a particular pixel will 
change. These values when modelled by a histogram 
produce a bell shaped curve, indicating that the 
variations in a pixel that is a part of the background is 
normally distributed.   
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Figure 3 Histogram of 2 random pixels taken in the 

background. 

In order to eliminate background noise (i.e. the 
variations in the background pixels), we get the 
frames, and obtain the minimum and maximum 
values for each pixel and store these values into 2 
frames; one for the minimum pixels, and the other for 
the maximum pixels.  

Using this information on the background, we can 
remove the background from the frames. Each frame 
will be compared to the minimum and maximum 
background frames. If a particular pixel lies outside 
its background range based on that pixel’s minimum 
and maximum value, we can conclude that there is a 
significant change in the background there. 
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Camera 
Read captured frame 

into MATLAB 

Analyze and remove 
the background from 

the frame 
Store the location of 
the detected objects  

Compare with 
previous detected 

objects  

Determine the type 
and motion of the 

objects 
 

Figure 4 Object Detection Scenario

 

3.2 Frame division 
Although we have blocked out pixel noise using the 
background subtraction technique, there is still some 
noise present in the frames, which could not be 
removed using the background subtraction technique. 

To avoid these noise pixels, we divided the frame into 
smaller sections. We then check each section for the 
number of pixels that are not part of the background 
using the frame subtraction technique. If more that 
30% of pixels in a section are determined to be not 
part of the background, we can say that there is a 
significant presence in that background. 

 
Figure 5 Frame of subdivided background 

4 Activity recognition 
After determining the region of interest around the 
person or displaced object, we can obtain the centre 
point of the region. Based on the centre point of the 
region, we can assess the motion of the object (i.e. we 
can determine if the object is moving to the left, 
moving to the right, stationary, or falling). 

If there is some degree of separation between objects 
or persons in a room, the program will be able to tell 
that there are two objects/persons present in the room, 
and will be able to analyze the centre points of these 
regions of interests separately. 

 
5 Proposed Algorithms 

Using technique discussed in section 3.2, we find that 
by subdividing the frames into smaller sections, the 
noise in the background has been reduced 
significantly. Also, the region of interest is now more 
concentrated around the person walking.  

We will now look at the algorithms used for each 
technique. First we look at the background analysis 
and then background subtraction techniques. 

5.1 Background analysis 
This technique compares the frames that show the 
background of the room to get the minimum and 
maximum values for each pixel.  The algorithm for 
this technique is shown in Figure A-1. 

5.2 Background subtraction technique 
This technique uses the information obtained from the 
background analysis section to check each frame. If a 
frame has any pixels that lie outside the range given 
by the minimum and maximum background values for 
that particular pixel, then we can conclude that there 
is some motion present there. The algorithm for this 
technique is shown in Figure A-2. 

5.3 Frame division technique 
This technique divides the frame into smaller 
sections. We then check to see how many pixels in 
each section lie outside the background range. If the 
number of pixels that are not a part of the background 
exceeds a particular threshold, then we can say that 
there is significant motion in that section. The 
algorithm for this technique is shown in Figure A-3. 

6 Results 
Some results are shown in Figure 6. Here we can see 
a set of frames to be processed by MATLAB, 
showing a person walking in the room. We first 
performed the background subtraction technique as 
described in section 3.1. As can be seen, the person is 
marked with a square around him. Also, the pixels 
that show the person were manipulated to show that 
the person is being picked up by the program. 

 
Figure 6  (a) 3 original frames of a person walking 
(b) detected person using the Background Subtraction 
algorithm (c) detected person using the previous 
algorithm with the Frame Division Algorithm 
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6.1 Evaluation of Event Recognition 
Several image sequences containing different actions 
and events were used to evaluate the accuracy of 
action and event recognition. Table 1 shows the 
accuracy of recognition of events in our proposed 
system.  
 

Table 1 Accuracy of Action and Event Recognition 
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Enter (10) 10 0 0 100 
Walk (27) 25 2 0 92.6 
Exit (10) 10 0 0 100 
Stand (14) 12 0 2 85.7 
Sit (13) 12 0 1 92.3 
Use PC (18) 17 1 0 94.4 
Take object (10) 10 0 0 100 
Place object (10) 10 0 0 100 
Unusual event (10) 10 0 0 100 
Overall avg. accuracy    96.1% 

 

6.2 Fall Detection 
Falling is one of the key events that we have 
investigated in our Home-care application since a 
sudden fall can lead the person into life threatening 
situations. A sample result sequence is shown below. 
Our foreground background segmentation algorithm 
clearly identifies the person who is falling (indicated 
in blue pixels) and triggers an alarm. The falling 
detection is identified by calculating the centre of 
gravity of the large blob that is formed by the person. 
When the person is falling, the centre of gravity goes 

down steeply. The percentage accuracy of falling 
verses walking detection  was very high for all the 
video sequences we have investigated. 
 

 
Figure 7 Fall Detection 

 
7 Conclusions 
Using our proposed techniques we were able to detect 
and track people entering into a room and classify 
actions at 96.1% accuracy. Using the centre of gravity 
based tracking we were able to detect falling of a 
person with high accuracy. In this paper we have 
focused only on the video based activity recognition 
but we are developing a multimodal activity detection 
scheme in which audio and other sensor integration 
can improve the accuracy of the activity recognition 
and also reduce the privacy problem inherent to video 
based detection. 
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Appendix: 

Load Video into MATLAB

m = 1

Compare each pixel value in the Background Frame to the 
minPix. Get the minimum value of each pixel between the 

two, and store it in minPix 

Store the image of the frame at m in Background 
Frame 

Compare each pixel value in the Background Frame to the 
maxPix. Get the maximum value of each pixel between the 

two, and store it in maxPix 

m = 250? m = m + 1 

m = 1? 

minPix = Backgound Frame 

maxPix = Backgound Frame 

NO 

NO YES 

YES 

Display minPix 

Display maxPix 

 
Figure A-1 Background analysis
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Set m = start 
Set stop value 

Set Current Frame as the image of 
the frame of the video at (m) 

Set x = 1  
Set y = 1 

y = y + 1 

Set Z = Current Frame 

x = x + 1 

y = 576? x = 720? 

Convert the image Z into 
the mth frame in MOV 

m = stop? 

Store the minimum value of x 
Store the minimum value of y 
Store the maximum value of x 
Store the maximum value of y

Draw a square around the 
motion using the min and 

max values of x and y 

YES 

YES 

NO NO 

NO 
m = m+1

Background Analysis

Store the Desired Video in 
MATLAB 

Current Frame (y,x,:) < minPix(y,x,:)
Current Frame (y,x,:) >maxPix(y,x,:) 

YES 
NO 

 
 

Figure A-2 Background subtraction technique 
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Figure A-3 Background subtraction and frame division technique 
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Abstract 

This paper is a progress report on a project aimed at the realization of a low-cost, automatic, trainable system 
“AutoStage” for recognition and counting of pollen.  Previous work on image feature selection and classification 
has been extended by design and integration of an XY stage to allow slides to be scanned, an auto-focus system, 
and segmentation software. The results of a series of classification tests are reported, and verified by comparison 
with classification performance by expert palynologists. A number of technical issues are addressed, including 
pollen slide preparation and slide sampling protocols. 

Keywords: pollen recognition, image processing, classification, microscopy.   

1 Introduction 
Fossil pollen analysis is used to determine flora genus 
from which climate data, evidence of human activity 
and oil deposit locations, can be deduced. Honey type, 
and location of origin, can be indicated by the pollens 
found in the honey. Allergy sufferers can be advised 
of high pollen counts in the air. Forensic 
investigations can be aided by determining if an 
object has been in a certain general location by 
identifying the pollen types attached.  

The need for an automated pollen counting system 
has been identified and detailed for many years [1]. A 
previous paper reported on progress toward such a 
system [2] and a significant milestone in that project 
is reached, and reported here, with the complete 
system designed, built and evaluated as a functioning 
unit.  

The system will:  
• reduce the massive amount of laborious counting 

required by highly skilled people involved in 
palynological endeavours (30 months in a PhD);  

• increase sample quantities allowing more accurate 
pollen studies, especially in fine resolution 
sampling [3];  

• increase the frequency and locations of pollen 
counts, which are of use to inhalant allergy and 
asthma sufferers.  

A good description of the problems involved and 
requirements of a complete automated system have 
been described recently [4, 5]. The broad 
requirements are to locate pollens on a microscope 

slide and classify each into taxonomic categories at 
reasonable cost, and with a success rate at least that of 
a skilled person. The saving is labour, and time 
consumed by people with skills that could be better 
applied to less mundane tasks. 

The steps involved in the AutoStage project are: 
1. develop a set of features derived from optical 

images of pollen that are discriminable. [6] 
2. develop a supervised classification system based 

on the features-set developed in step 1.  
3. design a suitable low cost digital microscope [7] 
4. develop an image segmentation scheme to 

isolate images of pollen and exclude detritus 
5. develop and build an XY stage to allow slides to 

be scanned using transmitted or reflected light 
6. develop a system to find the location of pollen 

on a slide and to capture in-focus images 
7. integrate the system resulting from steps 1-6 
8. evaluate and verify 

classification and count 
performance of the system, and 
compare to trained 
palynologists. 

Steps 1-3 were completed [2]. This 
project is to develop and build a 
working microscope, build in an XY 
stage and focus hardware, develop 
working segmentation and focus 
algorithms: steps 4-8. We report 
development of the final stages and 
describe the completed system that 
takes a prepared slide and captures 
microscopic images from which 
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Figure 3: hi-mag segmented 
image (Pinus radiata. ~50µm) 

pollen are segmented, image features extracted and 
pollen taxa classified and counted. 

2 Automated System Description 
The system described here finds pollen grains on a 
slide and captures images of them together with their 
location information. Image features are extracted and 
used for classification of pollen types, enabling a 
count of the number of grains of each pollen type. The 
classification of pollen can be manually checked.  

Selection of any portion of a slide to be processed is 
accomplished by the user moving the camera to 
opposite corners of a rectangular area of interest. The 
current system is capable of capturing areas shaped 
with a pixel resolution of 1/2 micron. 

The system comprises: 
1. a machine to capture the images (§2.1) 
2. segmentation, auto-focus and classification 

algorithms (§2.2) 
3. a computer to run the algorithms and control the 

hardware (§2.3) 

In addition to the sub-systems, slide preparation 
(§2.4) and slide sampling (§2.5) are discussed. 

2.1 The Machine 
The ‘machine’, is an XY stage with attached slide 
holder. Two digital microscopes are solidly mounted 
above a filtered and cooled light source. As 
transmission lighting is used, the slide sits on an 
aperture in the XY stage positioned between the 
cameras and light source as in Figure 2. 

There are two power supplies for lighting and stepper 
motors. Two motors move the XY stage to locate 
pollen under the microscope and a third motor adjusts 
the relative height of the cameras for focussing. 

 
Figure 2: AutoStage elements 

2.1.1 The Stage 
The slide is held in a standard microscope holder and 
is moved by a commercial XY precision stage driven 
by two stepper motors. The motors are micro-stepped 
to 1/10th of their 1.8º step angle, allowing a linear 
movement of 2.6 microns per step (the smallest pollen 
of interest is about 10 microns across). The field of 
view of the high magnification camera is 165 x 123 
steps. The speed of movement is set below maximum 
to about 5mm per second. 

2.1.2 Two Microscopes 

A low magnification microscope with a large field of 
view (FOV), locates pollen grains quickly while a 
high magnification microscope captures images with 
sufficient detail for feature extraction.  

A digital camera sensor and a standard microscope 
objective lens placed 207mm from the camera sensor 
plane, forms the “high magnification” microscope 
with an optical magnification of 11·2x. Because the 
camera sensor elements are 4.65 microns square, the 
magnification that is required for a human to view the 
formed image occurs in translation from a 1024x768 
pixels in the 6mm diagonal rectangle of the sensor, to 
1024x768 pixels on a computer screen. That is about 
72x, and 720x including optical magnification. 

The small optical magnification results in a depth of 
field greater than for a conventional microscope with 
the same overall magnification. 

The FOV of the main camera is less than half a 
millimetre square. To image an entire slide more 
quickly, the low magnification camera with about 
1/10th the magnification, is used to more quickly 
cover the slide and locate potential pollen grains. A 
segmentation algorithm identifies most detritus and 
the locations of remaining objects found are stored for 
the high magnification camera to investigate. 
Segmentation, using 
the high 
magnification 
camera and finding 
an acceptable 
object, produces an 
image slightly 
larger than the 
object bounding 
rectangle. The 
image is stored for 
feature extraction 
and classification (Figure 3).  

2.1.3 The Lighting 
Lighting is provided by a simple arrangement of a 
quartz halogen lamp directly below the cameras, with 
filtering, and a fan for cooling. One filter is a 
band-pass to reduce any chromatic aberrations caused 
by the objective lens. A green filter was chosen 
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because the camera is filtered to have a maximum 
sensitivity in the same area of the spectrum as human 
vision, λ ≈ 550nm: green. 

A diffusion filter is the topmost filter and has a light 
blocking rectangle below each camera. The diffused 
light therefore strikes the object oblique to the optical 
axis, making it a simple form of “dark field” 
illumination. Little of the light direct from the source 
enters the objective lens directly so the background is 
dark and objects are light with darker ‘shadows’ 
formed by the surface features. Contrast is increased 
over light-field transmission microscopy with one 
study measuring an increase from 10% to 85% 
contrast [8]. Sub-resolution visualisation is another 
property of dark-field illumination [9]. This is where 
objects smaller than the resolution of the optical 
system are indicated, but not resolved. That this has a 
positive or negative effect on image features extracted 
in this case would require further study.  

The dark-field effects are helpful for finding pollen in 
the low magnification camera and creating a better 
image for feature extraction. 

2.2 The Algorithms 

2.2.1 Auto-Focus 

The low magnification camera is initially focussed 
manually at the same time the user is setting the limits 
for a region of interest within the total area of the 
slide. The auto-focus software then steps the camera 
through that manually set focus position, to refocus. 
The auto-focus operates by calculating the standard 
deviation of all grey levels of each image as it steps 
through the focal plane. The sequential values are 
stored as a vector and a suitable peak is located by a 
“local maximum” algorithm. The camera is moved 
back to the step where the local maximum was found. 
Movements of critical placement are always in the 
upward direction. This focus position is then used for 
all images taken with the low magnification camera as 
a high depth of field keeps pollen sufficiently in 
focus. There are several focus measurement methods 
in the literature [10-13]. After experimentation, the 
standard deviation function was chosen for the low 
magnification microscope as it has a desired 
smoothing effect and it is not computationally 
demanding. 

The high magnification camera is fixed on the same 
focus movement so once the low magnification 
camera is focussed, the high magnification camera 
can be moved to a near focus position. This position is 
used to perform an automatic refocus.  Auto-focusing 
is performed on each object because the pollen grains 
are not necessarily all within the same focal plane and 
depth of field is less for this microscope. 

 
Figure 4: glass slide with cover slip 

The auto-focussing algorithm used with the high 
magnification camera incorporates a squared gradient 
measure where for each pixel, the maximum 
grey-scale gradient-squared, between y direction and 
x direction is chosen and all chosen values summed.   

 
Figure 5: plot of focus image against gradient with a 

dirty slide giving greater focus values at the outer 
surfaces. Centre peak is the focus aim. 

The values plotted against focus step number, results 
in a large ‘spike’ in value for 3 or 4 steps of the focus 
movement. To improve the auto-focus, the step size 
would need to be made smaller and an algorithm with 
greater selectivity might then be used. To reduce 
computation time and help ensure the object of 
interest is in focus, the image area is reduced to 
around the centre of the image where the object may 
be located.  

It takes 15s for one complete pollen grain capture: 
move stage; auto-focus; capture; segmentation, save 
image. Auto-focus takes 2/3 of that time at 10s. 

2.2.2 Segmentation 

Segmentation is difficult and often problem specific.  
For a review on segmentation techniques see [14].  

A stored background image, taken with no slide in 
place, is subtracted from images captured to remove 
any image anomalies caused by the system. Objects 
are located by first finding edges using a Sobel edge 
operator. As pollen are small objects with well 
defined outlines, then the edge detection results in a 
mostly closed loop. Morphological operations follow: 
dilation, to join any broken edges; filling any closed 
loops to form solid ‘blobs’. Erosion then reduces the 
blob size to be close to that of the original object.  

The blob pixel counts are measured, and any blobs 
too small or too large to be a pollen grain are 
removed. The smallest pollen grains of interest (about 
10 microns across) have a blob area of 5 pixels in an 
image from the low magnification camera. Large 
pollen grains, 100 microns across, are represented by 
a blob area of about 500 pixels.  

Slide
bottom

Slide 
top 

Slide/cover-
slip (pollen) 
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For each blob of correct size, a bounding rectangle 
and its area are calculated. If the rectangle has an 
aspect ratio too small, or the blob area to rectangle 
area ratio is too small, then the blob is removed. 

The area of a convex hull for each blob is calculated 
and if the blob area to hull area ratio is too small, the 
object is removed.  

The centres of remaining blobs are found and their 
positions on the slide calculated and stored. The high 
magnification camera is moved to each of those 
positions and performs a segmentation process to find 
a valid object nearest the centre of the image. 
Tolerances in movements cause the object to appear 
with a variable offset. 

2.2.3 Classification 
To perform taxonomic classification, image features  
extraction and a multi-layer perceptron [15] are used 
in line with [16]. The features used are those 
identified in [17] consisting of 43 shape and texture 
features. 

Texture features are represented by a series of 
Wavelet transforms that measure localised 
spatial/spatial-frequency content using Gabor and 
Orthogonal Wavelet transforms. Orientation 
sensitivity is reduced by averaging the results 
corresponding to different directions [6]. Other 
textural features used are Grey Level Co-occurrence 
Matrix, and Grey Gradient Co-occurrence Matrix. 
Shape features are geometric, histogram and second 
moment. 

Linear Discriminant Analysis, together with Principal 
Components Analysis, were employed to compare 
discrimination and check for any redundant features 
[18]. No reduction of feature-set size was found 
useful. A Support Vector Machine algorithm, with its 
binary classification capability, was used to 
discriminate two grass pollens and found to be less 
effective than the multi-layer Perceptron. 

2.3 The Computer 
The computer used is a PC with a 2.6GHz processor 
and 1Gbytes of RAM running Windows XP 
professional. All the code is written in Matlab 
including: image acquisition via USB and IEEE1394 
(FireWire); control of the stepper motors via a serial 
port; and the auto-focus, segmentation, and 
classification algorithms. 

2.4 Slide Preparation 
To improve the efficacy of the system the slides 
should be prepared in a prescribed and suitable 
manner. It is important this should be similar to 
current practice. 

Auto-focus can be adversely affected by objects on 
surfaces other than the top of the slide and the bottom 

of the cover-slip. The segmentation algorithms could 
be compromised and images captured would be 
degraded if dust or oil were present, even if they were 
out-of-focus. 

The prescription proposed is for the pollen samples to 
be suspended in some setting gel. Silicon oil is 
suitable and may be desirable if the slides are to be 
checked on a conventional microscope, as are agar or 
glycerol if an aqueous medium is required. The 
suspension should have a concentration that results in 
no more than 500 pollen grains per slide to reduce 
clumping. The sample medium volume and viscosity 
is such that when dropped onto the slide and the cover 
slip is placed on top, the medium does not travel past 
the outer edges of the cover slip.  

The slide is placed on a warmer to allow air bubbles 
to escape the gel.  Wax is dropped onto the slide at the 
edge of the cover slip to ‘wick’ under the cover slip to 
seal the pollen suspension in, and hold the cover slip 
firmly in place. The slide surfaces can now be cleaned 
without moving the pollen grains within the slide. 
Adding detergent to a last rinse will help reduce 
clumping.  

2.5 Spatial Sampling of Slides 
If sampling the slide is applicable, the high 
magnification camera only might be utilised. It may 
perform sampling better than in the current methods 
of manual counting.  

It is proposed that the area of interest of the slide be 
divided up into rectangles, a sample of those 
rectangles randomly selected, and that the camera 
capture an image of each selected rectangle. The 
images would be segmented, classified and counted 
for each rectangular sample. A statistical analysis 
would estimate the slide populations of each pollen 
type.  

By running trials on slides with known populations, a 
suitable sample size could be calculated.  

This should prove a better method than the present 
manual methods, as the randomness of the present 
slide sampling approach is suspect [19].  

3 Experiments and Results 
Three image data bases were compiled:  
1. CM: captured using a conventional microscope  
2. AS: captured using AutoStage  
3. BR: images used by France et al. [4]  

A selection of the data base images was made of 50% 
for training, 25% for validation and 25% for the final 
tests reported here. The validation set was used with 
the training set to adjust neural net parameters for 
optimum results and verify the system working. The 
training and validation sets were then combined for 
training and the test set used for the final test. The 
feature sets extracted from the images, were presented 
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in random order to the classification software. Results 
are expressed as total correctly classified pollens as a 
percentage of all pollens, and the means and standard 
deviations over 5 tests recorded.  

3.1 Compare AS with CM 
The aim of this experiment is to compare 
classification results using images taken from the 
same slides by AutoStage and by a conventional 
microscope. 

Test description: Take 40 training, 10 test and 7 types 
of images from AS and CM data bases. Classify both 
sets and compare mean results and check for 
difference with a Students t test. 

Results:  The AS mean was 98% correct (sd = 1.2) 
and the CM mean was 94% correct (sd = 0.6). Using 
a 95% confidence t-test, the means are significantly 
different. 

3.2  Classification of Grass Pollens 
The aim of this experiment is to check performance of 
the AutoStage when classifying grass pollens which 
are commonly counted as one type as they are very 
difficult to distinguish manually under a light 
microscope. 

Test description: take 3 grass pollen image sets from 
the AS data base, using 150 training and 50 test 
images. Classify the sets. 

Results: Mean = 90% correct (sd = 0.3). 

3.3 Large Pollen Type Count 
The aim of this experiment is to check the 
performance of the AutoStage using a wider range of 
pollen types in a single test.  

Test description: 19 types were used for the 
experiment including all types available, however 2 of 
the 3 grass pollens were excluded. 150 training and 50 
test images were used. 

Results: Mean = 89% correct (sd = 0.5). 

3.4 AS Compared With another 
Project 

The aim of this experiment is to compare AS 
classification results, to results recorded by France et 
al [4]. 

Test description:  France, recorded results using 3 
pollen types with 60/60/84 images made available on 
the internet. Here, 45 of each set of these images were 
used for training and 15 images for testing. Validation 
was not done as the neural network configuration and 
weights were not altered from other tests. 

Results: France achieved overall 82% correctly 
identified in the final classification stage with 3% 

being misclassified and 15% being rejected. The AS 
was, on average, 95% successful in distinguishing 15 
of the same images with 5% misclassification.  

3.5 AS Compared with Experts 
The aim of this experiment is to compare the total 
process of pollen counting from a slide by the 
AutoStage, with the count of the same slide by 
experts. 

Test description: A slide with 6 pollen types is 
prepared. Five ‘experts’ including two professors, a 
post doctoral student, a technician working in 
palynology and an honours student, count the slide. 
The AutoStage then counts the slide. 

Result. The table below shows statistics of the human 
count and one AutoStage count. 
Pollen 
type 5 People AutoStage

 Mean StdDev Range Raw Count
1 65.6 13.4 43 - 77 64 
2 14.2 4.8 9 - 20 13 
3 21.8 8.7 16 - 37 18 
4 86 17.9 58 - 102 75 
5 0.8 0.4 0 - 1 1 
6 8.6 1.5 7 - 11 7 

Table 1:  The performance of AutoStage was 
compared to five human experts. 

4 Conclusions 
1. Most importantly, for a complete working system 

and functional test described in §3.5, AutoStage 
has matched the result of experts. The variability 
of AutoStage has yet to be determined with 
multiple counts by AutoStage on more slides and 
a comprehensive statistical analysis. 

2. The AutoStage system is giving classification 
results improved upon known published results.  

3. The system is completed, functions well with 
promises of the ability to meet the requirements 
to be useful to a palynologist. 

4. Images from the AutoStage used for classification 
performed better than images from a conventional 
microscope.  

5. The lighting system described gives images of 
excellent contrast.  

6. The auto-focus system performs well. The digital 
microscope, having a greater depth of field than a 
conventional microscope, makes focussing less 
critical. 

7. The XY stage, with movement limits larger than a 
slide, a repeatability of position of 20 microns, 
speed in excess of 10mm per second, and a spatial 
resolution of 2.6 microns, would be satisfactory 
for a manufactured product. 

8. The component costs of the prototype system 
were under $NZ15,000 including the computer. 
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Abstract
This paper presents an application of particle filters and partition sampling to visual tracking of tree-structured
articulated objects. The efficiency of particle tracker suffers as a result of particle propagation between time
steps. This problem is resolved by using a novel technique, referred to as particle interpolation. An articulated
hand contour tracking system is developed using the particle filters for digital entertainment applications and its
performance is evaluated.

1  Introduction
Blake and Isard proposed a framework for object
contour tracking using deformable templates and
Condensation filters [1,4]. Advantages of this
framework include robustness against cluttered
backgrounds and efficiency of computation. The
framework can be adapted to track articulated objects.
However, the dimension of the configuration vector
for many articulated objects, such as the human body
or hand etc, is too large to be dealt with directly by a
Condensation filter. MacCormick and Blake
introduced a technique called partition sampling
[2,4,5], which avoids the high cost of particle filters
when tracking more than one object. Later, this
technique was used by MacCormick and Isard [3] to
implement an articulated hand tracker. They assigned
a partition to each of the articulations in the hand, and
treated these partitions as a chain even. However, it
would be more efficient to take into account the tree
structure of the hand. This paper addresses the use of
partition sampling and a new technique particle
interpolation for tracking tree-structured articulated
objects.

The paper is organised as follows: section 2
presents an application of partition sampling to
tracking tree-structured articulated objects, and
describes the problems that will arise. Section 3
proposes a new technique, named particle
interpolation, which resolves the problems discussed
in Section 2. Section 4 presents a hand tracking
implementation that uses these techniques. The

implementation is tested on two video sequences, and
its performance is discussed. Section 5 concludes the
paper.

2  Tracking Articulated Objects using
Partition Sampling
An example tree-structured articulated object is
shown in Figure 1(a) via a hand contour model. It
assumes that the palm is always parallel to the
camera's image plane, and independent finger and
thumb movements are allowed. The hand contour
model consists of a hand palm and five fingers,
named L, R, M, I, T, representing Little, Ring,
Middle, Index, and Thumb. Each finger can rotate
around its pivot (the black dot at the base of the
finger) to represent abduction/adduction movements.
The length of the fingers can change to represent the
2D projection of a finger's flexion/extension
movement. The angle and length of a finger are
represented as α , and L respectively with the name
of the finger as a subscript. The whole hand is
allowed to translate by (x, y), rotate around the hand
palm pivot r, and scale by s. The articulated hand
contour thus has 14 parameters.

The first step to use partition sampling with this
model is to choose a convenient decomposition of the
configuration space, for example: one partition for the
hand palm, parameters (x, y ,r, s); and one partition
for each of the five fingers, each with parameters (α ,
L). The next step is to define 6 particle sets, 6 motion
models, and 6 measurement functions, related to the 6
partitions.
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(a)

(b)

Figure 1: (a) Simplified articulated hand contour model with 14 DOF. (b) Particle set tree for the articulated
hand model; Palm is the parent particle set, L, R, M, I and T are the child particle sets.

We define the hand palm partition as the parent
partition, and the 5 finger partitions as the child
partitions. The 6 partitions thus form a two-level tree,
with 6 particle sets associated with each partition. The
particle set tree is shown in Figure 1(b). Each of the
particles in the parent particle set is connected to a
particle in each of the child particle sets, so that each
parent particle can access the child particle state, and
vice versa. We refer to each of these parent/child
particle groups as a complete particle. A tracking
sequence for the hand model of Figure 1(a) starts with
a single complete particle set whose parameters are
aligned with the features of a hand in a video
sequence.

The particle set tree is then processed following
the algorithm in Figure 2. The parent particle set is
referred to as Palm (being the hand palm particle set),
and the child particle sets are referred to as L, R, M, I,
and T respectively. In Step 1.1, each of the complete
particles from the previous time step is used to
generate a number of new particles in the Palm
particle set, proportional to the weight of the complete

particle, and in relation to the total size of the Palm
particle set. Steps 1.2, 1.3, and 1.4 constitute a
Condensation time step on the Palm particle set, i.e.
applying dynamics to the particles, weighting the
particles, and resampling the particles. However, the
resampling is different from a standard Condensation
resampling in the sense that only the particles with the
highest weight in the set are selected. In Step 2.1, the
selected particles are used to generate new particles in
the child particle sets. The number of new particles is
proportional to the weight of the selected parent
particle, and the total size of the child particle set. In
Step 2.2, dynamics are applied to each particle in the
child particle sets. The dynamics needs two previous
states in order to predict a new state. In Step 2.3, the
particles in the child particle sets are weighted. The
weighting function is specific for each child partition.
Step 2.4 selects child particles with the highest
weight. Finally, in Step 3, complete particles are
formed by grouping the selected particles in both the
parent and the child particle sets.

1. For the parent particle set (Palm) do:
1.1. Use the complete particles of the previous time step to generate new particles
for Palm.
1.2. Apply dynamics to each of the particles in Palm.
1.3. Weight particles in Palm.
1.4. Select particles from Palm that constitute peaks of weight in the set.

2. For each of the child particle sets (L, R, M, I, and T) do:
2.1. For each of the selected particles in Palm, generate a number of new particles
in the child particle set, proportional to the weight of the selected particle in
Palm.
2.2. Apply dynamics to each of the particles in the child particle set.
2.3. Weight particles in the child particle set.
2.4. Select particles, from the child particle set, that constitute peaks of weight in
the set.

3. Form complete particles for the next time step.
Figure 2: Algorithm for one time step of partition sampling on the articulated object in Figure 1(a).
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Figure 3: Particle set diagram showing two fictitious
time steps of partition sampling for the example
articulated hand. At the end of the time step t=0 there
is one complete particle, circled in red. At the end of
the time step t=1 there are none complete particles.

A potential problem of the algorithm described in
Section 2 is in forming complete particles. The
procedure to form a complete particle is to group a

selected particle from the parent particle set, and a
selected particle from each of the child particle sets.
The selected parent particle, by definition, has a large
weight, which means its graphical representation, the
hand palm, is better aligned with image features and,
consequently, it is a good starting point to search for
the fingers. The number of child particles generated
from a high weight parent particle will be large,
therefore, increasing the chances of finding the
fingers. However, in practice, when using this single
rule, few complete particles can be formed and
propagated, and eventually none complete particles
can be formed, resulting in premature termination of
tracking.

This situation is illustrated in Figure 3 - the horizontal
lines represent particle sets and the selected particles
are indicated with black dots on the particle sets. The
portions of the finger particle sets that are associated
with the same parent particle are referred to as
subsets, which are separated by vertical dashed lines.
This particle set diagram only represents the
relationships between particle sets. In practice, each
particle set can have different sizes, and the number
of selected particles in each set can be much larger. In
this diagram a complete particle is defined as: the
combination of a selected particle in the palm particle
set, and from its associated subset, a selected particle
in each of the finger particle sets.

In Figure 3, we can see that at the end of time step t=0
there is only one complete particle, encircled in red,
which propagates to t=1; however, at the end of the
time step t=1 it is not possible to form any complete
particles. This situation worsens if the child particle
sets have child particle sets of their own. One way of
avoiding incomplete particles is to force at least one
selected particle in each subset for each child particle
set, for example, the particle with highest weight in
the subset. However, this could lead to the selection
of particles, in the child particle set, with very low
weight, i.e. particles that do not represent properly the
relevant link. Another possible solution is to use
particle interpolation described in the next section.

3  Particle Interpolation
The idea of particle interpolation involves creating
new particles in a child particle set based on existing
particles in the same particle set, and those in the
parent's particle set. In the particle set diagram of
Figure 3, the aim of particle interpolation is to
generate a new particle for each subset, and the new
particle must have the highest possible weight. For
example, the particle with highest weight in a finger
particle set represents the finger contour that matches
the image features better than others. This particle
provides information about where the finger is in the
image. Particle interpolation will generate a particle,
for each subset, that shares some of the image features
of the particle with highest weight in the set. The
process is illustrated in the particle set diagram of
Figure 4. In this diagram the palm particle set has four
selected particles, and therefore there are four subsets
in the finger particle sets. The large black dots in each
of the finger particle sets represent the particle with
highest weight in that set. The smaller red dots in the
finger particle sets represent the interpolated particles,
one for each subset. The interpolated particles in each
particle set are calculated by combining data from the
particle with highest weight in the particle set and the
parent of each of the subsets, represented by red
arrows originating from the particle with highest
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weight and ending at the interpolated particle in each
subset.

We can see that at the end of the time step for
each selected particle in the palm particle set, there
will be a complete particle. However, although the
interpolated particles have a large weight, the exact
weight is not known. In order to form complete
particles with a known weight, the interpolated
particles need to be weighted. The algorithm in Figure
2 can be updated in order to include partition
sampling by substituting the Step 2.4 with the
following 3 steps:

2.4. Select the particle with highest weight in the
finger particle set.

2.5. Generate a new interpolated particle for each
subset, based on the particle selected in step 2.4.

2.6. Weight the interpolated particles.

A simplified version of the articulated hand model of
Figure 1(a) can be defined to only include the palm
and the little finger. Suppose two particles A, and B
use this hand model, see Figure 5. Particle A is
formed by two partitions: Ap corresponding to the
palm, and Af corresponding to the finger. Similarly,
particle B is formed by Bp, and Bf. Assuming that Af
is the particle with the highest weight in the finger
particle set, and Bf is a particle with low weight in the
same particle set. The interpolation procedure finds
new parameters (length, and angle) for Bf in order
that it shares some image features with Af. The goal

of this operation is to maximize Bf's weight, while
taking into account the fact that the two particles
come from different parents: Ap, and Bp. A possible
rule to maximize Bf's weight in this manner is: Bf
maximizes its weight if its fingertip coordinates are
the same as Af's fingertip coordinates. Other rules are
also possible; however, this rule produced the best
results in the experiments and is adopted.

Figure 4: Particle set diagram showing the particle
interpolation process. The big black dots in the finger
particle sets are the particles with the highest weight
in the set. The smaller red dots are the interpolated
particles, one for each subset.

Figure 5: Graphical representation of the interpolation process. (a) Particle A's finger, Af, has the highest weight.
(b) Bf parameters ),( BB Lα are updated in order that Bf's fingertip coordinates match those of Af fingertip.

In Figure 5(a) we can see a graphical representation
of particle A's state, and particle B's state.

),( AA cenYcenX  and ),( BB cenYcenX  are the palm pivots
of Ap and Bp respectively. ),( AA pivYpivX  and

),( BB pivYpivX  are the finger pivots of Af and Bf
respectively. Finger pivots can be calculated from the
palm pivots and the palm's state i.e. translation,
rotation, and scale. ),( AA tipYtipX  and ),( BB tipYtipX  are
the fingertips of Af and Bf respectively. Fingertips can
be calculated from the finger pivots and the finger's

state i.e angle, and length. In order to maximize Bf’s
weight, its fingertip coordinates must be the same as
Af's fingertip coordinates, Figure 5(b). This can be
achieved by updating Bf's parameters ),( BB Lα  in the
following manner:

BA pivXtipXdx −=

BA pivYtipYdy −=

)(tan 1

dy
dxAngleF −= (1)

364



22 dydxLengthF += (2)

anglengerAngleOriginalFiAngleFB −−=′α (3)

)*( scalengerLengthOriginalFi
LengthFLB =′

(4)

Equations (1) and (2) calculate the angle and
Euclidean distance between Bf's pivot and Af's
fingertip. Equations (3) and (4) apply a normalisation
to AngleF and LengthF in order that 

Bα′  is relative to
the angle of Bp; and 

BL′  is a number between 0 and 1.
OriginalFingerAngle and OriginalFingerLength are
the angle and length of the finger in the template
position, i.e. for 0=α and 1=L ; and angle and scale
are the rotation and scale parameters of Bp. Using this
rule we can generate new finger particles for any
palm particles, and the weight of these new particles
is likely to be high.

4  Implementation
This section presents an implementation of an
articulated hand contour tracker. The tracker uses
partition sampling, as described in Section 2, and
particle interpolation, described in Section 3, to track
tree-structured objects. This tracker is capable of
tracking in real-time the contour of a hand in a video
sequence. The tracker can also handle the rigid
movement of the hand, and the independent
movement of each finger, according to the hand
contour model of Figure 6. The model is defined
using BSpline curves as described in [3,4,5]. Figure
6(a) shows the control points of the BSpline curves.
Figure 6(b) shows the joints of the hand model, which
has 14 DOF. Note that the thumb is modeled using
two segments, but their lengths are constant. The
measurement model is based on [5], and uses both
skin colour and edge information.

Figure 6: Hand contour model. (a) Hand contour
showing 50 control points. (b) Articulated hand
contour showing joint parameters.

The tracker is tested with two video sequences. In
the first video sequence, a hand is tracked through
rigid motions. In the second video sequence, the hand
is tracked through a combination of rigid and
articulated motion. The performance of the tracker is
assessed at each video-frame by measuring the
distance between the tracked contour and a ground
truth contour, which was calculated manually. This
contour distance is calculated using the distance
metric defined in [4,6]. The results are shown in
Figure 7. The tracker can track successfully both
video sequences, with a few occasional incorrect
locks of the fingers. The tracker uses only 250
particles in the hand palm particle set, and 100
particles in each of the finger and thumb particle sets.
The contour distances for the first video sequence,
Figure 7(a), and second video sequence, Figure 7(c),
are generally small, with the exception of a few
peaks, which are due to the tracker having a
temporary lock on the wrong fingers. Four example
frames for each video sequence are shown in Figure
7(b), for the first video sequence, and Figure 7(c), for
the second video sequence.
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(a) (c)

Figure 7: (a) and (c) show hand contour difference against video frames, (b) and (d) show example hand contour
tracking from video frames.

5  Conclusion
We have shown how partition sampling can be used
with particle interpolation, in order to track tree-
structured articulated objects such as hand contours.
Particle interpolation is essential to maintain
continuity of tracking when a complete particle set
cannot be formed. In addition, particle interpolation
provides an efficient solution by propagating particles
from one time step to the next. The tracker described
in this paper improves the method described in [3],
which does not take into account the tree structure of
the target. The four partitions in which the hand's
configuration is divided are dealt with in sequence.
With this approach, each time an extra partition is
involved in the tracking, the number of particles
required increases faster than our approach. Their
hand model has 7 DOFs and uses a total of 900
particles - 700 particles for the hand, 100 for the first
thumb segment, 10 for the second thumb segment,
and 90 for the index finger. Our hand model has 14
DOFs and uses a total of 850 particles - 250 particles
for the palm of the hand, 100 particles for each of the
fingers segments.
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Abstract
Despite the steady advancement of digital camera technology, noise is an ever present problem with image
processing. Low light levels, fast camera motion, and even sources of electromagnetic fields such as electric
motors can degrade image quality and increase noise levels. Many approaches to remove this noise from
images concentrate on a single image, although more data relevant to noise removal can be obtained from
video streams. This paper discusses the advantages of using multiple images over an individual image
when removing both local noise, such as salt and pepper noise, and global noise, such as motion blur.
Keywords: image noise, motion blur, salt and pepper, video streams

1 Introduction

Noise is a constant frustration when dealing with
computer vision systems. While steps can be taken
to minimise the noise, such as using expensive high
quality cameras and constraining operating condi-
tions, some noise will still be present. Low quality
cameras in unconstrained environments are more
commonly being used, and indeed are a more de-
sirable set up for a lot of commercial applications,
and these present significant implications for com-
puter vision processing. Despite previous research
done in removing noise from video streams[1], the
trend is still to treat noise removal on a per image
basis[2][3][4].

In this paper, noise is defined to mean artefacts
within an image which are the results of inaccura-
cies in capturing and converting optical informa-
tion into a digital representation. These artefacts
can occur locally, such as a pixel affected by salt
and pepper noise, or globally, such as motion blur
across an entire image. These two types of noise
can be unified as an inverse function of the global
ambience. As the global ambience decreases, com-
pounding inaccuracies cause the Signal to Noise
Ratio (SNR) to increase, which results in a greater
degree of local noise. Subsequently a camera faced
with a decrease in global ambience typically will
automatically increase the exposure time so that
more light can be let in, but an increase in expo-
sure time also elevates the amount of motion blur.
Thus a change in a single input factor results in
increasing two separate classes of noise.

Figure 1 shows an example relationship tree, show-
ing global ambience, global noise (Motion Blur),

and local noise (Pixel Noise), as well as some com-
mon registration techniques, and how they are af-
fected by noise. While both types of noise can
be unified under the function, the detection and
removal of both is considerably different. For this
reason, each type will be discussed separately in
the following sections.

Figure 1: An example of the type of relationships
between lighting, noise and registration methods

2 Local Noise

We define local noise as image corruption specific
to a certain subsection of an image which is inde-
pendent of other regions of an image. This leads to
a certain amount of “randomness” with the noise,
such that the noise content of a pixel cannot be ac-
curately predicted by examining other pixels. The
most common types of local noise are Gaussian[5]
or salt-and-pepper noise[6]. Salt-and-pepper noise
shows up in an image as single pixels with a no-
ticeable difference in colour or intensity from their
neighbouring pixels, when in reality there is no
discernable difference between the two. Gaussian
noise is generally due to a low Signal to Noise
Ratio, and as the signal is lower in darker regions of
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the image, noise tends to be more prevalent there,
as shown in figure 3.

2.1 Calibration

One major advantage of using video as opposed
to a single image for noise detection and removal
is calibration that can be performed in additional
frames. One such approach is to use a banded
light diagram like that shown in Figure 2. Such an
artificial diagram is computationally simple to find
in a video frame, and once found, the variance of
illumination can be determined for each light bar.
This variance is representative of the noise level for
each of the intensities. This can then be used as a
method for estimating the likelihood that any given
point in future images is noise by examining the
intensity of it’s neighbouring pixels. A typical ex-
ample would be a single noisy pixel showing up as
a white pixel amongst an area of black pixels. This
scenario would provide an excellent interest point
to a number of registration algorithms, however by
examining the context of the point the system can
determine there is a high probability that it is only
noise and chose to ignore the point.

Figure 2: The calibration image for calculating
noise level at each intensity range.

2.2 Difference of two images

One exploitable characteristic of gaussian noise
is that it is randomly distributed. The difference
of two consecutive frames will highlight points
which have changed between frames, including
noise. Any moving objects in the scene will also
show up on the difference image, often with a
far greater magnitude than noise. To take this
relevant difference into account, large difference
regions or even high magnitude difference areas
can be thresholded. The remaining difference
image will show many low intensity pixels which
are likely to be caused by noise.

Figure 3 shows a subsection of a negative image
(for increased contrast) of an amplified difference
image between two frames while both the camera
and scene were stationary. The areas where there is
greater noise concentration are there regions where
the average pixel intensity is lower. Pixels with
lower intensity values are more susceptible to noise,
just as entire scenes with a lower global ambience
also suffer from higher noise levels.

Figure 3: A subsection of a negative image of
the difference between two frames. All non-white
points are noise

2.3 Detecting Signal to Noise Ratio

Many digital web cameras have automatic white
balancing and brightness controls programmed
into the firmware, which automatically adjusts the
brightness, contrast and exposure time according
to light level detected. While this auto adjustment
increases the visibility to a human viewing the
results, the noise levels are typically increased
as well and this can complicate matters when
computer vision is used. While it is beneficial to
have a consistent brightness level, the method by
which this is achieved in the camera results in
changing the Signal to Noise Ratio. When the
ambient light is reduced, the levels are amplified,
and so is the noise.

Unfortunately, many inexpensive digital cameras
provide no software facility for retrieving how much
light levels have been adjusted, and it is difficult
to estimate simply based on changes in the scene.
However, by analysing the difference of two im-
ages, the frames where the camera has adjusted the
brightness level can be determined. An experiment
was conducted using a standard USB 2.0 webcam,
and it was surprising to notice a stepping effect
occurring, where instead of a smooth transition
from a low light to normal lighting level, there was
a series of sudden increases in lighting level as the
automatic gain control compensated for varying
ambient light, as shown in Figure 4

The reason for this stepping is unknown, but is as-
sumed that hysteresis is employed to prevent flick-
ering which may occur if the camera was updating
the brightness every frame. While the stepping
does not give the exact ratio of the actual global
brightness compared to the perceived brightness,
it does provide the facility to make an assumption
about how the ratio may have changed between
frames.

2.4 Removing Local Noise

There are a range of methods available for
removing noise from an image. Typically noise
is removed with a blur or erode[7] filter, to
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Figure 4: The stepping effect caused by the
camera’s auto brightness control

average noisy pixels out with neighbouring pixels.
However, a global Gaussian filter can remove
points which were very important for registration
or tracking, as well as reducing the intensity of
other significant details for computer vision, such
as edges.

One method of resolving this loss of detail involves
isolating noisy areas using a filter (typically a me-
dian filter), and only blurring a window around
that point[8]. The approaches mentioned above
can be used as a preprocessing step, as they provide
points which are likely to be noisy within images.
The thresholded and amplified difference of two
frames can be used with a dilate filter to enlarge
the area surrounding each of the suspected noisy
pixels, and this can then be used as such a filter.

3 Blur

Blur is a problem encountered image processing
which can be considered in the same domain as
local noise. It is a corruption of image data, and
degrades computer vision performance. There are
two main types of blur encountered in image pro-
cessing. One is static blur which can be caused by
an out of focus camera, or a damaged camera lens.
The other main type of blur is motion blur. Motion
blur is often present with motion under low light
levels, a problem made worse by the minimal light
capture by tiny lenses in cheaper digital cameras.

3.1 Blur Detection

The nature of static blurs such as a damaged cam-
era lens means they do not change properties over
successive frames, there is no real advantage of
using video over a single image, other than to con-
firm that it is indeed static. However, motion blur
has been examined in video streams in a number

of different ways, such as using two cameras with
different optical and temporal resolutions[9],

A variety of algorithms have been designed to re-
move motion blur, from Wiener filtering to Blind
Deconvolution. One common feature of all these
blur removal algorithms is that they require some
sort of initial estimate of motion blur direction
and magnitude to begin the process. While this
estimate is not required to be completely, a better
initial estimate will yield more accurate results and
a faster convergence time. Image analysis can pro-
vide an estimate of blur characteristics, but these
can often be found far easier and with higher accu-
racy by analysing the differences between succes-
sive video frames using techniques such as Optical
Flow to estimate camera direction as shown in fig-
ure 5.

In addition to this global approach, individual
objects can be segmented based on their spatial
relationships[10] or on their direction and
magnitude of motion. By doing this, several
motion blur deconvolutions can be applied to
deblur individual objects within a scene, which
results in better performance of the algorithms.

3.2 Blur Removal

An experiment was conducted to compare deblur-
ring when given only a single image, and when
given an image sequence. The image sequence is
taken by panning (using rotation) a camera in an
indoor laboratory environment. The focal subject
was a soft toy camel placed a metre in front of
the camera. The camera was a standard 640x480
resolution at 25fps USB 2.0 webcam, with the focus
set at one metre, so that the subject was in focus.
The camera was rotated at approximately 150◦ per
second, so that in the consequent 15 sequential
frames, the camera had rotated a full 90◦. This
provided a reasonable motion blur of the scene.

For the deblurring, scripts were written in Matlab.
The single frame deblur required Blind Deconvo-
lution algorithms, while the image sequence used
the Wiener filter. A program was written in C++
using the OpenCV library to extract optical flow
vectors from the image sequence. These optical
flow vectors were grouped according to their di-
rection, as shown in figure 5, the group with the
highest count of vectors in it was chosen as the
most likely representative of the global direction
of motion. These vectors were then averaged to
create a single vector to represent direction and
magnitude of the motion.

Unfortunately, optical flow velocity does not com-
pletely describe motion blur, only an indication of
the scale and direction. The true blur depends
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Figure 5: Optical Flow vectors, colours show
groups based on direction

on exposure time of the camera, which in turn
depends on global ambience and camera intrinsics.
As a substitute, an initial measurement of blur
length was taken and compared to the distance
given by optical flow calculations, and this was
used as the ratio for calculating blur length purely
from optical flow.

3.3 Blur Removal Results

Due to this nature of using a ”real” blur as op-
posed to a computationally added one, there was
no “ideal” image for a comparison of the result-
ing unblurred images. To compare the algorithms,
their outputs were compared visually against one
another, and an optical flow calculation was per-
formed across two consecutive frames deblurred
by each algorithm. The resulting array of vectors
from the calculation was filtered based on the angle
and magnitude, such that only correct vectors re-
mained. The percentage of vectors which were cor-
rect provides a quantitive measure of performance
of these algorithms.

It was estimated that the Wiener filter would pro-
duce a similar deblurring result in a shorter amount
of time than blind deconvolution, due to the extra
information available for the deblurring.

3.3.1 Image Sequence Deblurring

The wiener filter was run on the image to be
deblurred, using the blurring vector calculated by
optical flow to generate the relevant point spread
function (PSF). Figure 6 shows the resulting
PSF and deblurred image. It appears that there
has been a considerable increase in the higher
frequency components, especially in low frequency
regions, such as the camels chest. While the
blurred image showed little detail here, there is

now a considerable amount of finer detail, such
that the fur can now be seen.

Unfortunately as a result of the deblurring, parts
of the image have begun to “ripple”, with high fre-
quency edges spreading out across the image. This
is a known effect with Wiener Filters[11], and could
be resolved by isolating the areas of deblurring to
only lower frequency regions. This has been shown
to be successful in previous research, and could
prove useful for future applications of this work.

Figure 6: The image after deblurring by the
Wiener Filter. The white bar above shows the
point spread function calculated.

The time taken for this algorithm to run was less
than ten seconds. While this is still not real time,
this was unoptimised code running in Matlab’s
scripting environment, and could likely run faster.
The Optical Flow algorithm across two subsequent
frames found 233 vectors which matched the angle
and magnitude of motion blur found in the image
sequence.

3.3.2 Single Frame Deblurring

The blind deconvolution algorithm used was based
on the Richardson-Lucy algorithm. As is usually
the case, a decrease in information provided to an
algorithm will result in a decrease in performance.
Blind Deconvolution is designed to be run where
there is minimal or no data about the blur. Using
this logic, it was expected that Blind Deconvolu-
tion would only perform at best as good as the
Wiener filtering.

The accuracy of Blind Deconvolution depends
partly on the estimated size of a calculated Point
Spread function. Too large and the point spread
function could be overestimated, and the image
deblurred too much or even in the wrong direction,
too small and the effects of deblurring will be
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minimal. To investigate this effect, when the
experiment was run for blind deconvolution, two
tests were run, to examine the best case, where
the estimated size of the PSF function is exactly
correct, and the worst case where the estimated
size of the PSF function is considerably incorrect.
The results are shown in image 7

Figure 7: Left: Best Case Scenario and PSF, Right:
Worst Case Scenario and PSF

3.3.3 Single Frame - Best Case

For the best case scenario, the same sized PSF
function that was derived from the Wiener Filter
was used. For both blind deconvolution trials, two
iterations were performed, the first to get an initial
estimate of motion, then an intermediary step to
attempt to isolate and remove noise in the esti-
mated PSF, finally followed by the second itera-
tion, using the cleaned PSF as input.

Comparing the results of the best case Blind De-
convolution, it appears more or less on par with
the results obtained from Wiener Filtering. There
appears to be a small increase in detail, but in
addition, noise - such as that appearing around
the camels eye - has been increased considerably.

The time taken for the best case scenario of Blind
Deconvolution was in excess of 450 seconds, far
from being realtime. Even with serious optimisa-
tion of the code and environment, it is unlikely that
this will be a feasible method of removing blur from
a live video stream. The optical flow calculation
found 248 matching vectors across two deblurred
subsequent frames.

3.3.4 Single Frame - Worst Case

The experiment for Worst Case was run using the
same code as the best case, apart from the initial
estimate of PSF size was a square, the size of the
magnitude of the blur. The initial deblurring step
here resulted in a PSF where nearly every element
had some value in it, but after 50 iterations the
PSF was beginning to resemble the correct shape.

As is shown in the point spread function, there
appears to be some trend in the direction of blur,
however somehow the top corner of the PSF has

Algorithm Vectors % Matching Time(s)
None 476 0.63 0
Wiener 491 0.47 6
Blind - Best 488 0.50 450
Blind - Worst 461 0.45 450

Table 1: Comparison of Algorithms based on Total
number of points found, Percentage of found points
matching direction of motion, and time taken to
perform

become more important. As a result of this large
spread, the filter has acted as more like a sharpen
filter as opposed to a deblur filter, and the image
has the typical artefacts of an image which has
been sharpened too much.

The time taken for the worst case scenario of Blind
Deconvolution was around the same of the best
case, over 450 seconds. The Optical Flow algo-
rithm only found 208 matching points in the worse
case deblurring.

3.4 Blur Removal Discussion

The results of the deblurring experiments were not
surprising. The wiener filter seemed to provide the
best compromise between removing the blur and
adding too much noise. While the best case of
blind deconvolution had a higher number of match-
ing points, the Wiener filter found a higher number
of points in general. The worst case of blind decon-
volution, where the PSF was estimated incorrectly,
effectively resulted in over-sharpening the image,
amplifying noise considerably.

Table 1 shows the results of the three algorithms
compared to the unblurred image. Both the
Wiener filter and the best case of blind
deconvolution resulted in the optical flow
algorithm locating more vectors. However
the percentage of these vectors matching the
motion direction of the camera was lower in both
of these than in the original unblurred image,
suggesting that perhaps some of these points
could be attributed to noise caused by the ’ripple’
effect. The worst case deblurring performed worse
in both the number of vectors found, and the
percentage of these which match the motion of
the camera.

Despite the deblurring results for both video
streams and single images providing being similar
quality wise, the effective time taken to run the
filter for video streams was only six seconds, while
the added computation of calculating a PSF for
the single images required 450 seconds in total.
While these algorithms could be tuned to perform
better, it could mean the difference between five
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and twenty five frames per second, an important
difference when real time video is paramount.

4 Conclusion

This paper discusses the detection and removal of
noise in video streams. Most previous research has
focused on detection and removal only in a single
frame, but in doing this useful information has
been lost about both the camera and the scene.
The results from the experiment would suggest
there is validity in processing noise based on an
entire video segment, rather than just on a frame
by frame basis.

In particular motion blur was looked at in detail,
and an experiment carried out to examine the effec-
tiveness and speed of deblurring in both video and
single images. It was found that while single image
deblurring can still produce results of a similar
quality to that of video despite missing important
data, the additional time required is considerable,
even as much as five times that of deblurring a
frame of video when the direction of motion is
known.

5 Future Research

The main problem with processing noisy blurred
video is the overhead and time taken to do so.
Video editing is always time consuming, but in a
real time application, this is not feasible. Adap-
tively varying the number of previous frames to
process would help to improve efficiency.

In addition, it would be worthwhile examining
other aspects of the video stream to try and
find other information which may be useful in
increasing the quality of the images.
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Abstract 
In this paper we present an algorithm for matching the appearance of two moving objects based on a matching-
by-parts approach and a maximum likelihood criterion. We assume that the two moving objects to be matched 
are first extracted from videos by a preliminary foreground extraction-tracking step and our goal is that of 
matching their appearances. To this aim, we first consider the matching between single frames, one from each 
track. In order to increase the ability of discriminating between two different physical objects while keeping the 
matching rate of a single physical object high, each object is divided into N parts and then parts are matched in 
pairs. The appearance of each part is represented by a colour histogram (called MCSHR for short in the 
following) and a histogram similarity measure is used to compare two parts. The single-frame matching result is 
then obtained by fusing the similarities of each part matching. Later, our track matching algorithm extends the 
single-frame matching along the objects’ tracks by a post-matching integration algorithm. Experimental results 
presented in this paper show that the proposed similarity measurement is accurate at the single-frame level.and 
that the post-matching integration makes the overall matching more robust and reliable.  

Keywords: Moving object tracking, object matching by parts, maximum likelihood criterion, major colour 
spectrum histogram representation, colour distance, similarity measurement. 

1 Introduction 
Robustly tracking a single object throughout a 
network of cameras is an important function for 
effective video surveillance of wide areas [1-4]. 
However, in most real-world camera networks it is 
not possible to track a moving object through a 
continuity of overlapping camera views. Instead, most 
often the object has to completely exit from the view 
of a certain camera before it can reappear under the 
view of a different one. This common scenario is 
often referred to as disjoint camera views, where 
observations of a single object are disjoint in time and 
space to a certain extent. In order to allow tracking in 
such a scenario, single-camera views of a same object 
must be matched across neighbouring cameras. 
In the following, we assume that each object is 
extracted and tracked within each single camera view 
by a preliminary foreground extraction-tracking step, 
and that the relevant information (the object’s blob in 
each frame) is available – hereafter we call such 
sequence of blobs track for simplicity. Our goal is 
then that of matching tracks from disjoint views by 
using some objects’ appearance features. To this aim, 
in this paper we present an algorithm for appearance 
matching based on a matching-by-part approach and a 
maximum likelihood criterion. First, we choose the 
two tracks to compare and consider the first frame in 

each. We compare the blobs from these two frames by 
dividing each blob into N parts, and orderly 
comparing parts in pairs. Each pair matching provides 
a similarity measurement, or matching belief, 
bounded between 0 and 1. The N results from part 
matching are then fused by an average rule and 
compared against a threshold set based on a 
maximum likelihhod criterion to provide the results at 
the frame level. The single-frame matching is 
repeated for following frames in the tracks and, 
eventually, such results are integrated to obtain the 
overall matching result between the two tracks. 
The appearance representation is based on a colour 
histogram with sparse bins. A colour distance based 
on a geometric distance between two points in the 
RGB space is first introduced to measure the 
similarity of any two colours. By using the colour 
distance and a given threshold, pixels from each part 
are clustered into a limited number of bins, with each 
bin’s frequency defined as the number of pixels 
falling into that bin. Such bins are then sorted in 
descending frequency order and a chosen percentage 
of them (in our work, 90%) is chosen as major colours 
to represent the part’s appearance. We call this 
histogram the major colour spectrum histogram 
representation (MCSHR). A criterion is then defined 
to assess the similarity, bounded between 0 and 1, of 
the MCSHRs of two given parts.  
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To date, the problem of matching the appearance of 
objects across disjoint camera views has been 
addressed in relatively a few papers in the literature; 
[5] and [6] are notable examples. In both [5] and [6], 
the matching basd on appearance is reinforced by the 
use of priors based on statistics on travelling times 
between cameras acquired during a learning stage. 
The main problem that we identify with such an 
approach is that matching is more prone to fail in 
anomalous cases, which are instead those of interest 
for surveillance. For instance, if people remain in a 
blind area for long time in order to carry out activities 
such as tampering or stealing, their re-appearance 
under camera views will occur outside of statistical 
timing windows. For this reason, our approach 
deliberately avoids the use of time-based priors. 
Moreover, unlike [1], [5], [6], we use a part-based 
matching that prevents false matches between people 
with similar overall colours but with different spatial 
distribution. 

2 Maximum Likelihood Criteria for 
Moving Objects Matching by Parts  

2.1 Feature Space and Maximum 
Likelihood Criteria  

The raw feature vectors in the observation space of 
the two matching moving objects are the major 
colours of the divided parts, shown in the following 
equations: 

],,,[ 112111 NXXXX L=    (1) 

],,,[ 222212 NXXXX L=    (2) 

where  and  are major colour vectors of the 
ith divided parts in moving objects one and two, 
and is the number of divided parts. Since the major 
colour vectors are multiple dimensional vectors, their 
distributions are very difficult to estimate. Therefore, 
the similarity between two matching objects is used as 
an observation variable (or one dimensional space) in 
the process of deriving an optimum matching 
structure based on maximum likelihood criteria. 
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where  is the error noise that produced in the 
process of major colour similarity calculation, and 
based on experience of our experiments, we believe 
that the noise has Gaussian probability distribution 
with zero mean and variance , i.e. ; 
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0µ and 1µ ( 01 µµ > ) are the average similarities when 
 (objects are two physically different objects) and 
 (objects are a single physical object) are true. For 

simplicity, we assume that 
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1H

0µ and 1µ are constant and 

that variations are to be blamed on the noise 
component. 
The above assumptions can be validated by testing the 
data reported in Tables 1 (for 0µ ) and 2 (for 1µ ) in 
Sections 5.1 and 5.2, respectively. In this case, 

4638.00 =µ and 7843.01 =µ  and assumption 
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046.00

 is verified. The standard deviations are 
=σ and 056.01 =σ . In the following, since 

their difference is small, we treat them as a same 
value. 
Thus, the probability distribution function of  
under the hypothesis of , is shown in equation (4). 
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Similarly, the probability distribution function of , 
under the hypothesis of , is shown in equation (5). 
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The likelihood ratio (LRT) is calculated as follows: 
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Taking the natural logarithm of both sides of equation 
(6) to obtain the log LRT: 
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Equation (7) can be simplified as: 
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The above equation shows the optimum structure of 
the matching detector, in which the optimum 
threshold is the function of the average similarities - 

0µ , 1µ , and the variations of similarity - . In the 
sense of maximum likelihood criteria, in order to 
minimize the total error (detection and false alarm) 

2
Nσ

η should be 1, so the optimum threshold in equation 

(8) becomes )
2

( 01 µµ
λ

+
= . 

2.2 Matching Performance Evaluation  
Just a s a corollary, we show in the following that the  
matching performance can be easily evaluated in 
terms of the probability of detection -  and false DP
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alarm rate -  - as a function of the average 
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The probability density functions (pdf) of matching 
objects under  and described in equations (4) 
and (5) are shown in Fig. 1. 
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Figure 1: Similarity probability density functions. 

In Fig. 1, the probability of false alarm matching -  
is the area under function above the detection 
threshold -
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The probability of the detection or correct matching -
 - is the area under function above the 

detection threshold -
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Thus, equations (9) and (10) show that the 
probabilities of correct matching and mismatching are 
simple functions of the average similarities, 0µ , 1µ , 

and variance . 2
Nσ

 

3 Major Colour Spectrum Histogram  
3.1 Concept of Colour Distance  
In this section, we first introduce the concept of 
“colour distance” between two colour pixels in the 
RGB space based on a normalized geometric distance 
between the two pixels. Such a geometric distance is 
defined in equation (11): 
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1C  and  are the colour vectors. The smaller the 
colour distance, the more similar are the two colours. 

2C

3.2 Moving Object Major Colour 
Representation 

By using the concept of colour distance, we can scale 
down the possible colours to a very limited number of 
“major colours” (for example, several hundreds) 
without losing much accuracy on representing a 

moving object. For each part of a moving object, a 
given certain percentage of major colours are retained 
in the representation, while colours that rarely appear 
are discarded [7, 8]. Colours within a given mutual 
distance threshold are dealt with as a single colour. 
An example picture (‘tn_flower’) is shown in Fig. 2 
(a) in which we can see that the most frequent colours 
are around dark green-black and yellow values. Fig. 2 
(b) shows that the histogram of the major colours 
(under the colour distance threshold of 0.01) seems a 
faithful representation of the image’s colours and their 
frequencies. 
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The similarity of the divided part in object A and its 
corresponding part in object B is obtained by adding 
up over : Mi ,,2,1 L=

∑
=

=
M

i
ABA iji

CCSimilarityBASimilarity
1

| ),(),(  (15) 

In a similar way we can obtain Similarity(B,A) that 
generally differs from Similarity(A,B) since the colour 
pairs defined by (13) may be different in the two 
directions. However, if A and B are the same physical 
object, these two similarities would be approximately 
symmetric. Therefore, in the final matching criterion 
we give importance to the symmetry of 
Similarity(A,B) and Similarity(A,B). We first define: 
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Then, we combine them into a single final value, 
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If Similaritymin is lower than a discrimination 
threshold, ηdiscrim, we bound SimilarityA,B to it. Instead, 
if Similaritymin is above or equal the discrimination 
threshold, we choose to check the difference between 
the maximum and minimum similarities in a ratio 
form for asymmetry. The bigger the difference 
between the maximum and minimum similarities, the 
lower is SimilarityA,B. Eventually, matching is 
assessed if SimilarityA,B is above an assigned 
similarity threshold. 

4.2 Similarity at the Whole-Object Level  
Once obtained a similarity value, bounded between 0 
and 1, for each pair of divided parts, the values for all 
the N part pairs need to be combined in order to 
obtain a single matching result at the whole-object 
level. For this, one can choose amongst popular 
fusion techniques such as the product rule, average 
rule or weigthed average rule [9]. The product rule 
suffers from the famous “curse of product” and 
should be used only in the case of complete statistical 
independence between the values to be fused. In our 
application, some degree of correlation instead 
certainly exists (two adjacent parts may share parts of 
a same piece of clothes and thus be materially 
correlated; the body shape deformates along the 
sequence, hence blob parts map on different bodily 
parts along frames) and therefore we cannot use the 
product. The weighted average rule requires a very 
well informed estimation of weights to be likely to 
outperform the (unweighted) average rule [9]. 

Therefore, we chose to use the latter in our approach. 
Equation (19) provides the required similarity at the 
whole-object level. 
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4.3 Single-Frame Matching and Post-
Matching Integration Algorithm 

In the track matching algorithm, we consider the same 
number of frames from each track. Moving objects 
from corresponding frames in Track One and Track 
Two are matched based on similarity of their major 
colour spectrum, and the matching results are given as 
a binary decision. 

The second step is the multi-frame post-integration, 
normalization, and thresholding. The advantages of 
this algorithm are: 
• The single-frame matching is based on the major 

colour spectrum histogram and two direction 
similarities measurements, which makes the 
single-frame matching very accurate. 

• The final conclusion is made based on the 
statistical average of single-frame matching. So, 
no detailed feature errors are carried forward after 
this stage, which makes the track matching 
conclusion more reliable than single frame 
matching. 

5 Experimental Results and 
Analysis  

In our experiments, we report example results from 
three typical tracks from the PETS 2001 dataset 
where moving objects have been detected and tracked. 
The segmented moving objects, major colour 
spectrum histograms and experimental results are 
shown in the following sections. 

5.1 Matching-by-parts of Two Different 
Moving Objects 

The first case reported here are from two different 
persons (track 1, frames 0400-0412 and track 2, 
frames 2150-2162), with two sets of typical extracted 
moving objects and object masks shown in Figure 3.  
In the test, the moving objects are equally divided into 
seven parts along the vertical direction. The results 
from matching-by-parts at the single frame level and 
post-matching integration alomg the track with 90% 
of major colours, colour threshold of 0.01, 
discrimination threshold of 0.35, and matching 
threshold of 0.6241 are shown in Table 1. While other 
thresholds are empirical, the matching threshold, λ, is 
calculated as in equation (8) based on Tables 1 and 2. 
The results in Table 1 shows that all seven cases are 
correctly discriminated, with similarities at the whole-
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object level between 0.41 and 0.55, and the post-
integration rate of 0%. Thus, the two tracks are 
reliably discriminated. 

    
(1a) MO and mask in frames 0400 and 2150 

Figure 3. Moving objects from track 1, frames 0400-0412 
and track 2, frames 2150-2162. 

 

Table 1. Matching similarities. (PETS 2001 dataset 1, frames 0400-0412 and 2150-2162, Color distance: 0.01, 
discrimination threshold: 0.35, MCSHR cut off: 90%, Number of divided parts: 7).

Test Case Frame  No Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Similarity 
(mean) 

Matching Results
 

0400 1 2150 0.6441 0.1823 0.1640 0.3388 0.8584 0.9225 0.0455 0.4508 0 (No) 

0402 2 2152 0.7267 0.8094 0.2492 0.2133 0.2217 0.8907 0.7669 0.5540 0 (No) 

0404 3 2154 0.2639 0.2999 0.1933 0.2234 0.3176 0.8233 0.7481 0.4099 0 (No) 

0406 4 2156 0.1724 0.1889 0.1135 0.3267 0.8131 0.8657 0.6451 0.4465 0 (No) 

0408 5 2158 0.2542 0.7222 0.2024 0.1705 0.3207 0.8100 0.9404 0.4886 0 (No) 

0410 6 2160 0.2361 0.2152 0.1739 0.2480 0.7907 0.7070 0.7414 0.4446 0 (No) 

0412 7 2162 0.9398 0.1681 0.0705 0.7958 0.6600 0.2402 0.2933 0.4525 0 (No) 

0400-0412 Post-Integration 2150-2162         0% (No ) 
 

 
           

5.2 Matching-by-parts of a Single 
Moving Object in Two Different 
Tracks 

The test data reported here is from the same person in 
two different tracks (track 1, frames 2040-2052, and 
track 2, frames 2150-2162 in steps of five frames). 
The extracted moving object and moving object mask 
in typical frames (2048 in track 1, and 2156 in track 
2) are shown in Fig. 4. The results from matching-by-
parts at the single frame level and post-matching 
integration alomg the track with 90% of major 
colours, colour threshold of 0.01, discrimination 
threshold of 0.35, and matching threshold of 0.6241 
are shown in Table 2. The results in Table 2 show us 
that in all seven cases, similarities were between 0.70 
and .87, proving that the proposed matching-by-parts 

MCSHR algorithm offers an accurate appearance 
representation and similarity measurement. The post-
integration of the seven individual matching cases is 
1.0, thus the two tracks are reliably matched. 

     
(a) MO and mask in frame 2048 (b) MO and mask in frame 2156 

Figure 4. Moving objects from track 1, frames 2040-2052 
and track 2, frames 2150-2162. 
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Table 2. Matching similarities. (PETS 2001 dataset 1, frames 0400-0412 and 2150-2162, Color distance: 0.01, 
Discriminate threshold: 0.35, MCSHR cut off: 90%, Number of divided parts: 7). 

Test Case Frame  No Part 1  Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Similarity 
(mean) 

Matching Results

2040 1 
2150 

0.2681  0.6239 0.8946 0.8581 0.7363  0.6118 0.9360 0.7041 1 (Yes) 

2042 2 
2152 

0.7146  0.7568 0.9188 0.9344 0.9517  0.3098 0.6402 0.7466 1 (Yes) 

2044 3 
2154 

0.7817  0.9093 0.9493 0.8878 0.9280  0.8268 0.8428 0.8751 1 (Yes) 

2046 4 
2156 

0.8171  0.6491 0.8222 0.9308 0.8707  0.7943 0.7867 0.8101 1 (Yes) 

2048 5 
2158 

0.6718  0.7190 0.8564 0.9283 0.9626  0.7997 0.3050 0.7490 1 (Yes) 

2050 6 
2160 

0.8139  0.6633 0.6983 0.9550 0.8936  0.8258 0.7009 0.7930 1 (Yes) 

2052 7 
2162 

0.7588  0.5820 0.8044 0.9618 0.9216  0.7687 0.8879 0.8122 1 (Yes) 

2040-2052 Post-Integration 
2150-2162 

        100% (Yes ) 

 
 

6 Conclusions   
In this paper, a matching-by-parts algorithm based on  
maximum likelihood criteria has been proposed. 
Based on our experimental results, the following 
conclusions can be drawn: 
1) The proposed moving object matching-by-parts 

algorithm shows both good invariance and 
discrimination. 

2) The assumptions made in the model in (3) are 
well validated by results reported in Tables 1 and 
2. This allows formal derivation of the matching 
threshold, , λ. 

3) Thanks to the post-matching integration, potential 
single-frame matching errors do not affect the 
overall matching result and robustness and 
accuracy are increased. 

The proposed moving objects track matching-by-parts 
algorithms can significantly extend current video 
surveillance applications by providing them with the 
capability of tracking single objects across disjoint 
camera views which is the actual case for many real-
world surveillance camera networks. 
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Abstract

In this paper, we describe the use of a voting scheme and discriminant analysis for purposes of the
recovery of silhouettes from a set of sequentially acquired images. The method presented here is
semi-supervised in nature and employs, as a starting point, a manually obtained silhouette. By assuming
the camera displacement is small between successive frames, we cast the silhouette recovery problem
in a discriminant analysis context, in which the initial silhouette information provided by the user is
propagated from frame-to-frame across the image sequence. To this end, we make use of a region-based
voting scheme. This, in turn, allows us to pose the silhouette recovery task in an evidence combining
setting. We illustrate the utility of the method on real-world thermal imagery.

Keywords: silhouette detection, object contour, discriminant analysis, voting approaches

1 Introduction

Silhouette detection and recovery is a classical
problem in computer vision, pattern recognition
and computer graphics, which arises in a number of
applications spanning from rendering and shadow
modelling [1] to articulated body kinematics [2]
and volume modelling [3].

A silhouette can be viewed as an image in which
the object becomes an occluder of the background
from the observer’s view point. In the computer
graphics community, the recovery of object
silhouettes is a forward computation process
which can be effected making use of computations
which hinge in the properties of three-dimensional
data. These methods are aimed at recovering the
boundary of the object based upon ray tracing
or image processing operations. Therefore, the
silhouette is computed at the image rendering
level. Raskar and Cohen [4] have used polygon
orientation on the mesh under study to recover
the silhouette of the object. Kettner and Welzl [5]
used a sweep-line algorithm for the computation
of the silhouette of a polyhedral object.

Unfortunately, in the areas of computer vision
and pattern recognition, the recovery of the object
silhouette is a “backwards” computation task in
which the occluding contour is computed making
use of image processing techniques rather than
computations in 3D. This image space silhouette
computation is not a straightforward task. The
reason being is that, in contrast with the use of
3D information, here, we are concerned with the

recovery of the projection, on the image plane,
of an occluding contour in the scene. Thus, in
general, when 3D information is not at hand, the
recovery of silhouettes is dependent on background
information and controlled lighting conditions.

The link between the occluding contour and the 3D
structure of the object under study has motivated
the use of silhouettes in the computer vision com-
munity as a cue for shape recovery, i.e. shape-from-
silhouette. These approaches generally rely upon
the manual generation of the object silhouettes
[6] or the recovery of the occluding contour via
image differencing [7]. This is done making use
of a known background so that the foreground and
background are distinguishable. Along these lines,
Zheng [8] has recovered the 3D shape from a single
camera using multiple views of the object under
study on a turntable with known background. In
a related development, Zeng and Quang [9] use
multiple calibrated images to overcome the back-
ground modeling problem associated to silhouette
recovery.

In this paper, we aim at recovering the silhouettes
of the object under study making use of a number
of images acquired using an uncalibrated camera
and a single contour provided by the user. This
is, for each of the images under study, our aim of
computation is the corresponding occluding con-
tour with respect to the background, whose na-
ture is, a priori, unknown. This silhouette can be
viewed as a contour whose recovery is based upon
a semi-supervised process governed by the single
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silhouette provided at input by the user, which is
propagated across the views at hand.

2 Semi-supervised Silhouette Extrac-
tion

In this section, we present our silhouette extraction
algorithm. The method is, succinctly, as follows.
For every pair of views, between which the cam-
era displacement is small, we cast the silhouette
recovery problem as a two-class segmentation one,
where the contour is given by the boundary pix-
els between the object under study and the back-
ground. To do this, we make use of a discriminant
analysis on the background and foreground infor-
mation whose starting point is the user-provided
contour. Hence, our silhouettes recovery algorithm
is a semi-supervised one in which the contour pix-
els are recovered using a separability analysis ap-
proach based upon a two-class characterization of
the problem in hand.

The section is organized as follows. We commence
by viewing the silhouette of the object as a con-
tour on the image plane which is the result of the
projection onto the camera frame of a set of 3D
points in the scene. Viewed in this manner, we
can show that, if the displacement of the camera
is small, the pixel coordinates for each of the 3D
points in the scene are approximately the same.
This, in turn, permits the use of a region-based
approach and discriminant analysis [10] to cast the
silhouette recovery problem in a clustering setting.
We conclude the section by showing how the region
information and the discriminant analysis between
foreground and background can be combined in a
probabilistic fashion so as to recover the silhouette
of the object in the scene.

2.1 Silhouette Modeling

As mentioned earlier, an object silhouette is the
occluding contour of the object. Here, we aim
at recovering the silhouette information from a se-
quence of views. To do this, we commence by view-
ing the pixel information as the projection onto
the camera frame of a set of points in 3D. Thus,
let Pi = (Xi, Yi, Zi) be the 3D point on the object
referenced to the camera frame indexed i, i.e. the
ith view. Making use of the pin-hole camera model
[11], we can write the normalized image projec-
tions, P i

n = [x, y] as follows

P i
n =

[
Xi/Zi

Yi/Zi

]
=

[
x
y

]
(1)

After including the lens distortion, the new nor-
malized point coordinate P i

d = [xi
d, y

i
d] can be re-

lated to the pixel image coordinates, xi
p and yi

p as
follows ⎡⎣ xi

p

yi
p

1

⎤⎦ = K

⎡⎣ xi
d

yi
d

1

⎤⎦ (2)

where K is known as the camera parameter matrix.

Now consider the same 3D point on the camera
frame indexed i+1, the ith+1 view. The relation-
ship between Pi and Pi+1 can be written as

Pi = T + RPi+1 (3)

where R and T are the relative rotation and trans-
lation of i+1 with respect to i. Further, as outlined
above Pi+1 can be projected to its image plane
using Equation 1.

However, should the relative positions of the cam-
era frames i+ 1 and i be close to one another, we
can rewrite equation 3 as

Pi ≈ Pi+1 (4)

Consequently, if the camera distortion and position
with respect to the object under study are approx-
imately the same between successive views, then
we can write [

xi
p

yi
p

]
≈

[
xi+1

p

yi+1
p

]
(5)

.

In other words, the neighbourhood of (xi
p, y

i
p)

will be similar if not exactly same as that of
(xi+1

p , yi+1
p ). In the following section, we show how

this can be exploited for purposes of separating
the background from the foreground using the
user-input silhouette.

2.2 Silhouette Recovery as a Foreground-
Background Separation

As mentioned above, if the displacement between
views is small, then the information conveyed by
the neighbourhoods for the pixel coordinates xi

p

and xi+1
p is approximately equivalent. This implies

that the labelling of background and foreground
extracted from the user-input silhouette first frame
in our sequence can be propagated across the views
under study making use of an appropriately sized
neighbourhood window. Further, once the silhou-
ette for the ith view is at hand, we can use it,
analogously to the user-input one at the first frame,
to perform inference on the view indexed i + 1.
In this section, we first show how the pixels in
the frame i+ 1 can be classified, regionwise, using
the silhouette for the ith view. With this region-
based information at hand, we then recover the
silhouette for the i + 1 frame by making use of a
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simple discriminant analysis method and a voting
scheme.

Consider a region Ri
p̂ in the image corresponding

to the ith view given by a sliding window centered
at the pixel p̂. Making use of the foreground-
background separation provided by the silhouette
for the ith frame, we can classify the pixels in the
region Ri+1

p̂ on the frame indexed i+ 1. Note that

both, Ri
p̂ and Ri+1

p̂ are centered at the same pixel
coordinates and, hence, overlap. Moreover, from
now on, we consider the coordinates on the image
plane for the pixels pi and pi+1 equivalent. Once
the pixel classification for each region is at hand,
we can use an evidence combining scheme in which,
for any given pixel in the image, there will | Ri

p̂ |

regions voting for the pixel pi+1 to be considered
either foreground or background. Once the votes
are at hand, we can use a method akin to that in
[12] to recover the silhouette.

2.2.1 Region Voting

This voting scheme is based upon the results yield
by a classifier whose output is dependant on the
foreground and background information given by
the silhouettes at the ith view for each of the re-
gions Ri

p̂. If a region is totally in the background,

all the pixels in Ri+1
p̂ are automatically awarded a

background vote. Likewise, if Ri
p̂ is totally inside

the silhouette for the ith frame, it votes for its
comprising pixels being foreground ones in the i+
1 view. However, if the region Ri

p covers both,
foreground and background pixels, then we make
use of a classifier based upon discriminant analysis
to recover the region votes.

To commence, consider the pixel pi ∈ Ri
p̂. We

denote V(pi+1,Ri
p̂)

F the votes for the pixel pi+1

to be considered as foreground. Conversely,
the background votes for the pixel are given by
V(pi+1,Ri

p̂)
B . Note that, given the silhouette at

frame indexed i, the pixels in the region can be
classified as foreground or background. That is,
the pixels inside the silhouette are considered to
be foreground and those outside the occluding
contour describe the background. Hence, we can
label the foreground and background pixels as
members of the sets ΩF and ΩB, respectively.

With these ingredients, it is a straightforward task
to recover a cut-off value for the pixels pi ∈ Ri

p̂

making use of discriminant analysis [10]. At this
point, it is important to note that, since we aim
at recovering silhouettes from thermal imagery,
we will focus our development in the use of a
cut-off value based upon pixel temperatures.
Nonetheless, the development presented here can

be extended, in a straightforward manner, to
colour spaces. Once the temperature cut-off value
is at hand, it can be used to recover the votes
corresponding to pi+1 ∈ Ri+1

p̂ . To do this, we
commence by computing the mean and variance
for the foreground and background classes in Ri

p̂.
For the two classes, the variances are given by

σ2
F =

1

| ΩF |

∑
pi∈ΩF

(pi − μF )2 (6)

σ2
B =

1

| ΩB |

∑
pi

∈ΩB

(pi − μB)2 (7)

where μF and μB are the mean foreground and
background pixel class levels, respectively.

The optimal cut-off value ri
p̂ for the pixels in the re-

gion Ri
p̂k is given by that which maximizes Fisher’s

linear discriminant [13] separability measure given
by

λ = σ2
b/σ

2
w (8)

where σb, σw are between and within class vari-
ances given by

σ2
w = ωBσ

2
B + ωFσ

2
F (9)

σ2
b = ωBωF (μB − μF )2 (10)

and ωF , ωB are real-valued class weights.

To take our analysis further, we note that the max-
imum of λ is given by ω∗ = ωF = ωB, where ω∗

is the optimum value of the weights, which can be
computed making use of the expression

ω∗ =
μB − μF

σ2
B + σ2

F

(11)

Moreover, making use of ω∗, it can be shown that
the optimum cut-off value ri

p̂ is given by

ri
p̂ = {k|(ω∗)

2
= ωk(1 − ωk)} > 0 (12)

where ωk is a real-valued function of the pixel-
temperature level k defined as follows

ωk =
1

| Ωk |

∑
pi∈Ωk

pi (13)

and Ωk is the set of pixels in Ri
p̂ whose level is less

or equal than k, i.e. Ωk = {pi | pi ∈ Ri
p̂ ∧ pi ≤ k}.

Thus, in practice, we can recover ri
p̂ making use

of sequential search governed by the condition in
Equation 12.

Once the value of ri
p̂ for each of the image re-

gions Ri
p̂ is at hand, the pixel pi+1 receives a vote

V(pi+1,Ri
p̂) from each region Ri

p̂ comprising the

pixel pi. A foreground vote is cast if the pixel pi+1

is classified as foreground based upon the cut-off
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Figure 1: Top row: First frame for the image sequences under study; Bottom row: Corresponding input
silhouettes.

value ri
p̂ for the region Ri

p̂. A foreground vote is
cast otherwise. As a result, the votes are depen-
dant on the classification given to the temperature
value of the pixel at frame i + 1 as yield by the
classifier trained using the region information on
the ith view.

2.2.2 Silhouette Recovery

Once the pixel votes are at hand, we can make use
of the method in [12] to separate the foreground
from the background and, hence, recover the ob-
ject’s silhouette. This is possible due to the fact
that the foreground-vote histogram for the view
indexed i+ 1 can be normalized and regarded as a
probability distribution which can be dichotomized
in an unsupervised fashion.

This separation in two classes is, in fact, the result
of the assumption, made a priori that the pixels
in the image belong to either the background or
the foreground classes. Recall that the algorithm
in [12] is based upon discriminant analysis. Our
choice of threshold criterion responds to the intu-
ition that the best separation of classes, in terms
of foreground votes, would yield the best silhouette
possible.

3 Experiments

In this section, we turn our attention to the
experimental evaluation of our silhouette recovery
method. To this end, we have used the thermal
image-sequences corresponding to four laptops.
For the sake of simplicity, we have acquired the

imagery making use of a turntable, on which
the laptop under study has been rotated and
translated. Thus, our image sequences show the
views for the objects under study from 0o to 360o

in 10o increments. The translation was of ±10cm
perpendicular to the camera axis in steps of 1cm
between views.

In Figure 1, we show the first view for each of
the four laptops under study and the manually
extracted contour provided at input. From the
panels, it can be noted that the variation of tem-
perature across the object is considerable. Further-
more, some regions, such as the screen and areas
of the keyboard have a temperature value which is
comparable to that of the background.

In the top row of Figure 2, we show example results
for the 12th view in our test sequences. The mid-
dle row show the foreground-vote maps, i.e. the
normalized magnitude of the foreground votes sets
for each of the pixel locations on the image. The
silhouette recovered by our algorithm are shown in
the bottom row. From the figure, we can conclude
that, despite the small temperature difference be-
tween the foreground and some foreground areas,
the recovered silhouettes are in close accordance
with the occluding contour of the objects. For
instance, the screen of the fourth laptop, i.e. the
laptop shown in the fourth column, is barely dis-
tinguishable from the background. Nonetheless,
the foreground-vote maps show a clear distinctness
between the object and the background.

Finally, we turn our attention to a more quanti-
tative evaluation of the results yield by our algo-
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Figure 2: Top row: input views; Middle row: foreground-vote maps for the views in the top row; Bottom
row: recovered silhouettes

Table 1: Percentage of Misassigned Foreground
Pixels for each of the objects under study
Object under study mean±standard deviation
Laptop 1 0.0208±0.0049
Laptop 2 0.0257±0.0049
Laptop 3 0.0236±0.0049
Laptop 4 0.0219±0.0050

rithm. To this end, we have used ground-truth
silhouette data and, for each of the objects under
study, we have computed the average percentage of
misassigned foreground pixels across the 36 views
comprising each image sequence. In Table 1, we
list the mean and standard deviation for the per-
centage of misassigned pixels as a function of ob-
ject index. From the quantitative results shown
we conclude that the silhouette recovered by our
algorithm is in close accordance with the ground
truth. Furthermore, the algorithm can cope well
with the recovery of silhouettes for objects whose
surface temperature is comparable to that of the
background.

4 Conclusions

We have presented a method for extracting sil-
houettes from uncalibrated thermal imagery. Our
method is semi-supervised in nature and propa-
gates the information provided by the user, in the
form of a single silhouette, across the views under
study. We have shown how this can be effected
making use discriminant analysis techniques. We
have shown results on real-world imagery.
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Abstract
In this paper we propose a simple and efficient eye detection method for face detection tasks in color
images. The algorithm first detects face regions in the image using a skin color model in the normalized
RGB color space. Then, eye candidates are extracted within these face regions. Finally, using the
anthropological characteristics of human eyes, the pairs of eye regions are selected. The proposed method
is simple and fast since it needs no template matching step for face verification. It is robust because it
can deal with rotation. Experimental results clearly show the validity of our approach. A correct eye
detection rate of 98.4% is achieved using a subset of the AR face database.

Keywords : Eye detection, Skin detection, Skin color model, Face detection

1 Introduction

Automatic human face analysis and recognition
has received significant attention during the past
decades, due to the emergence of many potential
applications such as person identification, video
surveillance and human computer interface. An
automatic face recognition usually begins with the
detection of face pattern, and then proceeds to
normalize the face images using information about
the location and appearance of facial features such
as eyes and mouth [1], [2]. Therefore, detecting
faces and facial features is a crucial step. Many
methods for solving the face detection problem
have been proposed in the literature (see [3] for
a more detailed review) and most of them can
be put into a two-stage framework [4]. The first
stage focuses attention to face candidates, i.e.
regions that may contain a face are marked. In
the second stage, the face candidates are sent to
a ”face verifier”, which will decide whether the
candidates are real faces or not. Different methods
put emphasis on one or other of these stages.

Eyes can be considered the most salient and stable
features in a human face in comparison with other
facial features. Therefore, extraction of eyes is of-
ten a crucial step in many face detection algorithms
[5], [6]. A recent review on eye detection techniques
can be found in [7]. The main classical meth-
ods include the template matching method, ein-
genspace method and Hough transform method [8],
[9]. Besides these three classical methods, many
other image-based eye detection techniques have
been proposed recently. Han et al. [5] use mor-

phological operations to locate eye-analogue pixels
in the input image. Then a labeling process is
executed to generate eye-analogue segments which
are used as guides to search for potential face re-
gions. Finally a trained backpropagation neural
network is used to identify faces and their loca-
tions. Similar ideas are used by Wu and Zhou
[4]. They employ size and intensity information
to find eye-analogue segments from gray scale im-
age, and exploit geometrical relationship to filter
out the possible eye-analogue pairs. They also use
a template matching approach for face cadidates
verification. Huang and Wechsler [10] use genetic
algorithms to evolve some finite state automata
to discover the most likely eye locations. Then
optimal features are selected and a decision tree is
built to classify whether the most salient locations
identified earlier where eyes. Kawaguchi and Rizon
[11] use intensity and edges information to locate
the iris. The main techniques they use are template
matching, separability filter and Hough transform.
Song et al. [7] use similar ideas to detect eyes. An
improvment of their work is the extraction of bi-
nary edge images based on multi-resolution wavelet
transform.

In this paper, a simple and robust eye detection
method in color images is presented. The proposed
method strongly depends on a good face region
selector. A skin color model is used to select face
regions. Then eyes are directly detected within
these regions based on anthropological character-
istics of human eyes. The method is simple since it
needs no training examples of eyes or faces, and no
face verification step. The remainder of the paper
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is organized as follows. The face region detection
is described in Section 2. The eye detection algo-
rithm is addressed in Section 3. Some experimental
results showing the validity of the method, are
given in Section 4. Finally, concluding remarks
are given in Section 5.

2 Face region detection

Human skin color is a very efficient feature for face
detection. Although different people may have
different skin color, several studies have shown
that the major difference lies largely between their
intensity rather than their chrominance [12], [13].
Many different color spaces have been employed.
Among them one finds: RGB, normalized RGB,
HSI, HSV, YCbCr, YES, YUV, CIE Lab [6].
Terrillon et al. [14] have shown that the tint-
saturation-luma (TSL) space and the normalized
RGB space provide best results for Gaussian
models. But we can notice, following Albiol et al.
[15], that if an optimal skin detector is designed
for every color space, then their performance will
be same. For that reason, we adopt the normalized
RGB color space since it is simple and we model
the skin distribution by a single Gaussian.

2.1 Skin color modeling

Skin color distribution can be modelled by an ellip-
tical Gaussian probability density function (pdf),
defined as:

f(c|skin) =
1

2π|Σs|1/2
e−

1
2 (c−µs)T Σ−1

s (c−µs) (1)

where c is a color vector and (µs, Σs) are the dis-
tribution parameters. These parameters are es-
timated from a training sample. We used a set
of 1,158,620 skin pixels, manually selected from
about 100 Internet images. The images are chosen
in order to represent people belonging to several
ethnic groups, and a wide range of illumination
conditions.

A more sophisticated model, a mixture model, is
often used in the literature [16], [14]. It is a gener-
alization of the single Gaussian and the pdf in this
case is the sum of several single Gaussians. The
reason why we choose a single Gaussian model is
that our experiments have shown that the perfor-
mance of mixture models exceeds single model’s
performance only when a high true positive rate is
needed (more than 80%). The same observation
have been given by Caetano et al. in [17].

2.2 Skin detection

Once the parameters of skin color distribution in
the normalized RGB color space are obtained from

the training sample, we use the Mahalanobis dis-
tance from the color vector c to mean vector µs,
given the covariance matrix Σs to measure how
”skin like” the color c is:

λs(c) = (c− µs)T Σ−1
s (c− µs) (2)

Given an input image, for each pixel x, x = (r, g)
in the normalized RGB color space, x is considered
a skin pixel if λs(x) ≤ t. In our experiments,
the threshold value t was chosen to obtain a true
positive rate of 80%, while ensuring a false positive
rate less than 15%. An example of skin detection
result using an image from the AR database is
shown in figure 1.

Figure 1: From left to right: original image, skin
region detected.

3 Eye detection

In [4] and [5], eyes are detected based on the as-
sumption that they are darker than other part of
the face. Han at al. [5] use morphological oper-
ations to locate eye-analogue segments, while Wu
and Zhou [4] find eye-analogue segments searching
small patches in the input image that are roughly
as large as an eye and are darker than their neigh-
borhoods. In these methods, eye-analogue seg-
ments are found in the entire image resulting in a
high number of possible pairs to check. On the con-
trary, in the proposed method, we directly search
for eye-analogue segments within the face region.
We consider as potential eye regions, the non-skin
regions within face region. Obviously, eyes should
be within a face region and eyes are not detected
as skin by the skin detector. The same ideas are
used by Hsu et al. [6]. Therefore, we have to
find eye-analogue pairs among a reduced number
of potential eye regions (see figure 2).

An ellipse is fitted to each potential eye region
using a connected component analysis. Let Rk

be a potential eye region and (xk, yk) its centroid.
Then Rk, reduced to an ellipse, defines ak, bk and
θk which are, respectively, the length of the major
axis, the length of the minor axis and the orienta-
tion of the major axis of the ellipse.

Finally, a pair of potential eye regions is considered
as eyes if it satisfies some constraints based on
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anthropological characteristics of human eyes. Let
Ri and Rj be two potential eye regions. Then
(Ri, Rj) corresponds to a pair of eyes if the fol-
lowing equations are satisfied:

• {
1 < ai

bi
< 3

1 <
aj

bj
< 3 (3)

•
|θi − θj | < 20o (4)

•
ai + aj

2
< dij < 3

ai + aj

2
(5)

The parameters in equation (3) and equation (5)
are chosen according to the fact that for human
eyes, if we denote by we and he respectively the
width and the height of an eye, the average value
for w/h is 2 and averagely dij = 2we [18]. Equa-
tion (4) is based on the fact that the two major
axis should have the same orientation. A final
constraint is the alignment of the two major axis,
i.e. for two eye regions they belong to the same
line.

Figure 2: From left to right: skin region detected,
potential eye regions.

Using these rules, the algorithm sometimes detects
not only eyes, but also eyebrows. To discard re-
gions corresponding to eyebrows, we use the fact
that the center part of an eye region is darker than
other parts. Then a simple histogram analysis of
the region is done for selecting eye regions since
an eye region should exhibit two peaks while an
eyebrow region shows only one.

4 Experimental results

We made different experiments to evaluate the per-
formance of the proposed algorithm. Firstly, we
used the AR face database [19] to compare our re-
sults with those described by Kawaguchi and Rizon
[11], and Song et al. [7]. This database contains
color images of frontal view faces with different
facial expressions, illumination condition and oc-
clusions. For a direct comparison, we used the
same subset of the database employed in [11] and

[7]. This subset, named AR-63, contains 63 images
of 21 people (12 men and 9 women) without spec-
tacles stored in the first CD ROM. The images in
AR-63 show three expressions (neutral, smile and
anger) and have natural illumination condition.

Secondly, we used some images gathered from In-
ternet for testing the robustness of the method
against complex background, varying illumination
condition and rotation.

4.1 Evaluation criterion

A commonly used criterion for the performance
evaluation of an eye detection method is the rel-
ative error introduced by Jesorsky et al. [20]. It is
defined by:

err =
max(dl, dr)

dlr
(6)

where dl is the left eye disparity, i.e. the distance
between the manually detected eye position and
the automatically detected position, dr is the right
eye disparity, and dlr is the Euclidean distance
between the manually detected left and right eye
positions. In [4], the detection is considered to be
correct if err < 0.25. Song et al. [7] defined an
other criterion. They considered the detection to
be successful if:

max(dl, dr) < α.r (7)

where r is the radius of an iris and α is a scalar fac-
tor. Considering that the radius of an iris is about
1
4 of an eye width, one can see that the criterion
of equation (6) is equivalent that of equation (7)
with α = 2.

4.2 Results and discussion

Using the subset AR-63, the proposed method
achieves a success rate of 100% based on the
criterion defined in equation (6), and a success
rate of 98.4% (one failed image) based on the
criterion defined in equation (7) for α = 1. Some
detection results are shown in figure 3 where an
eye is depicted by a small white cross.

Comparing the proposed method with those de-
scribed by Kawaguchi and Rizon [11], and Song et
al. [7] using the same set of data, we see that
the performance of our method is equivalent to
that of the method of Song et al. (98.4% of cor-
rect detection), and both methods obtain slightly
better results than the method of Kawaguchi and
Rizon (96.8% of correct detection). The methods
in [11] and [7] can deal with gray scale images
but they need to detect the reflected light dots as
a cue for eye localization. One main advantage
of our method is that we obtain very precise eye
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localization without the detection of the reflected
light dots.

Figure 3: Examples of detected eyes by the pro-
posed method using the subset AR-63.

Figure 4 and figure 5 show some detection results
which demonstrate the robustness of the method
against rotation and illumination condition. The
skin detector is robust enough to deal with differ-
ent illumination conditions and the algorithm is
rotation invariant because we made no assumption
about the face orientation for detecting eyes.

Figure 4: Other examples of eye detection.

One can also notice, figure 5, that the method
can be successful when multiple faces are present.
Nevertheless, they are some eyes which are not
detected in that case. In particular, closed eyes
can not be detected.

The most related work to ours is the work of Hsu
et al. [6]. They base their face detection algorithm
on a robust skin detector too. Then they extract
eyes and mouth as facial features by constructing
eye and mouth maps based on the luminance and
the chrominace components of the image. Finally,
they form an eye-mouth triangle for all possible

Figure 5: Example of multiple faces detection.

combinations of the eye candidates and one mouth
candidate. Each eye-mouth triangle is verified us-
ing a score and the Hough transform. While this
method gives good results and may be more robust
than ours, we have found that mouth is a less stable
feature than eyes since we do not use an explicit
mouth or eye map. Moreover, using simple rules to
detect eyes, the proposed method is faster than the
one described in [6]. The average execution time,
given in [6], for processing an image (size 640 x
480) on a 1.7 GHz CPU is 24.71 s. The average
time for processing an image (size 768 x 576) on a
3 GHz CPU with our method is 3.8 s.

5 Conclusion

In this paper a simple and efficient eye detection
method for detecting faces in color images is pro-
posed. It is based on a robust skin region dectector
which provides face candidates. Then using some
simple rules derived from anthropological charac-
teristics, eyes are selected within face regions. The
procedure is robust enough to avoid a face verifi-
cation system and it achieves a successful rate of
98.4% on a subset of the AR face database. It
can also detect eyes in case of rotation and in the
presence of multiple faces.

The speed of the method and the robustness to
rotation would be very useful for real-time appli-
cations. However, experimental results show that
the method may failed if one or both eyes are closed
and if the face is viewed in profile.

Further improvements can be done for the detec-
tion of multiple faces with different orientations
and sizes. A multi-scale approach can be used for
that.
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Abstract
This paper discusses and presents computer vision research using an eigenface algorithm for session
based face tracking for access control on computer screens in public areas. In a typical office setup,
the algorithm performed well by locking the screen when a second face was present or as soon as the
authenticated user left the view of the terminal. The results culminated in a false negative and locked
screen 2% of the time, supporting the algorithmic approach to session based security.

Keywords: access control, session based, face tracking, face recognition, eigenface

1 Introduction

Everyday computers display critical and private in-
formation about individuals and companies. Com-
puter systems use access control [1], consisting of
identification, authentication and restrictions on
users to keep this information secure. However,
the system has no control over access to a com-
puter terminal once a user has been authenticated.
It is the user’s responsibility to hide sensitive in-
formation from unauthorised persons and to lock
the screen when leaving a terminal unattended [2].
The advent of open plan offices, customer friendly
service desks, Netcafes and wireless local area net-
works combined with trusted users, such as secre-
taries or customer service representatives being un-
dereducated in computer security or lacking secure
habits, have made it easy for unauthorised individ-
uals to view sensitive information on other’s com-
puter screens [3]. A low cost solution is to use web
cameras with face recognition [4] to track the user
while they are logged in. According to Zhao, Chel-
lappa, Phillips and Rosenfeld’s literature survey
[5], face tracking and recognition has evolved in the
past 30 years to a stage where it is reliable enough
for commercial, real-time applications. However,
They also found that the recognition of faces in
outdoor environments with changes in illumina-
tion and pose remains a largely unsolved problem.
Zhang, Yan and Lades, who compared eigenface,
authentication and classification neural nets, and
elastic matching [6], found that the eigenface al-
gorithm was the easiest to implement and the lest
computationally taxing on hardware. Tan and See,
who compared normalised cross-correlation, gra-
dient image, relative gradient image feature and
eigenface [7], found that even thought the eigen-
face method has a lower tolerance for severe illu-

mination variations, yaw angle variations of the
head and facial expressions variations than their
other tree face recognition approaches, the superior
speed of eigenfaces made it the most appropriate
recognition algorithm for real-time applications.

2 Implementation
The prototype system uses a 1.3 mega pixel Log-
itech web camera [8] mounted on the monitor of the
workstation. When the prototype program starts,
five training pictures of the authorised user are
taken. These pictures are then added to a library
of eighteen pictures that are used to create twelve
eigenfaces [9], similar to figure 1. The program
then takes a frame from the USB web camera finds
a face and compares it to the eigenfaces, every sec-
ond. When the face is recognised as the user’s, the
screen remains unlocked but when the user’s face
is no longer present or a second face is detected,
the screen is locked.

2.1 Face Search

The prototype program uses OpenCV’s cvHaarDe-
tectObjects [10] function which scans by sliding
a Haar classifier cascade across the image several
times, at different scales. During every pass,
the function applies the classifiers to overlapping
regions in the image. The function also applies
Canny pruning heuristics [11] to reduce the
number of regions needing analysis. Then the
function returns a sequence of average rectangles
for each large enough group of regions that passed
the classifier cascade. When no rectangles are
returned, the program assumes there are no
faces. If more than one rectangle is returned,
the program assumes there are other faces apart
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Figure 1: Graphical representation of 10 Eigenfaces.

from the user’s present. When one rectangle is
returned, the program cuts that region out of the
frame and passes it to the recognition functions as
the “input image”.

2.2 Eigenface Creation

Every image in a set of M original face images, is
transformed into a one dimensional vector of size N
and placed into the set S = {Γ1, Γ2, Γ3, · · · , ΓM}.
After obtaining the mean image Ψ, shown in figure
2,

Figure 2: Graphical representation of an average
face, calculated from a set portraits.

Ψ =
1

M

M
∑

n=1

Γn (1)

the difference Φ between the input image and the
mean image is found.

Φi = Γi − Ψ (2)

Next a set of M orthonormal vectors, un, which
best describes the distribution of the data is cal-
culated. The kth vector, uk, is chosen such that

λk =
1

M

M
∑

n=1

(uT
k Φn)2 (3)

is a maximum, subject to

uT
l uk = δlk =

{

1 (l = k)
0 (l 6= k)

(4)

The vectors uk and scalars λk are the eigenvectors
and eigenvalues of the covariance matrix C,

C = 1

M

∑M

n=1
ΦnΦT

n

= AAT

(5)

where A = [Φ1, Φ2, Φ3, · · · , Φn] and AT is

Lmn = ΦmT Φn (6)

once the eigenvectors vl and ul are found using

ul =
M
∑

k=1

vlkΦk (7)

for l = 1, 2, · · · , M .

2.3 Recognition

The input image is compared to the mean image
and their difference is multiplied with each eigen-
vector of the L matrix.

ωk = uT
k (Γ − Ψ) (8)

for k = 1, 2, · · · , M . Each value represents a weight
and is saved in a vector ΩT = [ω1, ω2, · · · , ωM ].
The Euclidean distance is minimised,
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εk = ‖ω − ωk‖
2 (9)

to determine which face class, or training picture,
provides the closest match to the input image. For
the closest match, the distance εk is below an es-
tablished threshold θε. If the difference is above
that threshold, no match is found.

3 Experiments and Results

To make testing easier the prototype system
displays two windows, one shows what the web
camera “sees” and the other the result, which is
the closest match to the face found in the current
frame. Instead of actually locking the screen the
program displays “Screen Locked” with a one line
description as to why, in the results window. The
lighting conditions and trained user’s face were
kept constant throughout the following tests.

3.1 Lighting

The prototype could no longer recognise the user’s
face when, the users face was trained in a high
lighting condition and the room was changed to
a low lighting condition, by turning off the lights.
The same thing happened when the user’s face was
trained in a low lighting condition and the room
was changed to a high lighting condition.

3.2 Distance

After experimentation it was found that for the
program to recognise a trained face or a second
face reliably, the face had to occupy at lest 900
pixels, which in the Logitech web camera’s [8] case
implied a maximum rang of two metres.

3.3 Printed Face

After experimentation it was also found that the
program accepted a printout of a high-resolution
picture of a face as a user. And when a user
already existed the program accepted the printout
as a second face.

3.4 Consistency

The prototype returns one of four cases: current
face recognized as the user, no match found for
the current face, two or more faces present or no
current face found. Each case had its own test
with one hundred input frames. Each test recorded
what the prototype returned to make table 1.

3.4.1 Users Face

A real user who moved around as much as someone
working at a computer workstation, was seated in
front of the computer to test that the program
would recognize the user and keep the screen un-
locked.

3.4.2 Two of More Faces

After the program was trained with the user’s face,
a printout of a high-resolution picture of a face was
held next to the user to test that the program found
two or more faces and locked the screen.

3.4.3 Other Face

After the program was trained with the user’s face,
a printout of a high-resolution picture of a face was
held in front of the web camera to test that the
program found a face, did not recognise it as the
user’s face and locked the screen.

3.4.4 No Faces

After the program was trained with the user’s face,
the user left the web camera’s field of vision to test
that the program did not find any faces and locked
the screen.

3.4.5 Results

Surprisingly, under normal conditions with con-
stant lighting, the screen locked every time the user
left the view of the web camera or a second face
appeared within two meters of the web camera The
screen locking on the user because of false nega-
tives; not matching the user’s face or not finding
the user’s face, only occurred 2% of the time. This
is shown in table 1.

4 Conclusion and Future Work

With a 100% screen locking rate, in a typical office
setup, this is an ideal session based security system
for workstations that have multiple users, over the
course of the day. In this setup lighting is constant
and not a problem, however the program could
be made more robust by retraining the user’s face
every time a large lighting change is registered by
the web camera The program could also average
the current state with the previous state, to re-
duce false negatives. In future, the system could
use stereo cameras, to add depth perception and
combat the 2% failure rate for false negatives, the
acceptance of a picture as face and to make a well
defined area where faces can and can not see the
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Table 1: Results from Consistency Tests

User’s Face Two Faces Other Face No Faces

Recognised User 98% 0% 0% 0%
No Match Found 1% 1% 99% 1%
Found Two or More Faces 0% 99% 0% 0%
No Face Found 1% 0% 1% 99%
Locked Screen 2% 100% 100% 100%

computer screen. In conclusion, a web camera
and a session based face tracking approach is cost
effective and robust enough to use as access control
on reasonably public computer screens.
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Abstract
In this paper we propose a new image feature extraction method for Pattern Recognition. We combine
Summed-area Tables and Moment Invariants to rapidly compute geometric moments over areas (sub-
windows) of the image. An approximation of a circular area allows to compute moments from areas
defined by concentric circles (concentric discs). The advantages of this method are: fast feature extraction,
rotation invariance and scaling invariance. The fact that the set of features are rotation invariant but not
translation invariant is the key to locate objects unambiguously when a multi-resolution scan is applied
to the image. To illustrate the method we computed the moments of concentric discs for a small set of
images and analyse its accuracy. The experiments showed a good potential of the method to be used in
real-time applications such as objected detection and tracking.

Keywords: Feature Extraction, Pattern Recognition, Moment Invariants, Viola-Jones Detector.

1 Introduction

Feature extraction is the most critical stage
of many Computer Vision applications such
as object detection and recognition. However
the computation of extra features from the
images is usually too slow to be used in real-
time applications. Usually one has to choose
a compromise among certain characteristics
such as invariability, discriminating powers,
dimensionality and computational complexity
of the feature extraction. Feature extraction
based on Moment Invariants has the strength of
keeping the same values despite certain geometric
transformations of the image (such as rotation,
scaling, translation etc).

Two problems arise from using features based on
Moment Invariants. The first is the speed in which
the image can be scanned (different sub-windows
at various position and scale). The second is the
limitation of the dimensions of the feature space
to a small number of low order moments. This is
due to the fact that higher order moments are too
sensitive to noise.

In this paper we propose a new feature extraction
method that combines two well known methods,
namely Summed-area tables ([1]) and Moment In-
variants ([2]). Our method consists in extracting
geometric moments over circular areas, so several
concentric discs can be examined. The moments

can be computed very rapidly at any scale and
position via a set of modified Summed-area tables.

The next sections are organised as follows: a brief
literature review discuss related work. We then
show how to rapidly compute a set of 11 Moment
Invariants using 15 Summed-area tables. Next we
present the new approach to increase the feature
space dimension without using higher order Mo-
ments (we limit the order to the 4th). An ex-
perimental section presents results and discussions
for a simple image to analyse the invariance of the
proposed features extraction method.

2 Related Work

Summed-area tables have been used to rapidly
compute sums of pixels over rectangular areas
([3]). Viola and Jones used this approach to
compute Haar-like features. However Haar-like
features are not rotation invariant, a challenge for
certain types of detection.

In the last few years there is a renewed interest for
the Moment Invariants theory proposed by Hu in
1962. Flusser discussed the independence and com-
pleteness of the original Hu’s set ([4]). Two of the
seven moments were dependent, leaving only five
to effectively be used for classification of images.
Moreover, Flesser developed a method to find out
the best sets of moments for higher orders. Higher
order moments are known to be very sensitive to
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noise, and for that reason this work is limited to
extract moments up to the 4th order.

The idea of extracting features from circular areas
is not new. Several methods proposed concen-
tric discs, so different parts of the image can be
analysed without loosing the rotation invariance
property. To cite a few examples, Arof et al. [5]
used a circular neighbourhood to classify texture.
Torres et al. [6] proposed a feature extraction
method based on the number of intensity changes
in pixels located at concentric discs. The centre of
the circle is located on the centroid of the object,
obtained via the moment of inertia of the image.
Kazhdan et al. [7] used concentric discs to compute
symmetry descriptors for 2D images. Mukundan
[8] proposed the use of Radial Tchebichef Invari-
ants (which are inherently computed over circu-
lar areas) for feature extraction and investigated
their representation capabilities and their invari-
ant properties. Another set of moments that are
rotation invariant are the Zernike moments (for a
comparative analysis see [9]).

To the best of the author’s knowledge this is the
first time that the moment invariants and the
summed-area tables are combined to compute
moments of concentric discs as proposed in this
work.

3 Rapid computation of Moment In-
variants

In this section we derive the equations to use
Summed-area tables to compute 11 moments over
a rectangular area.

3.1 Summed-area Tables

Summed-area tables [1] can be defined as matri-
ces in which each element contains the sum of all
the pixels that belong to the upper left parts of
the original image. Given an image i(xi, yi), the
Summed-area Table I(x, y) is:

I(x, y) =
∑

x≤xi

∑

y≤yi

i(xi, yi) (1)

Once a Summed-area Table is created for a certain
image, the sum of rectangular areas over the image
can be computed with 4 look-ups. Due to this
characteristic, a recursive algorithm for creating
the table can be based on the following equation:

I(x, y) = I(x− 1, y) + I(x, y − 1)
− I(x− 1, y − 1) + i(x, y) (2)

Where I(x, y) is the integral image element and
i(x, y) is the image element for the point (x, y). In

order to avoid negative indexes the integral image
is padded with zeros in the first row and column.

Next we show how to deduce the equations for
computing Moment Invariants at any position and
scale within an image using Summed-area Tables.
For clarity we present here the equations in the
form that they are usually presented in text books
for image processing (e.g. [10] and [11]).

3.2 Moment Invariants up to the 4th order

Given a digital image i(x, y), the 2D moment of
order (p+ q) is:

mpq =
∑

x

∑

y

xpyqi(x, y) (3)

For any order (p+q), each element can be pre-
computed by multiplying the pixel value by its
position. It is trivial to create Summed-area tables
for 2D moments of any order.

2D moments are non-invariant but they are the
basis for Hu’s equations. If the values x̄ and ȳ are
given by:

x̄ =
m10

m00
and ȳ =

m01

m00
(4)

A central moment is defined by:

μpq =
∑

x

∑

y

(x̄− x)p(ȳ − y)qi(x, y) (5)

And the normalised central moment is given by:

ηpq =
μpq

μ00
γ

(6)

Where γ = p+q+2
2

[2] proposed that seven Moment Invariants, up to
the 3rd order, were to be used as the basis of
image recognition systems. However subsequent
work done on Moment Invariants (see thorough
discussion in [4]) showed that only five of them
are independent and to complete the set up to the
3rd order a new moment was needed. We adopted
Flusser’s set up to the 4th order. We deduced
the expression to compute them directly from the
normalised central moments ηpq, so they can easily
be implemented with Summed-area tables. The
complete set used in this work (11 moments) fol-
lows:

ψ1 = η20 + η02 (7)

ψ2 = (η30 + η12)
2 + (η03 + η21)

2 (8)

ψ3 = (η30 − 3η12)(η30 + η12)

[(η30 + η12)
2 − 3((η21 + η03)

2] + (3η21 − η03)

(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (9)
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ψ4 = (η20 − η02)[(η30 + η12)
2 − ((η21 + η03)

2]
+ 4η11(η30 + η12)(η21 + η03) (10)

ψ5 = (3η21 − η03)(η30 + η12)

[(η30 + η12)
2 − 3((η21 + η03)

2]
+ (3η12 − η30)(η21 + η03)

[3(η30 + η12)
2 − (η21 + η03)

2] (11)

ψ6 = η11((η30 + η12)
2 − (η03 + η21)

2)
− (η20 − η02)(η30 + η12)(η03 + η21) (12)

ψ7 = η40 + η04 + 2η22 (13)

ψ8 = (η40 − η04)[(η30 + η12)
2 − (η03 + η21)

2]+
4(η31 − η13)(η30 − η12)(η03 − η21) (14)

ψ9 = 2(η31 + η13)[(η21 + η03)
2 − (η30 + η12)

2]+
2(η30 − η12)(η21 − η03)(η40 − η04) (15)

ψ10 = (η40 − 6η22 + η04)

{[(η30 + η12)
2 − (η21 + η03)

2]
2−

4(η30 + η12)
2(η03 + η21)

2}
+ 16(η31 − η13)(η30 + η12)(η03 + η21)

[(η30 + η12)
2 − (η03 + η21)

2] (16)

ψ11 = 4(η40 − 6η22 + η04)(η30 + η12)(η03 + η21)

[(η30 + η12)
2 − (η03 + η21)

2] − 4(η31 − η13)

{[(η30 + η12)
2 − (η03 + η21)

2]
2

− 4(η30 + η12)
2(η03 + η21)

2} (17)

These moments are invariant to translation, scal-
ing, rotation and mirroring.

3.3 Computing Moment Invariants from
Summed-area Tables

The similarity between equations 1 and 3 shows
that one can compute 2-D moments directly from
the Summed-area Tables. In order to create the
tables we modify equation 2:

mpq(x, y) = mpq(x− 1, y) +mpqI(x, y − 1)
−mpq(x− 1, y − 1) + i(x, y).xp.yq (18)

One can find generically the 2-D moment
mp,q(x′, y′, s) of a sub-window at (x′, y′) with
scaling factor s. Lets consider two identical
sub-windows that are located in different places
in the image. The sub-windows would have
different 2-D moments for orders p ≥ 0 and q ≥ 0.
However, their values are equivalent to computing
the moments based on the same sub-windows
padded by pixels of value zero. As the Moment
Invariants, ψn, are translation independent, their
values are the same for both sub-windows.

The equations 7 to 17 depend only on the seven
normalised central moments η11, η20, η02, η12, η21,
η30 and η03. These on the other hand depend on
μpq which can be computed using a number of 2-
D moments mpq and therefore using Summed-area
Tables directly. The zeroth order μ00 corresponds
to the simplest Summed-area Table, i.e., the equiv-
alent to the Integral Image used by Viola-Jones:

μ00 =
∑

x

∑

y

(x̄−x)0(ȳ−y)0i(x, y) = m00 (19)

For order 1,1 μ11 can be derived as follows:

μ11 =
∑

x

∑

y

(x− x̄)1(y − ȳ)1i(x, y)

=
∑

x

∑

y

(x.y − x.ȳ − x̄.y + x̄.ȳ).i(x, y)

=
∑

x

∑

y

x.y.i(x, y) −
∑

x

∑

y

x.ȳ.i(x, y)

−
∑

x

∑

y

x̄.y.i(x, y) +
∑

x

∑

y

x̄.ȳ.i(x, y) (20)

Both x̄ and ȳ are constant for a sub-window. Also
each of the four factors can be expressed as a func-
tion of the corresponding Summed-area Table:

μ11 = m11 − ȳ.m10 − x̄.m01 + x̄.ȳ.m00 (21)

We can now compute the central moment of order
1,1 for any sub-window based on the Summed-area
Table computed over the entire image. Analogous
derivation can be done to the other μpq, for which
we only write the final equations as a function of
mpq, x̄ and ȳ here:

μ20 = m20 − x̄m10 (22)
μ02 = m02 − ȳm01 (23)
μ30 = m30 − 3x̄m20 + 2x̄2m10 (24)
μ03 = m03 − 3ȳm02 + 2ȳ2m01 (25)
μ12 = m12−2ȳm11−x̄m02+2ȳ2m10 (26)
μ21 = m21−2x̄m11−ȳm20+2x̄2m01 (27)
μ22 = m22 − 2ȳm21 + ȳ2m20 − 2x̄m12 + 4x̄ȳm11

− 2x̄ȳ2m10 + x̄2m02 − 2x̄2ȳm01 + x̄2ȳ2m00 (28)
μ31 = m31 − ȳm30 + 3x̄ȳ(m20 −m21)+

3x̄2(m11 − ȳm10) + x̄3(ȳm00 −m01) (29)
μ13 = m13 − x̄.m03 + 3x̄ȳ(m02 −m12)+

3ȳ2(m11 − x̄m01) + ȳ3(x̄m00 −m10) (30)
μ40 = m40−4x̄m30+6x̄2m20−4x̄3m10+x̄4m00

(31)
μ04 = m04−4ȳm03+6ȳ2m02−4ȳ3m01+ȳ4m00

(32)
The central moments needed for the 11 indepen-
dent Moment Invariants φn can be computed from
the following 15 Summed-area Tables: m00, m10,
m01, m11, m20, m02, m12, m21, m30, m03, m04,
m40, m22, m31, m13.
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4 Proposed method for feature
extraction

Rotation and scaling invariance may be critical for
the recognition task for some applications. In this
section we describe how to increase the number
of features by computing the moments of quasi-
circular areas of the image. Using equations 7 to 17
we can compute the 11 moments from rectangular
areas. Using an approximation we can compute the
11 moments from a circular area. For a particular
area of interest we can proceed to compute circular
areas defined by a series of concentric discs. This
can be achieved using the same pre-computed 15
Summed-area tables, but it requires extra look-
ups.

The resulting set of features will be invariant
to rotation and scaling, but not translation.
For applications that scan images to detect
objects, such as in [3], this can be considered
as an advantage. If the object being searched
is over a dark background, many sub-window
candidates will be found. However the concentric
discs approach guaranties that only the few
sub-windows that are centred on the object will
match the pattern.

4.1 Circular Area (Discs)

Normally each rectangular sub-window requires
only 4 table look-ups per Summed-area table (a
total of 60 look-ups if we use the 15 Summed-area
tables proposed here). In order to compute a
circular sub-window, an approximation requires
that small square areas are subtracted from the
originally square sub-window (figure 1). The
number of look-ups can be minimised because
there are common points among the smaller square
areas. Some of the points are not at all necessary
because they are cancelled out. To compute the
sum over a square area, the points 1,2,3 and 4 of
a Summed-area Table are used as follows:

Asquare = pt1 − pt2 − pt3 + pt4 (33)

If the 12 squares (a,b, ... and l) are to be subtracted
from the large square that defines the sub-window,
we have Adisc:

Adisc = pt1 − pt2 − pt3 + pt4

−(pta1−pta2−pta3+pta4)−(ptb1−ptb2−ptb3+ptb4)
...−(ptk1−ptk2−ptk3+ptk4)−(ptl1−ptl2−ptl3+ptl4)

(34)

But there are common points among the square ar-
eas that cancel each other. Rewriting the equation
34 as a function of duplicate points:

Adisc = −pta4+ptb3+ptc2−ptd1+pte2+pte3−pte4
− ptf1 + ptf3 − ptf4 + ptg2 + ptg3 − ptg4 − pth1

+ pth3 − pth4 − pti1 + pti2 − pti4 − ptj1 + ptj2

+ ptj3 − ptk1 + ptk2 − ptk4 − ptl1 + ptl2 + ptl3
(35)

And therefore it suffices that 28 points are defined
to compute the sum of pixels in figure 1 using all
the 12 square areas (from a to l). Considering
the 11 moments and that we need 15 Summed-
area Tables, the total number of look-ups per sub-
window for the 11 moments is 420.

In order to compare with similar strategies used in
Haar-like feature extraction, a classifier produced
with [3] method for face recognition implemented
in OpenCV [12] has total of 2913 Haar-like features
distributed in 24 layers (cascades), requiring 17478
look-ups. However not all sub-windows will reach
the last layer, being eliminated by the classifier at a
earlier stage. If a sub-window reaches the 9th layer
it would have used around 500 look-ups, which is
comparable to the method proposed in this work.
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Figure 1: Computing the moments for an approx-
imation of a circular area: the 12 square areas (in
dark) are subtracted from each sub-window.

4.2 Concentric Discs

Finally, we can compute 11 moments for discs of
different diameters. Figure 2 shows an example
where a total of 66 moments are being computed.
Each disc has its own pattern, as it catches dif-
ferent pixels of the image. The method has the
potential to improve the discrimination powers of
the feature set.

Figure 2: The concentric discs approach: more
features are extracted, as the areas within the inner
circles get different patterns, enriching the feature
set.
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The complete set of moments computed over con-
centric discs is obviously not translation invariant.
If the centre of the concentric discs is moved the
values for the internal discs will differ from the
ones computed based on the previous centre. This
can be used to locate the exact position of an ob-
ject in the case of detection algorithms that use
scanning and compare the values using classifiers
(see for example the way sub-windows containing
certain patterns can be located using Viola and
Jones method [3]).

5 Experimental Results and Discus-
sion

Figure 3: Test image from [10].

Experiments where carried out to verify the ro-
tation and scaling invariance of the features ex-
tracted by this method. Firstly the image in figure
3 (which can be found in [10]) was used to compute
the first 5 moments of Hu’s set and the extra 6
moments from Flusser’s set. The first 5 values
might differ slightly from [10] due to the variable
precision used to create the integral images and
used to compute the set. For comparison, the
logarithm of the absolute values of the moments
were computed.

Table 1: 11 moments computed over a square area
for image in figure 3.

images

orig. half mir. 2
◦

45
◦ σ

ψ1 6.600 6.600 6.600 6.596 6.595 0.0000

ψ2 23.888 23.888 23.888 23.866 23.868 0.0001

ψ3 49.200 49.201 49.200 49.152 49.134 0.0010

ψ4 32.102 32.102 32.102 32.073 32.074 0.0002

ψ5 47.850 47.850 47.850 47.807 47.810 0.0005

ψ6 34.765 34.766 34.765 34.739 34.718 0.0005

ψ7 12.838 12.838 12.838 12.830 12.829 0.0000

ψ8 38.158 38.158 38.158 38.124 38.126 0.0003

ψ9 40.248 40.250 40.248 40.220 40.197 0.0006

ψ10 61.701 61.701 61.701 61.649 61.649 0.0008

ψ11 61.978 61.978 61.978 61.930 61.924 0.0007

In a second experiment we used the same 5 images,
but this time we computed the moments using the
concentric discs approach. The discs’ diameters are
computed as a function of the width of the images

(e.g., here 0.9 means 90% of the width). Table 2
shows the results for the disc with a diameter of
50% of the width. Table 3 shows the variance of
the results for discs of various diameters (as per
figure 2).

Table 2: 11 moments computed over an approxi-
mation of circular area using 12 square areas (with
a diameter of 50% of the width) for image in figure
3.

images

orig. half mirr. 2
◦

45
◦ σ

ψ1 6.615 6.615 6.615 6.611 6.613 0.0000

ψ2 25.225 25.243 25.225 25.201 25.192 0.0004

ψ3 50.889 50.948 50.889 50.857 51.702 0.1311

ψ4 34.151 34.179 34.151 34.110 34.143 0.0006

ψ5 50.352 50.390 50.352 50.293 50.454 0.0035

ψ6 35.362 35.364 35.362 35.363 35.376 0.0001

ψ7 12.943 12.942 12.943 12.934 12.938 0.0000

ψ8 40.352 40.379 40.352 40.305 40.344 0.0007

ψ9 40.910 40.909 40.910 40.918 40.945 0.0002

ψ10 66.087 66.270 66.087 66.052 66.161 0.0077

ψ11 67.417 67.407 67.417 67.811 67.425 0.0311

The results show that the approximation of the
circular area is successful, as the variance is small
for most moments. The set of features could be
used for recognition tasks were the rotation in-
variance is important. The scaling invariance is
maintained, as the approximation of the disc would
be equivalent at different scales.

Figure 4 shows the actual approximations used to
compute the discs for 50% diameter. The extra
few areas outside the circle create some variation
on the moments values. A better approximation
could be easily implemented by subtracting more
areas (if the accuracy is critical). However any
improvement comes with the extra cost of more
look-ups in the Summed-area tables.

Table 3: Variances for the concentric disc features
from 1 to 0.5 in diameter.

diameter

1 0.9 0.8 0.7 0.6 0.5

σψ1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ2
0.0001 0.0001 0.0002 0.0001 0.0001 0.0004

σψ3
0.0010 0.0003 0.0047 0.0015 0.0112 0.1311

σψ4
0.0002 0.0004 0.0012 0.0007 0.0047 0.0006

σψ5
0.0005 0.0007 0.0016 0.0026 0.0089 0.0035

σψ6
0.0005 0.0000 0.0047 0.4099 0.2052 0.0001

σψ7
0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

σψ8
0.0003 0.0007 0.0021 0.0010 0.0078 0.0007

σψ9
0.0006 0.0007 0.0346 0.2224 1.6947 0.0002

σψ10
0.0008 0.0034 0.0221 0.2331 0.1935 0.0077

σψ11
0.0007 0.0014 0.0176 1.1691 0.0192 0.0311

As expected, the larger variances in table 3 are
associated with the moments in higher dimensions.
To compare the variances obtained with the ap-
proximation of a circular area, we cut circular areas
(these are only as accurate as the scale permits)
from the original images and measured the vari-
ance (see table 4). That would be the result if
several smaller square areas were being subtracted
from the image in such a way that the same pixels
were involved in the computation of the moments.
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Figure 4: A 50% concentric disc area approxima-
tion for the original image and the 45◦ rotated
image.

In other words, table 4 reflects the best case sce-
nario for this set of images in the case of the con-
centric discs features.

Table 4: Variances for the concentric disc areas
(cut directly from the images) from 1 to 0.5 in
diameter.

diameter

1 0.9 0.8 0.7 0.6 0.5

σψ1
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ2
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

σψ3
0.0010 0.0007 0.0008 0.0007 0.0011 0.0004

σψ4
0.0002 0.0002 0.0003 0.0003 0.0003 0.0003

σψ5
0.0005 0.0006 0.0006 0.0006 0.0006 0.0007

σψ6
0.0005 0.0001 0.0002 0.0002 0.0003 0.0002

σψ7
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σψ8
0.0003 0.0003 0.0004 0.0004 0.0004 0.0003

σψ9
0.0006 0.0001 0.0001 0.0005 0.0005 0.0003

σψ10
0.0008 0.0007 0.0009 0.0010 0.0008 0.0010

σψ11
0.0007 0.0007 0.0007 0.0005 0.0004 0.0011

It is beyond the scope of this paper to measure
the speed of the method in details. As an in-
dication, we have scanned an image to compute
the 66 moments from sub-windows of the image 3.
Using one processor of a dualcore AMD 2GHz we
could compute close to 20000 complete moment
sets per second (66 moments per sub-window at
various scales and positions). However the code
is not optimised and there is certainly room for
improvement. The computation of a single mo-
ment is not faster than in other methods, but the
computation of all the moments at different scales
and positions benefits from the Summed-area table
structure. It can be fast enough to allow real-time
detection applications to use this method.

6 Conclusions and Future Work

We proposed a new method of feature extraction
based on moments that maintains the rotation and
the scaling invariance. Although sub-sets of the
feature set are also translation invariant, the set as
a whole is not invariant to translation and can be
used to locate specific sub-windows via scanning.

An analysis of the accuracy taking moments from
concentric discs was carried out. Most of the mo-
ments have a small variance when faced with ro-
tation and scaling operations. Potentially the new

method is useful for object detection and recogni-
tion.

There are many unanswered questions regarding
this new set of features, specially regarding
the speed and accuracy in which classifiers can
be trained using these features. We intend to
further study the method by applying it to object
detection and recognition tasks.
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Abstract 
 
The background subtraction double difference algorithm (BSDDA) is proposed in this paper. This algorithm is 

based on a combination of a background subtraction algorithm (BSA) and a double difference algorithm (DDA). 

BSDDA inherits advantages from both BSA and DDA. The results show that this approach is more robust to 

dynamic background scene than the BSA and it is more sensitive to slow moving objects than DDA.  
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1    Introduction 
 
Background subtraction is used to segment motion in 

a static scene. Its name indicates the most intuitive 

way of achieving this goal: subtracting background 

from the observed image and the residue of this 

process (motion residue) is the segmented moving 

objects. A significant amount of recent research [1, 2] 

attempts to develop good models for segmenting 

background scenes accurately in computer vision (CV) 

systems.  

 

As Cucchiara et. al. pointed out in [6], a good 

background model should solve two problems. The 

first problem is that the model should reflect the real 

background as accurately as possible. Secondly, the 

model should immediately update when the scene 

changes. It is not easy to determine the optimal 

solution that will satisfy both problems at the same 

time. The best trade offs for both problems 

significantly relys on the use case of CV systems 

customised to particular data sets.  

 

For example, [14] introduces a handball player 

tracking application. In this system, cameras are 

securely mounted and lighting conditions are fixed. In 

this constrained environment, the original background 

subtraction algorithm works well.  

 

A football tracking system is discussed in [15]. This 

application handles broadcasted digital television 

signal that contains a lot of panning, zooming and 

scene switching. The author selects adjacent frame 

difference algorithm to detect moving balls so that the 

motion residue introduced by background scene 

variation could be minimized.  

 

In video surveillance systems, such as [3, 4 and 15], 

long term adaptation of the slow background variation 

is a critical requirement. In these projects, statistic 

background models (SBM) such as a Gaussian 

background model, are applied. Such background 

models describe each pixel in the background scene 

as a set of values following Gaussian probably 

distribution function. By updating factors such as 

mean and variation, of the Gaussian function with 

new observation, the problem of slow scene variation 

cased by time of the day or weather condition can be 

solved.  

 

In addition to the Gaussian background models 

(GBM), multi-valued background models have been 

introduced to handle waving tree branches. Some 

recent projects [8, 9 and 12] use mixture of multiple 

Gaussian distributions to model the background 

scenes. Compared with GBM, these improved models 

give a better representation of periodical background 

scene variation.  

 

The idea of our improved motion segmentation 

algorithm (MSA) came from CV research [15, 16] 

that tracks moving objects in outdoor environments. 

This system has the following constraints: firstly, as it 

is a real time CV system (i.e. 30+fps), the algorithm 

must be simple; secondly, it must handle rapid 

changes (usually caused be camera shaking) and slow 

changes (usually caused by weather or time of the day) 

and so various background scene variations need to be 

allowed for; and finally, the algorithm used in this 

application should work well with relatively large 

slow moving objects, such as a human body. In the 
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rest of this paper, we will show how our improved 

algorithm satisfies these requirements.  

 

This paper is organized as follows. In the next section, 

some related works will be briefly reviewed. In 

section three, we present how our algorithm is made. 

In section four, we present experimental results which 

show that this improved algorithm satisfies the above 

requirements. Finally, the last section discusses future 

research directions and concludes this paper. 

 
2    Related Work 
 
Many motion segmentation research projects in the 

past focused on constructing and maintaining a good 

background model. Considering the information 

source, these research works can be categorized into 

three classes. The idea of this categorization is 

illustrated in figure 1.  

 

 
Figure 1: A coarse classification of the background 

model research works in the literature. 

 

In figure 1, the horizontal axis indicates time. It 

begins at left side, which indicates the starting time of 

video capture, and extends toward right side, which 

indicates the latest captured image so far. Each frame 

of the image in this figure has a unique sequence 

number, which is marked at the corner of the image 

frames in Figure 1. This sequence number starts from 

zero and ends at ‘n+1’ which indicates the latest 

captured image. 

 

The most intuitive and simple background model uses 

the first captured image (the frame with sequence 

number zero) to describe the background scene. This 

background image is then subtracted from each 

subsequent image captured by the camera. Moving 

objects can then be identified by the difference of the 

two images. The most significant drawback of this 

algorithm is that the environment must be strictly 

controlled so that the background scene remains the 

same as the first image that was captured and used as 

the reference frame.  

To be used in unconstrained environment, [14 and 17] 

model background scene as the image that is 

immediately preceding the current one. For example, 

if the frame with sequence number ‘n’ in figure 1 is 

the ‘current’ image, in [14 and 17], the background 

model is given by frame ‘n-1’. The differences 

between these two images indicate the place where 

movement is happened. This approach is called 

adjacent frame difference algorithm. Comparing with 

BSA, this algorithm is more robust to the dynamic 

scene; however it introduces the ‘ghost’ objects 

problem discussed in [18].  

 

Double difference algorithm (DDA) is an improved 

adjacent frame difference approach. It defines the 

second last image in a sequence (frame n in figure 1) 

as the ‘current’ frame. Instead of using one adjacent 

frame (n-1), it lets adjacent frames at both side (frame 

n-1 and frame n+1) become background images. In 

this algorithm, two difference images, d1 and d2 are 

calculated by subtracting the ‘current’ frame n from 

both background frames (n-1 and n+1) separately. 

The common residue area in the two difference 

images (d1 and d2) are the detected moving objects. 

DDA solves the ‘ghost’ object [18] problem, however, 

research works in [15 and 16] show that DDA is not 

suitable to detect large and slow moving objects, for 

example human activity, as it outputs many 

disconnected clusters along the object’s contour 

(figure 2).  

 

 
Figure 2: This figure shows a result generated with 

DDA. As shown, a birds-eye view of the human 

silhouette holding a bat is hollow and not well 

segmented. 

 

Many research works [3, 4, 5, 6, 7, 9, 11 and 12] have 

been done in the statistic background model (SBM) 

domain to find answers to the background subtraction 

problem. This research can be classified together in 

one category as they use information of the whole 

past images (figure 1) to construct a background 

representation.  

 

Gaussian background model (GBM) was proposed by 

Wren et.al. in [3]. Each pixel in the background 

image is modeled independently by fitting the past 

values of pixels at the same location in a Gaussian 

probability density function. When a new frame 

comes, the new pixel value will be judged by 

confidence interval [19] with the existing GBM to 

distinguish whether it belongs to the background or 
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foreground object. Although GBM is very popular 

[20], it lacks ability to deal with multi-valued 

backgrounds caused by dynamic nature of real world 

scenes [12 and 20]. For example, a natural 

environment may include swaying vegetation, 

rippling water, and flickering monitors and such cases 

are unable to be modelled as a single Gaussian 

distribution.  

 

Mixture of multiple Gaussian background model is 

proposed by [12] to model the dynamic nature of real 

world scene. In this research, the value of each pixel 

in the background is modelled as set of (usually 3 to 5) 

separate Gaussian distributions. Each distribution 

represents one possible value of this pixel. The pixel 

value in the new image frame is compared against all 

these distributions [8] to distinguish between 

background and foreground. However, as argued in [5, 

11, 13 and 16], this model is complex and less 

efficient. 

 

Apart from Gaussian based approaches, other SBM 

algorithms, for example median value [5, 6 and 11] 

and min-max values [7], have also been developed. 

However, most of these approaches suffer from a 

slow background model updating rate. Sudden scene 

variations, which may be caused by a camera shaking 

or simply turning on or off a light switch, will cause 

these algorithms to fail.  

 

As introduced in the first section, an MSA is needed 

that is of low complexity and robust to both camera 

shaking and slow scene variations at the same time. It 

also needs to be sensitive to slow movements. 

 
3    BSDDA 
 
In our research, the MSA should satisfy the following 

requirements: 

 

1. Sensitive to slow movements. 

2. Output a complete silhouette for large slow 

moving objects, such as human body. 

3. Robust in both slow (time of the day) and 

fast (camera shaking) background variation. 

4. Simple and efficient. 

 

We did an evaluation with the existing motion 

segmentation approaches in the literature. Although, 

BSA is simple, sensitive to both fast and slow motion, 

and able to output a complete silhouette for moving 

objects, this algorithm requires a very stable 

background scene, which doesn’t satisfy our third 

requirement. On the other hand, although DDA is 

robust in dynamic background scene, it is not 

sensitive to slow moving objects and the detected 

results for large objects are usually incomplete 

(Figure 2). Finally, apart from the complexity, SBM 

based algorithms lack the ability to deal with sudden 

background variations that may be caused by camera 

shaking.  

 

To satisfy the four requirements listed above, a new 

motion segmentation technique is made from the 

combination of both BSA and DDA. Our approach 

has advantages that inherit from both algorithms and 

therefore, it is named the background subtraction 

double difference algorithm (BSDDA). 

 

Figure 3 illustrates the four main processing steps of 

our approach. 

 

 
Figure 3: The main workflow of the 

background subtraction double difference 

algorithm. 

 

 

Firstly, an image (Figure 4, top-left) is sent to DDA 

module by proceeding process modules in a CV 

system. The DDA module use ordinary DDA to 

generate a motion detection result; we name this 

result image as DDAR (Figure 2).  
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Figure 4: Working process of the BSDDA. Top-left: 

the original video input; top-right: the background 

update mask; bottom-left: the background model 

image; bottom-right: the final result of BSDDA.  

 

Secondly, DDAR is sent to background update mask 

generate module. In this module, DDAR is converted 

to background update mask (Figure 4, top-right) 

corresponding to the current image. This mask is a 

binary image that has values of zero and one. The 

zero value means that foreground objects may be 

detected at this location in the original image and the 

one value means that this location in the original 

image is the background.  

 

Thirdly, both the new image and the background 

update mask are sent to background modelling 

module. In this module, a pixel in the background 

model image (Figure 4, bottom-left) is updated with 

the value in the new image if its corresponding pixel 

location in BUM is one.  

 

Finally, both the new image and the updated 

background model are sent to BSA module. In this 

BSA module, background subtraction is carried with 

two images. Its output is sent to successive modules 

as the final result image of BSDDA (Figure 4, 

bottom-right). 

 

Figure 5 illustrates the algorithm that is used to 

generate BUM from DDAR.  

 

As shown, the first step is to dilate DDAR. The shape 

and dimension of the dilation core used in this process 

are empirical values that are chosen based on image 

size and application. In our research, a 50 by 50 

squire is used. The dilation step works like a 

magnifier in BSDDA. It zooms in the output from 

DDA because DDA is less sensitive to slow moving 

large objects.  

 

After dilation, the dilated DDAR (a binary image) is 

inverted so that the ‘one’ values indicate background 

pixels without motion and ‘zero’ values indicate 

detected moving objects (Figure 4, top-right). This 

inversion step is to simplify the processes in the 

background update model.  

 

As introduced above, unlike SBM based algorithms 

that use a statistical accumulation of the past 

background variations, our approach, BSDDA, is 

directly made from the combination of DDA and the 

BSA. DDA outputs a mask image for selective 

background model updating and the ordinary BSA is 

used to generate the final motion segmentation result. 

 

 
Figure 5: The workflow of generating 

background updating mask in BSDDA. 

 

 

4    Experimental Result 
 
To evaluate BSDDA, it has been tested using outdoor 

scene video clips.  

 

The test video clips are taken by a Logitech 

QuickCam 4000 camera with a wide angle (130 

degrees) lens. The camera, facing downward, is 

mounted on top of a mast of 3.5 meters height. The 

content of this video is a cricket game. The batter 

stands directly under the camera and the bowler is out 

of camera’s view.  

 

Figure 6 shows a screen-snap of the testing system. 

There are four images illustrated in this figure: the 

top-left one is original image captured from the 

camera; the top-right one is the motion residue 

detected by BSA; the bottom-left one is the DDA 

motion detection result; the bottom-right one is the 

motion segmentation output of BSDDA.  
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Figure 6: A screen snap of the BSDDA testing system.  

 

A pixel counting experiment was designed to 

calculate the number of segmented pixels in the 

segmentation results from the BSA, DDA and 

BSDDA in order to compare the quality of these 

algorithms. 

 

In this experiment, the motion residue in the 

segmented masks is divided into two categories 

manually. If a pixel in the mask image indicates 

moving objects in the test footage, this pixel is put 

into the “Motion” category; on the other hand, if the 

pixel is triggered by noise, it would be put into the 

“Noise” category. The numbers of pixels in both 

categories are counted and the results are shown in 

Table 1.  

 

Figure 7 illustrates the number of moving pixels 

detected by BDA, DDA and BSDDA. In this diagram, 

the X axis is the frame number and the Y axis is the 

number of segmented pixels in the “Motion” category. 

The curve represented by round dots shows the 

motion segmentation result of BSA. The motion 

segment result of BSA gives the most complete 

silhouette of the moving object. The BSDDA 

segmentation result (shown in the curve with 

triangular dots) is consistently adhering to the BSA 

result in terms of silhouette completeness. 

 

 
Figure 7: Motion residue diagram 

The number of noise pixels detected by BDA, DDA 

and BSDDA is shown in Figure 8. In this diagram, the 

X axis is the frame number and the Y axis is the 

number of segmented pixels triggered by noise. The 

noise pixels detected by BSDDA (represented by the 

curve with triangular dots) is consistently adhere to 

the DDA result, which is most robust to dynamic 

background variations. The peak in this diagram 

indicates a sudden background scene variation which 

is caused by camera shaking. 

 
 

 
Figure 8: Noise residue diagram 

 
 
5    Conclusion and Future Work 
 
In this paper, we present the BSDDA algorithm which 

utilizes a combination of BSA and DDA to output 

complete silhouettes for slow moving large objects 

(i.e. human movement) and is robust to dynamic 

background scene at the same time. Compared with 

SBM based algorithms, our proposed approach is 

much less complex. 

 

In the future, this research could be improved in two 

directions.  

 

Firstly, in our approach once the foreground object 

stops moving but stays in the scene, it will become 

part of the background model immediately which may 

not always be the preferred outcome. SBM based 

algorithms solve this problem by introducing a 

learning factor to update the background model 

accumulatively. However, more research is needed to 

adaptively update various regions in a background 

model selectively.  

 

Secondly, as discussed in the paper, the dilation step 

amplifies DDA results. However, this process 

magnifies both the motion residue and noises at the 

same time and so further research is needed to 

selectively magnify motion residue only. 

 

405



 
Table 1: Experiment results of BSA, DDA and BSDDA motion segmentation. 
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Abstract
This paper investigates the performance of camera egomotion tracking using fixed markers. Tracking
is performed using two different marker-based tracking systems. We also investigate the feasability of
using multiple markers for camera egomotion tracking, and propose a novel algorithm which can be used
to devise the most efficient marker placement strategy for use with a multiple-marker based camera
egomotion tracking system. Our results show that markers are useful for camera egomotion tracking
within certain visual angle constraints.

Keywords: egomotion, augmented reality, ARToolKit, ARToolKitPlus

1 Introduction

Camera egomotion tracking is an important part of
many computer vision fields, including Augmented
Reality and vehicle guidance. Various methods of
camera tracking have been proposed, ranging from
purely optical techniques[1][2][3][4], such as optical
flow tracking, to hybrid techniques[5][6], utilising
GPS, ultrasonic and magnetic techniques as well
as optical.

In this paper we investigate the use of a marker
based tracking system, ARToolKit[7] for camera
position tracking. The ARToolKit system is gen-
erally used to find the 6DOF position of markers
relative to a camera, and therefore if these markers
are fixed, we can use ARToolKit ‘in reverse’, by
inverting the matrix used to represent each marker.
This will give us a 6DOF position for the camera,
with respect to a marker, whose position we al-
ready know. This inversion of the matrix of course,
can cause high levels of tracking error at greater
distances. We also use a second augmented real-
ity system, ARToolKitPlus[8], which was, in part,
developed to improve the tracking abilities of AR-
ToolKit. It uses similar markers to ARToolKit,
but markers require no training, as the marker
identifier is embedded in the pattern itself.

Further to this, we investigate the efficient use of
multiple markers at once to calculate camera po-
sition. The hypothesis here is that the greater the
number of markers, the greater the reduction in
error that may be induced by the large distances
we intend to track over.

Finally, we introduce a novel algorithm to deter-
mine appropriate placement of ARToolKit style

markers for camera tracking. This is important, as
a layout which is too sparce will mean the camera
can move to positions where no markers are visible,
and a layout which is too dense will be impractical,
and cause significant visual pollution of the work
space.

2 Background

ARToolKit is a software library that can be used
to calculate camera position and orientation rel-
ative to physical markers in real time. This en-
ables the easy development of a wide range of Aug-
mented Reality applications. ARToolKitPlus is an
extended version of ARToolKit’s vision code that
adds new features, but breaks compatibility due to
its class-based API. The extensions made in AR-
ToolKitPlus include implementation of the “Ro-
bust Planar Pose” (RPP) algorithm. The RPP
algorithm is used to give a more stable tracking
than ARToolKit’s pose estimation algorithm.

Previous research into the range of ARToolKit
markers[9][10] have been restricted to a distance of
3 metres, while we intend to investigate distances
of up to 6 metres. Results from this research
showed positioning errors of up to 20%.

The “living-room”[11] experiment involved the use
of large (approximately 40cm by 40cm) markers
printed on strips, which were then used to entirely
wallpaper a 3m by 3m room. The room was used
for exploring interactive, space-related aspects of
augmented-reality. The researchers found that
ARToolKit had severe shortcomings regarding
precision and steadiness when used for camera
tracking.
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Figure 1: Two ARToolKit markers being used
to calculate camera position. Markers are equal
distances from ceiling and floor, and also the walls
and each other.

Figure 2: OpenGL representation of the room,
including wall, marker and camera position, which
is indicated by the yellow cone.

3 Method

The experiments conducted to evaluate the perfor-
mance of our tracking systems consist of a series
of accuracy and stability tests conducted using a
webcam moving about a room. The room measures
6.6m by 5.5m by 3.0m and markers of size 20cm by
20cm are positioned at various points on the walls.
Although bigger markers will provide greater ac-
curacy and range for our system, we have con-
strained the marker size to be within the bounds
of a standard A4 piece of paper, to ensure ease
of marker creation. A single, standard webcam is
used, running at a resolution of 640x480 pixels. An
OpenGL model of the vision laboratory was used to
represent the wall, marker and calculated camera
position.

3.1 Multiple Markers

Our multiple marker experiments used the AR-
ToolKit system, with 2 markers positioned on a
5.50m long by 3.0m high wall. The markers were
both positioned at 1.5 m high, each 1/3 (1.83m)
of the way from the end of the walls. The camera
was positioned at a height of 1.25m, directly in line
with the a point bisecting the two markers. The
application developed for these experiments pro-
vided position values in millimetres, relative to the
very centre of the room, at floor level. This meant
that our first position was at X = 0, Y = 1250, Z =
1000. This was the closest we could get the camera,
while still being able to identify both markers. In
each subsequent recording we decreased the Z dis-
tance by 0.5 metres, until marker tracking was no
longer achieved. At each position, 1000 calculated
position values were taken. To analyse results,
we calculated the mean value returned to measure
accuracy, and the standard deviation in returned
values to measure jitter.

3.2 ARToolKit vs ARToolKitPlus

These experiments were performed with a single
marker placed at the central position of a 5.5m
by 3m wall. The camera was positioned at a
height of 1.25m, directly in line with the marker.
The application developed for these experiments
provided position values in millimetres, relative to
the very centre of the room, at floor level. This
meant that our first position was at X = 0, Y
= 1250, Z = 2000. In each subsequent recording
we decreased the Z distance by 0.5 metres, until
marker tracking was no longer achieved. At
each position, 1000 calculated position values
were taken. To analyse results, we calculated
the mean value returned to measure accuracy,
and the standard deviation in returned values to
measure jitter. The only change required between
ARToolKit and ARToolKitPlus experiments was
the use of a different marker, which was positioned
in exactly the same place. Two settings were used
when evaluating ARToolKitPlus; one using the
standard ARToolKit pose estimator, and one using
the RPP algorithm included with ARToolKitPlus.
Thresholding of the camera image is an important
part of marker detection in both ARToolKit and
ARToolKitPlus. When conducting ARToolKitPlus
experiments, its automatic thresholding feature
was used. As ARToolKit does not have an
automatic thresholding feature, this threshold was
manually set.
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Figure 3: Results comparing 2 marker setup accu-
racy in the X dimension.

4 Evaluation

Initial investigation into the performance of
ARToolKit showed a drop in tracking performance
once distance from the marker exceeded 2m.
Tracking became significantly less accurate, with
a large amount of jitter. This jitter was also
dependent on the camera’s relative positive with
regard to the marker, so at some positions the
estimation was stable, at others it was highly
unstable. This was clearly evident when using
more than one marker for position estimation.
When using two markers, one would be far more
stable than the other, but this relationship could
be inverted by only a small change in camera
position. This jitter was most evident in the X
and Y values, while the Z values (distance from
marker), showed significantly less jitter. These Z
values were also far more accurate at range than
values in the other two dimensions.

It is important to note that the accuracy and jitter
levels for position calculation do not share a linear
relationship with marker range. Once the size of
the marker in the camera image, sometimes known
as the visual angle, drops below a certain thresh-
old, certain positions will yield accurate tracking
and low jitter, while a position slightly closer to the
marker may yield far poorer results. It is suggested
that this is due to the relatively low resolution of
the camera being used, and that the camera image
of the marker at range may be significantly dis-
torted by pixelisation. This fact in itself may mean
that any long range marker detection with marker
of this size is not practical without an increase in
camera resolution.

In comparing our three pose estimators, we gained
similar results to our 2 marker setup. All esti-
mators suffered from significant jitter, except in
the Z dimension, where accuracy was also signifi-
cantly better. The RPP algorithm showed no sig-
nificant increase in accuracy or decrease in jitter.

Figure 4: Results comparing 2 marker setup accu-
racy in the Y dimension.

Figure 5: Results comparing 2 marker setup accu-
racy in the Z dimension.

Figure 6: Results comparing 2 marker jitter levels
in all dimensions.
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Figure 7: Results comparing all 3 pose estimator’s
accuracy in the X dimension.

Figure 8: Results comparing all 3 pose estimator’s
accuracy in the Z dimension.

Figure 9: Results comparing all 3 pose estimator’s
jitter levels in all dimensions.

It was also noted that this algorithm was signifi-
cantly slower than the standard ARToolKit pose
estimator.

We found ARToolKit to be more effective when
detecting markers and conducting pose estimation,
but the difference is only significant when reaching
the limits of marker detection for both systems.
We considered marker tracking accuracy and jitter
levels to be acceptable for both ARToolKit and

ARToolKitPlus, up to Z = 500 or Z = 0. These
values represent a distance from marker of 2.8m
and 3.3m respectively, and we propose that a dis-
tance of 3.0m represents the maximum range for
markers of this size1.

5 Marker Placement

To complement the marker tracking system eval-
uation, we propose an algorithm for placement of
markers in a room environment. By taking into
account predefined limits on camera movement, we
can define the appropriate marker size and spacing
to ensure reliable tracking at all points.

5.1 Minimum Marker Size

From our evaluation we have estimated an effective
range of use for a 200mm by 200mm marker to be
approximately 3.0m. Using these values we can
calculate a minimum marker size (minMS) based
on a required maximum distance (maxD), which
would in most cases be the length of the longest
wall in the room:

minMS =
maxD

15
(1)

This value minMS should be used when calculating
the length of the sides of required markers.

5.2 Marker Separation

Once we have established a marker size (MS),
we can calculate the maximum horizontal and
vertical separations (maxHS & maxVS), based
on the camera’s horizontal and vertical fields of
view (HFOV & VFOV), and a required minimum
distance (minD), which can be defined as the
minimum distance to any wall that the camera
will move to:

maxHS = 2×
((

minD × tan
(

HFOV

2

))

−MS

)

(2)

To calculate maxVS, HFOV is replaced with
VFOV.

These values should be used when setting the dis-
tances between edges of markers in the horizontal
and vertical directions.

1This is based on a webcam running 640 by 480 pixels
resolution. This range may be different for cameras of a
different resolution. See ‘Further Work’.
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6 Conclusion

We have shown that ARToolKit style markers may
be useful for camera egomotion tracking, but in
a practical situation, the tracking markers must
be within (15 × markersize) of the camera. Be-
yond this distance, calculation of X and Y coordi-
nates become very unstable and innaccurate. Con-
versely, calculations for Z coordinates (the distance
from marker) maintain accuracy and stability all
the way out to the marker’s maximum detectable
position.

Multiple markers can provide greater tracking ac-
curacy, but not when combined. In any practical
application, the best approach to using multiple
markers with this amount of variable jitter, is to
find the marker with the highest ‘confidence level’,
and use this marker for tracking in the current
frame. This ‘best confidence’ technique is the most
feasible approach.

ARToolKitPlus provides no significant improve-
ments to ARToolKit when utilised for the
purpose of camera egomotion tracking. In fact,
ARToolKitPlus suffers from a more limited range,
and subsequent reduction in accuracy and increase
in jitter. This is probably caused by the different
marker style, which does not include a solid
white square segment, as ARToolKit markers
do. This means the markers are more difficult to
identify from their surroundings, and makes pose
estimation less accurate.

We have proposed a marker placement algorithm,
which can be used to devise the most efficient
marker placement strategy for use with an
ARToolKit style marker based camera egomotion
tracking system. By using this algorithm, an
efficient set of marker positions can be created,
once the necessary marker size has been calculated
for the room being used.

7 Further Work

As mentioned previously, thresholding of the image
is an important part of marker detection. It was
noted with both detection systems that adjustment
of this threshold could markedly increase/decrease
the performance of marker detection and pose es-
timation. It would be beneficial to investigate an
automatic thresholding algorithm specifically de-
signed for long-range marker tracking, as this may
well extend detection and pose estimation range
beyond the 3.0m limit we have proposed.

We also discussed the effect of marker size and
camera resolution on marker detection range. An
investigation into the relationship between marker
size, camera resolution and marker detection range

could prove very interesting, as it is likely an in-
crease in camera resolution may be equivalent to
an increase in marker size, and could significantly
increase this range. For instance, if camera reso-
lution was doubled, this could double the effective
range of a marker, making modestly sized markers
(perhaps A4 paper sized), viable for tracking in a
large room. In this paper we only evaluated po-
sition calculations, with no regard to orientation.
Any more in-depth work would also benefit from
an evaluation of this component.

As part of this paper, we proposed a marker place-
ment algorithm, based on results obtained dur-
ing our research. A thorough evaluation of this
algorithm has not been done, and it is also left
open for extension, including the possible need for
extended camera parameters. As discussed pre-
viously an improved camera resolution may mean
smaller markers are feasible, resulting in less visual
pollution of the workspace.
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Abstract 
Fast and adaptive motion estimation is still a challenge for real-time video coding applications.  Previously the 
novel concept of a distance-dependent thresholding search (DTS) was introduced for performance scalable 
motion estimation in video coding applications. In this paper, the DTS algorithm has been extended to a fast and 
fully adaptive DTS (FFADTS) algorithm. Experimental results confirm the performance of the FFADTS 
algorithm in achieving better search speed over any existing fast algorithms including the diamond search (DS) 
and hexagon-based search (HEXBS), while maintaining similar error performance. 

Keywords: Video coding, fast motion estimation, adaptive performance management, distance depending 
threshold. 

1 Introduction 
Block matching algorithm (BMA) is one of the key 
technologies in video compression and is widely 
applied in many of today’s video coding standards [1-
3]. The exhaustive BMA, known as the full search 
(FS) [4] algorithm, searches each candidate block for 
the closest match within the entire search region to 
minimize the block-distortion measure (BDM) at the 
expense of a very high computational overhead. It is 
for this reason that FS is not appropriate for any real-
time video coding application. 

A number of fast BMAs have been proposed to lower 
the computation complexity. Among them, the three-
step search (TSS) [5], the new three-step search 
(NTSS) [6], the advanced centre biased search [7], the 
four-step search (FSS) [8],  and recently proposed  
diamond search (DS) [9], and the hexagon-based 
search (HEXBS) [10] are mostly well known. The DS 
technique has achieved a significant speed gain by 
considering diamond-shaped search patterns instead 
of the conventional square ones with a view to 
approximate the optimal (but unrealizable) circular 
shape as closely as possible. Recently, the HEXBS 
technique has surpassed the speed of the DS 
technique by using a better approximation with 
hexagon-shaped search patterns. All of these fast 
algorithms suffer from the following two limitations. 
Firstly, they are based on the assumption that either 
the error surface is unimodal over the entire search 
area (i.e., there is only one global minimum) or the 
motion vector (MV) is centre-biased. These 
assumptions do not hold true for many real video 
sequences because of the highly non-stationary 

characteristics of the video signal. Moreover, the 
search directions of these algorithms can be 
ambiguous, leading to the MV becoming entrapped in 
a local minimum with a resulting degradation in 
predictive performance.  Secondly, they do not 
provide flexibility in controlling the performance in 
terms of predicted picture quality and processing time 
(speed).  

The authors previously addressed this matter by 
proposing a novel fully adaptive distance-dependent 
thresholding search algorithm (FADTS) by 
introducing the concept of a distance-dependent 
thresholding search (DTS) algorithm for adaptive 
performance management motion estimation in video 
coding applications [11]. This paper improves the 
speed performance of the FADTS for real-time coding 
applications.  

The paper is organized as follows. The original 
distance-dependent thresholding (DTS) algorithm is 
discussed in Section 2. Section 3 details the fast and 
fully adaptive DTS (FFADTS) algorithm.  Section 4 
includes both experimental results and analysis of the 
performance of FFADTS against some recently 
proposed fast motion estimation algorithms while 
Section 5 concludes the paper. 

2 The Distance-dependent 
Thresholding Search (DTS) 
Algorithm 

Definition 1 (Search Squares SSτ): The search space 
with maximum displacement ±d, centred at pixel 

cycxp , , can be divided into 1+d  mutually exclusive 
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concentric search squares τSS , such that a checking 
point at pixel yxp , , representing MV  ),( cyycxx −− , 

is in τSS  if and only if ( ) τ=−− cyycxx ,max , for 
all cxdxcxd +≤≤+− , cydycyd +≤≤+− , and 

.,...,1,0 d=τ  

It can be readily verified that the number of checking 

points in search square τSS  is 
⎩
⎨
⎧

=
=

d,,2,1,8
0,1

Kττ
τ

    (1) 

and τSS  represents the motion vectors of length in the 
range of [τ,τ√2]. The checking points used in the first 
three search squares are shown in figure 1. 

 

 
Figure 1.  DTS search squares SS0, SS1, and SS2. 

Like all block-based motion estimation search 
techniques, the DTS algorithm starts at the centre of 
the search space. The search then progresses outwards 
by using search squares τSS  in order while 
monitoring the current minimum mean absolute error 
(MAE). A parametric thresholding function, 

),( CThreshold τ , is used to determine the various 
thresholds to be used in the search involving each 

τSS  where the parameter C is set at the start of each 
search and acts as a control parameter. After 
searching each τSS , the current minimum MAE is 
compared against the threshold value of that specific 
search square and the search is terminated if this 
MAE value is not higher than that threshold value. 

2.1 Characteristics of the Thresholding 
Function 

To ensure that the DTS algorithm can be transformed 
to an exhaustive FS algorithm, the threshold value for 
SS0 is always assumed to be 0. As the maximum MAE 
value using a b-bit gray level intensity is 2b-1, 
threshold values for all other search squares can, at 
most, be 2b-1. However, to ensure the algorithm 
includes the entire search space, all but the outermost 

threshold value must be less than 2b-1. Moreover, to 
make the thresholding function distance-dependent, 
the function must monotonically increase. The DTS 
algorithm, therefore, assumes the following general 
properties of the thresholding function:  

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

−≤
−=−<

≤≤
=

12),(
1,,2,1 allfor  12),( 

),(...),1(
0),0(

b

b

CdThreshold
dCThreshold

CdThresholdCThreshold
CThreshold

Kττ
    (2) 

Parameter C plays a significant role in the DTS 
algorithm by allowing users to define different sets of 
monotonically increasing threshold values based on 
specific values of C. Obviously, a set of larger 
threshold values terminates a search earlier than a set 
of smaller values. C, therefore, provides a control 
mechanism to allow trading-off between the 
computational complexity in terms of search points 
and prediction image quality. 

The monotonic increasing function requirement 
means the DTS algorithm could use a linear, 
exponential, or any other complex analytic function to 
control the threshold with τ . In [11], the authors 
empirically observed linear thresholding function 
within the DTS algorithm outperforming and 
providing a wider range of flexibility compared to 
exponential thresholding function. This paper 
therefore, has considered only linear thresholding 
function, which is defined as follows: 

,),( ττ ×= LL CCThreshold  for all d,...,1,0=τ        (3) 

The subscript L in CL  specifies linear thresholding. It 
can be verified that the above definition satisfies all 
the conditions in     (2) if 0≥LC  and 12 −≤× b

L dC . 
So, parameter LC  can take any value from the range 
given below:  

 dC b
L /)12(0 −≤≤ .          (4) 

3 Fast and Fully Adaptive DTS 
(FFADTS) algorithm  

In adaptive motion estimation, given a target 
prediction image quality in terms of average mean 
squared error (MSE) per pixel, the motion search 
algorithm tries to achieve it using as few search 
checking points as possible. Inversely, if a target 
processing speed is set in terms of average number of 
search point (SP) used per MV, the algorithm tries to 
achieve with as low MSE as possible. Adaptive ME 
also assumes real time constraint, which allows very 
limited number of passes per macroblock. Without 
such a constraint, trivial trial and error technique with 
a very high number of passes would suffice the 
adaptation. Without any loss of generality, this paper 
assumes the strictest constraint where only one ME 
pass is performed per macroblock. To leverage the 
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adaptation technique, the original DTS algorithm is 
enhanced further.   

 

 
Figure 2:  DTS search diamonds SD0, SD1, and 
SD2. 

3.1 Enhancing the DTS Algorithm  
The concept of DTS is not linked to any specific 
search pattern shape. In the wake of improved speed 
gain by non-square search patterns, DTS has been 
implemented using search diamonds τSD  as shown in 
figure 2 where the number of checking points in τSD  
is 

⎩
⎨
⎧

=
=

d2,,2,1,4
;0,1
Kττ

τ
          (5) 

and τSD  represents the MV of length in the range of 
[τ/√2,τ]. Note that for ddd 2...,2,1 ++=τ , some of 
the checking points in the search diamond fall outside 
the search windows that are obviously ignored.  Using 
fewer checking points for centre-biased as well as 
horizontal and vertical motion vectors (prevalent in 
panning) makes DTS with search diamond superior to 
using search squares as observed with all the standard 
test sequences.  

Well-established spatio-temporal motion correlation 
among the neighbouring macroblocks [12], [13] can 
be exploited to reduce the search point even further by 
using a predicted search origin rather than always 
using the centre of the search window. Assuming 
row-major processing order, the search origin of 
macroblock at r-th block row and c-th block column 
is calculated from the mean of the motion vectors of 
already processed neighbouring macroblocks at (r–1)-
th block row and (c–1)-th block column, (r–1)-th 
block row and c-th block column,  (r–1)-th block row 
and (c+1)-th block column, and r-th block row and 
(c–1)-th block column. If the magnitude of the 
difference between this mean vector with each of the 
four neighbouring MV is within a predefined 
threshold Tpred, the search origin at the centre is 
moved by that mean vector. DTS using predicted 

search origin has performed superior to the original 
DTS for all the standard test sequences. Experimental 
results have also confirmed that the value of Tpred is 
not very sensitive to performance, especially for 
prediction error. Using the threshold in the range from 
3 to 7, the average MSE and the average number of 
search points of the first 50 frames of Football and 
Flower Garden sequences varied less than 1% and 
5% respectively, so to ensure average performance 
Tpred = 5 is defined in experiments.  

3.2 The FFADTS Closed-Loop 
Adaptation Model 

Normalized block least mean square (NBLMS) [14] 
can be considered as the best option for automatically 
adjusting the control parameter CL in order to achieve 
a target average mean square error (MSE) or average 
SP while coding a video sequence, where this 
sequence can be considered as a time varying non-
stationary input to the adaptation system. Based on 
NBLMS, the threshold control parameter is updated 
as: 

y
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if the output is average MSE or as: 
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if the output is the average SP where    
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−
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K
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im
y yE      (7) 

where K is block length, m is the iteration number,  
and µ is the step size. 

4 Experimental Results 
A number of experiments have been conducted to 
evaluate the performance of FFADTS algorithm 
against some recently proposed fast BMAs. Motion 
estimation has been carried out on the luminance (Y) 
values of standard video sequences Football (320 × 
240 pixels, 345 frames) and Flower Garden (352 × 
240 pixels, 150 frames) where both are with high 
object motion and camera panning respectively. For 
all search algorithms, block size of 16 × 16 pixels, and 
maximum search displacement of ±7 pixels were 
used.  

To isolate improvement due to motion search 
technique only, motion estimation was carried out 
differently than is done for video coding so that any 
influence of rate-distortion optimisation [15] and error 
propagation can be avoided. For each pair of 
successive frames, motion was estimated for the 
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second frame using the original version of the first 
frame (not the motion compensated version of that 
frame as is used for video coding) as the reference and 
MSE per pixel was averaged using the first frame and 
the motion compensated second frame. As no entropy 
coding was used to compress the residual, this MSE 
measure was higher than what could be achieved by a 
video coder with residual encoding. However, this 
MSE measure correlates highly with residual 
compression and thus still represents quality of the 
image, if rate-distortion trade off is factored in. The 
values of K = 4 and µ = 2 were used in equation (6). 
All the search algorithms were enhanced by refining 
MV with half-pel accuracy using additional eight 
neighbouring half-pel search points (with interpolated 
intensity values) around the current minimum point 
obtained with integer-pel accuracy. 
 

Table 1: Average MSE per pixel and sp per motion 
vector of the FS, TSS, NTSS, DS, and HEXBS 
algorithms for football and flower garden video 
sequences. 

Football Flower Garden 
BMA 

MSE PSNR 
[dB] SP MSE PSNR 

[dB] SP 

FS 218.9 24.7 160.1 208.9 24.9 209.7 

TSS 240.8 24.3 25.6 243.0 24.3 31.2 
NTSS 239.2 24.3 26.9 213.3 24.8 29.0 

DS 237.0 24.4 24.9 219.7 24.7 22.8 
HEXBS 241.0 24.3 21.0 226.2 24.6 20.2 

 
 
Table 2: Quality adaptation for Football sequence. 

Target Quality Actual Quality 

MSE PSNR [dB] MSE PSNR [dB] 

Actual 
SP 

230 24.51 232.04 24.48 49.18 
235 24.42 234.70 24.43 32.25 
240 24.32 241.00 24.31 19.87 
250 24.15 252.13 24.11 16.56 

 
 

Table 3: Quality adaptation for Football sequence. 

Target Quality Actual Quality 

MSE PSNR [dB] MSE PSNR [dB] 

Actual 
SP 

210 24.91 212.80 24.85 34.95 
215 24.81 214.41 24.82 24.58 
220 24.71 218.62 24.73 16.65 
225 24.61 222.79 24.65 15.21 

 

Average MSE per pixel values and average search 
point numbers per MV for different algorithms are 
summarised in table 1. While FS achieves the 
maximum quality with the minimum average MSE 

per pixel for each sequence, the speed gain of DS and 
HEXBS over TSS is clearly evident. 

The performance of the FFADTS algorithm is shown 
in table 2 and 3 for quality and speed adaptation. In 
figure 3, quality-speed performance curves of the 
FFADTS algorithm are plotted for both quality and 
speed adaptations along with individual performance 
points for the TSS, NTSS, DS, and HEXBS 
algorithms. For the Football sequence (Figure. 3(a)), 
while FFADTS outperformed TSS and NTSS in terms 
of quality and speed adaptations, its performance is 
comparable to both DS and HEXBS in both 
adaptations. In contrast for the Flower Garden 
sequence (Fig. 3(b)), FFADTS matches the perfor-
mance of NTSS while providing superior results over 
all the other fast algorithms in both adaptations. 
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Figure. 3: Quality-speed performance of the TSS, 
DS, HEXBS, and FFADTS algorithms for (a) 
Football and (b) Flower Garden video sequences. 
The labels on the FFADTS performance curves 
indicate the target values used.  

In summary therefore, the FFADTS algorithm not 
only can adapt the threshold control parameter 
satisfactorily to achieve any target quality without 
using any more search points per MV but also any 
target speed with no higher MSE per pixel than the 
existing fast algorithms.  

5 Conclusion 
This paper has presented a fast and fully adaptive 
distance-dependent thresholding search (FFADTS) 
block-based motion estimation algorithm for real-time 
video coding applications. The search efficiency of 
the FFADTS algorithm has been compared to other 
popular fast algorithms notably the superior diamond 
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and hexagon-based search algorithms. Experimental 
results have proven that the FFADTS algorithm is not 
only able to provide Quality-of-Service but also 
demonstrates comparable or faster search speed for 
similar error performance and vice versa, thus 
addressing the problem of existing fast directional 
algorithms in providing different levels of quality of 
service. 
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Abstract 

This paper presents a simple and novel approach to building a body posture classifier based on the hugely popular 
projection histogram technique. The intended field of application is that of visual surveillance catering to both 
aspects of protecting and safeguarding property or objects in museums, houses etc. It can also be expanded to detect 
threatening posture in video surveillance system. An algorithm for detecting postures based on asymmetry was added 
on to the projection histogram technique to enhance its ability to classify a larger number of posture types. With the 
current setup, the software developed is capable of classifying up to 11 human postures with an accuracy of 80%. 
The model is based on an unsupervised class set and has not been trained which allows for runtime identification and 
classification with no prior knowledge of the nature of the outcome. The subjects are classified based on posture 
matches with an exemplar set of images stored in the computers memory. A modified Manhattan distance calculator 
has been incorporated to compute the results of the histogram projection comparisons. The true colour images 
captured are binarized and down-sampled to decrease processing time whilst maintaining the same accuracy. 
Experiments conducted on a variety of subjects prove the validity of the model as a simple yet effective posture 
classifier.  
 

Keywords: Model-free, histogram projection, human posture recognition 

1 Introduction 
Over the past few years, interest in the field of image 
processing and image classification with respect to 
human subjects has greatly increased. Specific topics 
in this field of computer vision research which have 
generated a large volume of research output are those 
of facial recognition, facial expression classification, 
body-posture recognition and gesture interpretation. 
This paper focuses on the classification of basic 
human postures from images captured with standard 
still cameras. The algorithms have been developed 
with a long-term goal of integrating them with other 
vision systems to create a self sufficient visual 
surveillance unit capable of detecting, analysis and 
classification of postures. However, this proposed 
model only focuses on the classification aspect of the 
system. 

 

For the synthesis of a real-time model it is vital that 
the algorithm responsible for recognition and 
classification be simple and efficient enough to 
perform effectively without creating much of a 
demand for processor time. Several published journal 
articles point towards three basic methods of posture 
identification, namely, model free approaches and 
those based on direct or indirect models. 

 

2 Methods of Posture Recognitions 

2.1. Model Based Approaches 
Pfinder and W4 are two well known examples of 
surveillance systems based on model based 
approaches. The algorithms incorporated into these 
two tracking systems are based on saved models 
where postures are identified based on the 
identification of specific features such as heads, 
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hands, legs etc. They require that the images used are 
of  high definition and clarity, hence increase memory 
storage and computational time [1,2]. These models 
however have proven to be more effective in 
classifying in the occurrence of occlusions and as a 
result about 40% of the algorithms proposed make 
use of model based approaches to classification. [3] 

2.2.  Model Free Approaches 
These approaches do not need to search for any 
specific feature in the image of a person for 
recognition or tracking purposes. Silhouettes of 
images have been proven to be good enough for the 
classification of their poses thus needing lower 
definition images and only boundary information of 
the subject for analysis. This makes algorithms based 
on this technique better suited for real-time 
applications. These images can be used to extract 
skeletal data for classification as suggested in [4] or 
can be analysed based on object shapes or the 
location of the centre of mass of features. Several 
methods have been put forth to acquire meaningful 
geometric data from the image blobs. For example [5] 
extracts stick figures from the model through axial 
transformations while [6] uses distance 
transformation for the same purpose whilst also 
having the flexibility to ignore unwanted regions of 
the body for processing to decrease processing time. 

 
This paper describes a model free approach to posture 
classification based on a histogram projection 
analysis technique. It further develops histogram 
projection technique as a classifier, along with the 
addition of an asymmetry measurement algorithm. 
The paper is divided into sections which describe the 
pre-processing techniques used to ready the image for 
analysis, the analysis technique implemented and 
subsequently the algorithm used to classify the 
images. 

3 System Overview 
A standard 3.2 Mega pixel digital camera 
manufactured by Sanyo was used through the early 
stages of the development of the algorithm. Further 
into the research phase, a low-cost web-cam 
manufactured by AIPTEK was tested. Both of these 
visual capturing devices worked well for the intended 
purpose. However, the use of the web-cam was 
preferred simply because of the technique used for 
subject extraction which will be described at the later 
part of the paper. The cameras were mounted on 

tripods to ensure clear images and to minimise 
camera movement between photographs. The 
photographs were taken in a ‘ jpeg’  format at a 
resolution of 2048 x 1536 pixels. 
 
The algorithms were developed, programmed and 
tested using MATLAB’s version 7.0.1.24704 (R14) 
on a computer powered by a Pentium 4 processor 
equipped with 512 MB RAM. MATLAB’s image 
processing toolbox was extensively used in the 
development of the classifier. The person images 
were taken against a stable background preferably 
monotone or with color distinctly different to the 
person. 

3.1 Segmentation and Extraction 

     
 Segmentation and Detection 
 
 Actual        Background 

       
                            

 

Figure 1: Segmentation and Feature Extraction 

 
The segmentation and object detection technique is 
based on the fact that the application of this posture 
detection model is to be operated in an indoor 
environment where the change in background clutter 
is negligible and the illumination levels are relatively 
constant. The background frame is subtracted from 
the actual frame and is subsequently thresholded to 
produce a binary image as shown in Figure 1. Smaller 
noise patches which may occur due to changes in 
illumination or background features between 
successive frames are cleaned in this process by 
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applying a simple blob area constraint. The person’s 
body area data is extracted and is repositioned in the 
centre of the frame relative to the frame to ensure 
accurate comparisons unaffected by translations. 

3.2 Histogram Projection analysis 
This is a commonly used descriptor for shape 
analysis. Although it has its limitation, the simplicity 
of the technique and also its effectiveness for simple 
posture analysis made it the basis of the algorithm 
developed for this project [7]. 
 
 Since the image has been saved in a binary format, it 
can now be scanned along both the x and y axes to 
calculate the density of the pixels that are ‘on’ , i.e. 
pixels with a value of 1. A histogram is developed for 
both the axes individually. Each histogram holds 
information regarding the number of ‘on’  pixels along 
each of the rows along the Y axis, in the case of the 
vertical projection histogram and the number of ‘ on’  
pixels along each column along the X axis in the case 
of the horizontal projection histogram. 
 

 

 
 

  
 

Figure 2: Horizontal (red) and vertical (blue) 
projection histograms  for different poses 

 
In the graphs in figure 2, the ones on the left reveal 
the projection data of the pixels as the photograph is 
scanned from left to right taking into account each 
column. The graphs on the right, reveal the projection 
data of the pixels as the photographs is scanned from 
top to bottom along each row.  

A person who is standing will have a horizontal 
projection histogram quite similar to a person who is 
squatting and facing into the camera. However their 
vertical projection histograms will be drastically 
different. Similarly, a person lying will have a 
horizontal projection histogram slightly similar to a 
person with his hands extending perpendicularly 
sideways. However their vertical projection 
histograms are significantly different as shown in 
figure 2. Hence to make valid repeatable 
classifications based on histogram projections of body 
clusters, it is a must that both horizontal and vertical 
projections be taken into account during the analysis. 
Consideration of only one can easily lead the 
algorithm astray during classification. 

3.3 Classifying asymmetric postures 

             

               
Figure 3: Identifying asymmetric postures 

After observing the photographs of a large number of 
subjects, an interesting fact was discovered about the 
way humans stand and squat, a fact which has been 
used to develop this algorithm. It was observed that 
the highest value in the horizontal projection 
histogram occurs at a point which falls at the base of 
the feet of the subject. What this means is that if a 
vertical line was to be drawn along each column 
along the photograph, the line which intersected with 
the most number of white pixels would be located 
around the feet of subject. This is used as a means of 
locating the subject’s body position in relation to the 
photo frame. This point, referred to as COM, can 
easily be identified as the values of the histogram are 
already stored in the memory and can be quickly 
scanned for a maximum value. In figure 3, the dashed 
red line (COM) identifies the point of maximum pixel 
density value and the solid line identifies the total 
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width of the subject’s image. The solid line is used to 
calculate right, the distance to the furthest on pixel to 
the right of the COM and left, the distance of the 
furthest on pixel to the left of the COM. This 
technique is also used to check if the subject has 
raised either his left or right hand. A sample 
algorithm is as follows. 
 

=histy sum of ‘white’  pixels in each column ;  
COM = the column number with the most number of 

white pixel;  
right =  index of last ‘white’  pixel in the histy array ;  
left =  index of first ‘white’  pixel in histy array; 
if ( COM-left)÷(right-COM)>=constant  

: left hand/facing 
else if (right-COM) ÷( COM-left )>=constant  

: right hand/facing 
else  : symmetric 
The constant is unique to the postures being analysed 
for example 1.3 is used while identifying the hand 
raised, 1.2 for squat direction and 1.2 for bend 
direction.  

 
Leaving a minimum margin of 0.1 allows for small 
amounts of unintended or accidental asymmetry to be 
ignored. Experiments have lead to the discovery that 
the constants stated above give the best results. 

4 Classifying the postures 
Projection histograms are highly representative of the 
body posture they are developed from. Hence 
comparing the vertical and horizontal projection 
histograms of two postures can provide enough 
evidence to differentiate between them, provided the 
two postures are distinct enough. Simple distance 
calculations can be used to derive numbers 
representing the similarities or dissimilarities of 
histogram projections. Decisions on classifications 
are made by the computer based on these distance 
measurement results. 
 
Two types of distance calculation techniques were 
considered for this purpose. One being the Euclidean 
distance and the other is Manhattan distance. The 
Euclidean distance is the straight line distance from 
point ‘a’  to ‘b’  whereas its Manhattan distance is the 
total distance from ‘a’  to ‘b’  if a grid like path was to 
be followed. The equations below help describe the 
two ideologies. 
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Although the Euclidean distance (DEuclidean) provides 
more accurate measurements it was not preferred as it 
increases computational time, the minimisation of 
which is highly essential to allow for the programme 
to function as a real time system. It has also been 
proven to be more accurate for use with classification 
base on projection histograms [7]. The Manhattan 
distance (Dmanhattan) between two points is calculated 
much quicker as the horizontal and vertical projection 
data are already stored as separate vectors in the 
memory and makes it easier to calculate the 
similarities between the two horizontal projections 
and two vertical projections individually. When the 
histograms of the unknown pose are compared with 
those of a known one, a small distance measurement 
indicates a closer resemblance. A variation of the 
Manhattan distance was implemented to calculate this 
distance value. 
 
For a photograph of size 2048 x 1536 pixels, the 
horizontal projection vector would contain 1536 
values and the vertical projection vector 2048 values. 
Each value of each vector is compared with its 
counterpart from the prototype image’s vectors. Thus 
it is vital that the photos stored in the database and 
those taken be of the same dimensions. The following 
steps were used to calculate histogram similarities 
between image one, I1 and image two, I2. 
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where  
D(Y1,Y2) = least mean error between the two 

postures in y-direction. 
D(X1,X2) = least mean error between the two 

posturse in x-direction. 
DimY and DimX = the maximum size of the image in 

Y and X direction respectively. 
The additional terms in the calculations for 
similarities between the horizontal projection data 
help iron out differences which may occur due to 
slight translation or mirroring effects about the 

422



vertical axis. Mirroring about the horizontal axis is 
highly unlikely [3]. 
 
The overall similarity (least difference between two 
images) between the two projection histograms, i.e. 
taking both into account, can be calculated as 
following.  
 
D(Im1,Im2) = a *  D(Y1,Y2) + b *  D(X1,X2) 
 
The variables ‘a’  and ‘b’  refer to weights which may 
be given to the individual histogram similarities. 
Several experimental tests have revealed that unless 
specifically intended both histograms must be given 
equal weighting for ‘a’  and ‘b’ . 
 
To detect the similarity of a pose in comparison to 
two known poses the following mathematical 
calculation is performed to provide a percentage 
resemblance [3]. 
 
D(Im,STAND)= 100 –  

{
)(Im,)(Im,

)(Im,
LYINGDSTANDD

STANDD

+
} *100 

 
This expression gives a result as a percentage which 
indicates the likely hood of the pose being a stand 
rather than a lie. It was found through 
experimentation that the more distinct the two poses 
under comparison, the more reliable the result. The 
likelihood of the posture being a ‘ lie’  is simply a 
complement of a ‘stand’ . 
 
Three different subjects were chosen to construct the 
template database for the various postures. To cover a 
large range of images of body sizes of a tall, short and 
an average male were taken in all the postures to 
create the database. Histogram templates were created 
and stored for comparisons during the analysis of the 
unidentified postures in the captured images. Unlike 
techniques such as contour based descriptors and 
shape context matching, this technique does not 
demand a large template set. However it is necessary 
to cover the extremes of height and width ranges of 
the possible subjects to improve the chances of a 
successful classification. The three sets of histogram 
data are averaged out and saved as a template (figure 
4). There was no need to capture images of persons 
with varying widths for the horizontal projection 
templates as these histograms do not play a major role 
in the classification of postures. The method of 
analysis chosen is more heavily depended on vertical 
histogram data.  

 

 
Figure 4: Averaged comparison templates (red 

denotes vertical histogram) 

The classification process in can be divided into 3 
main steps as follows. 
 
Step 1 - Check for  ‘stand’  or  ‘ lie’  posture 
A comparison is made between the similarity of the 
subject’s histogram with those of the predefined 
standing and lying postures. During this phase a 
higher weighting is given to the vertical projection 
histogram as it is this aspect which possesses greatest 
diversity between the two postures. Decisions are 
made on the results from this comparison 
 
Step 2 – Check for  ‘squat’  or  ‘bend’  posture 
The image is analysed to check if the subject is 
squatting or bent. Projection histograms are used 
again for this classification step taking into 
consideration only the vertical projection histogram. 
It has been observed that a person squatting always 
produces a shorter profile than a person who is bent. 
Hence this fact is utilised to identify the two postures. 
 
Step 3 – Asymmetry analysis for  fur ther  
classification 
The asymmetry detection algorithm explained earlier 
is used to identify the person’s hand raised and the 
orientation. 
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Several experimental runs have identified the 
optimised constants for best recognition percentage 
 

5 Experimental results 
The results were summarised in Figure 5.  In the 
figure, different postures with their corresponding 
recognition percentages are presented.  The posture 
that reports the highest percentage would denote that 
the posture of the capture image is most likely.  For 
example, if an image has 72.83% for bent and 27.17% 
for squat, it would suggest that the image posture 
would likely be a ‘bent.  The direction denotes the 
direction the person in the image is facing. 
 

6 Discussions and Conclusion 
The classification approach used has been proven to 
classify up to 11 postures with a reasonable accuracy 
of about 80%. Although histogram projections of an 
object are calculated relative to the frame of view, 
this algorithm manages to avoid sensitivity to the 
object’s position in the frame of view. 
 

 

 

Figure 5: Test results for some posture classifications 

 
This is done by generating histograms for 
classification only after centring the subject in the 
frame after pre-processing. Also the histogram data 
generated is smoothed by a weighting factor which 
has been optimised after several trials. This 

smoothing provides error compensation which might 
be caused due to lateral positioning of the subject. 
 
The success of this classification algorithm is highly 
dependent on how well the images were pre 
processed.   However, for a successful pre-processing, 
it is important that the image background is clutter 
free and the subject is not occluded by other object. 
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Squat % 82.44 27.17 37.59 
Bent % 17.66 72.83 62.41 
Direction Straight Right Left 

 

   
Star % 55.6 41.2 40.3 
Stand % 76.3 83.1 83.5 
Direction Straight Right Left 
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Abstract
This paper describes a genetic programming approach to object detection. This approach breaks the
GP search into two phases with the first phase applied to a selected subset of the training data, and
a simplified fitness function. The second phase is initialised with the programs obtained from the first
phase, and uses the full set of training data with a complete fitness function to construct the final
detection programs. In addition to the detection rate and false alarm rate, a program size and a false
alarm area components are added to the fitness function. The results on two object detection problems
suggest that the proposed approach improve the effectiveness and the efficiency of genetic programming.

Keywords : Artificial Intelligence approaches to Computer Vision, Object Recognition, Image Analysis,
Genetic Programming, Neural Networks.

1 Introduction

Object detection tasks arise in a very wide range
of applications, such as detecting faces from video
images, finding tumours in a database of x-ray
images, and detecting cyclones in a database of
satellite images. In many cases, people (possibly
highly trained experts) are able to perform the
classification task well, but there is either a short-
age of such experts, or the cost of people is too
high. Given the amount of data that needs to be
detected, computer based object detection systems
are of immense social and economic value.

An object detection program must automatically
and correctly determine whether an input vector
describing a portion of a large image at a particular
location in the large image contain an object of
interest or not and what class the suspected object
belongs to. Writing such programs is usually diffi-
cult and often infeasible: human programmers of-
ten cannot identify all the subtle conditions needed
to distinguish between all objects and background
instances of different classes.

Genetic programming (GP) is a relatively recent
and fast developing approach to automatic pro-
gramming [1, 2]. In GP, solutions to a problem
are represented as computer programs. Darwinian
principles of natural selection and recombination
are used to evolve a population of programs to-
wards an effective solution to specific problems.

There have been a number of reports on the use
of GP in object detection [3, 4, 5, 6, 7, 8, 9]. The
approach we have used in previous work [8, 9] is
to use a single stage approach (referred to as the

basic GP approach here), where the GP is directly
applied to the large images in a moving window
fashion to locate the objects of interest. Past work
has demonstrated the effectiveness of this approach
on several object detection tasks.

While showing promise, the GP approach still has
some problems. One problem is that the training
time was often very long, even for relatively simple
object detection problems. A second problem is
that the evolved programs are often hard to un-
derstand or interpret. The big size of the programs
with redundancy contributes to the long training
times. Evaluating the fitness of a candidate de-
tector program in the basic GP approach involves
applying the program to each possible position of
a window on all the training images, which is quite
expensive.

The goal of this paper is to investigate two ideas
that can improve the above two situations. The
first is to split the GP evolution into two phases,
using a simple fitness function and just a subset
of the training data in the first phase. The sec-
ond idea is to augment the fitness function in the
second phase by a component that biases the evo-
lution towards smaller, less redundant programs.
We consider the effectiveness and efficiency of this
approach by comparing it with the basic GP ap-
proach and a neural network approach.

The rest of the paper is organised as follows. Sec-
tion 2 presents the main aspects of this approach.
Section 3 describes the three image data sets and
section 4 presents the experimental results. Section
5 draws the conclusions and gives future directions.
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2 GP Adapted to Object Detection

The term object detection here refers to the detec-
tion of small objects in large images. This includes
both object classification and object localisation.
Object classification refers to the task of discrimi-
nating between images of different kinds of objects,
where each image contains only one of the objects
of interest. Object localisation refers to the task of
identifying the positions of all objects of interest in
a large image.

Object detection performance is usually measured
by detection rate and false alarm rate. The detec-
tion rate (DR) refers to the number of small objects
correctly reported by a detection system as a per-
centage of the total number of actual objects in the
image(s). The false alarm rate (FAR), also called
false alarms per object [10], refers to the number
of non-objects incorrectly reported as objects by
a detection system as a percentage of the total
number of actual objects in the image(s). Note
that the detection rate is between 0 and 100%,
while the false alarm rate may be greater than
100% for difficult object detection problems.

(GP−classification)

Refined 

GP Testing
(Object  Detection)

(Test Set)
Large  Images 

Final   Results

Phase 1: GP  Training

Object Cutouts 

Genetic Programs
Trained Large Images 

(Training Set)

Phase 2: GP  Refinement
(GP−detection)

Genetic Programs

Genetic Programs
Initial Random

Figure 1: An overview of the approach.

Figure 1 shows an overview of this approach, which
has two phases of learning and a testing procedure.
In the first learning phase, the evolved genetic pro-
grams were initialised randomly and trained on
object examples cut out from the large images in
the training set. This is just an object classification
task, which is simpler than the full object detection
task. This phase therefore uses a fitness function
which maximises classification accuracy on the ob-
ject cutouts. In the second phase, a second GP
process is initialised with the programs generated
by the first phase, and trained on the full images
in the training set by applying the programs to
a square input field (“window”) that was moved
across the images to detect the objects of interest.
This phase uses a fitness function that maximises
detection performance on the large images in the
training set. In the test procedure, the best re-
fined genetic program is then applied to the entire

images in the test set to measure object detection
performance.

Because the object classification task is simpler
than the object detection task, we expect the first
phase to be able to find good genetic programs
much more rapidly than the second phase.
Although simpler, the object classification task is
closely related to the detection task, so we expect
the genetic programs generated by the first phase
to be very good starting points for the second
phase.

Since the difficulty of finding an optimal program
increases with the size of the programs, in the sec-
ond phase, we include a program size component
to the fitness function to bias the search towards
simpler programs. We expect this to improve the
system accuracy and efficiency, and also make the
programs easier to interpret.

Notice that the two phase approach here will only
produce a single program for the whole detection
task. This is different from the typical multi-stage
approach with a program/system for each stage. In
the rest of the section, we will describe the main
aspects of the GP system, including the primitive
set, the fitness function, the parameters, and ter-
mination criteria of the evolutionary process.

2.1 Primitive Sets

For object detection problems, terminals generally
correspond to image features. Instead of using
global features of an entire input image window,
we used a number of statistical properties of local
square and circular region features as terminals,
as shown in figure 2. The first terminal set con-
sists of the means and standard deviations of a
series of concentric square regions centred in the
input image window, which was used in the shape
data set (see section 3). The second terminal set
consists of the means and standard deviations of
a series of concentric circular regions, which was
used in the coin data set. Notice that these fea-
tures are certainly not the best for these particular
problems, however, our goal is to investigate the
two-phase and the program size ideas rather than
finding good features for a particular task. we also
added some random constants to each terminal set.
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Figure 2: Local square and circular features.
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In the function set, the four standard arithmetic
operators and a conditional operator were used to
form the non-terminal nodes: FuncSet = {+, -,

*, /, if} . The +, −, and ∗ operators have their
usual meanings — addition, subtraction and mul-
tiplication, while / represents “protected” division
which is the usual division operator except that a
divide by zero gives a result of zero. Each of these
functions takes two arguments. The if function
takes three arguments. The first argument, which
can be any expression, constitutes the condition.
If the first argument is positive, the if function
returns its second argument; otherwise, it returns
its third argument.

2.2 Converting Programs to Classes

The output of a genetic program is a floating point
number. For object detection problems, this value
must be converted to a class label. In this ap-
proach, we used a variant program classification
map, as shown in equation 1, for this purpose [11].

Class =



























background, v ≤ 0

class 1, 0 < v ≤ T

class 2, T < v ≤ 2T

· · · · · ·

class i, (i − 1) × T < v ≤ i × T

· · · · · ·

class m, v > (m − 1) × T

(1)

where m refers to the number of object classes
of interest, v is the output value of the evolved
program and T is a constant defined by the user,
which plays a role of a threshold.

2.3 Fitness Functions

As mentioned earlier, we used two fitness func-
tions for the two learning phases. The first phase
used the classification accuracy directly as the fit-
ness function to maximise object classification ac-
curacy. The second phase used a multi-objective
fitness function to maximise object detection ac-
curacy, which is to be described below.

The goal of object detection is to achieve both a
high detection rate and a low false alarm rate. In
genetic programming, this typically needs a multi-
objective fitness function. A fitness function we
used in previous work [9] is:

fitness(DR, FAR) = Wd ∗ (1 − DR) + Wf ∗ FAR (2)

where DR is the Detection Rate and FAR is the
False Alarm Rate, as described earlier. The pa-
rameters Wd,Wf reflect the relative importance
between the detection rate and the false alarm rate.

Although such a fitness function accurately reflects
the performance measure of an object detection
system, it is not smooth. In particular, small im-
provements in an evolved genetic program may not
be reflected in any change to the fitness function.
The reason is the clustering process that is essential
for the object detection — as the sliding window is
moved over a true object, the program will gen-
erally identify an object at a cluster of window
locations where the object is approximately cen-
tred in the window. It is important that the set
of positions is clustered into the identification of a
single object rather than the identification of a set
of objects on top of each other.

A poor program may produce a larger cluster of
“incorrect” locations and a better program may
produce a smaller cluster of locations (as shown
in figures 3 (b) and (c)). Although the second
program is better than the first, it has exactly
the same FAR since both programs have two
false positives. A fitness function based solely
on DR and FAR cannot correctly rank these two
programs, which means that the evolutionary
process will have difficulty for selecting better
programs. To deal with this problem, the False
Alarm Area (FAA, the number of false alarm pixels
which are not object centres but are incorrectly
reported as object centres before clustering) was
added to the fitness function.

(a) (c)(b)

Figure 3: Sample object detection maps. (a) Original

image; (b) Detection map produced by a poor program; (c)

Detection map produced by a better program.

Another problem with this fitness function is that
some genetic programs evolved are often very long.
When a short program and a long program pro-
duce the same detection rate and the same false
alarm rate, the GP system will randomly choose
one for reproduction, mutation or crossover during
the evolutionary process. If the long programs are
selected, the evolution for the rest of the learning
process will be slow. This is mainly because this
fitness function does not include any direct heuris-
tics about the size of programs.

2.3.1 The New Fitness Function

To smooth the fitness function so that small im-
provement in genetic programs could be reflected
and to consider the effect of program size, we added
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two measures, false alarm area and program size to
the fitness function.

The fitness of a genetic program in the new fitness
function is calculated as follows.

1. Apply the program as a moving n×n window
template (n is the size of the input image win-
dow) to each of the training images and ob-
tain the output value of the program at each
possible window position. Label each window
position with the ‘detected’ object according
to the object classification strategy. Call this
data structure a detection map.

2. Find the centres of objects of interest only by
the clustering algorithm:

• Scan the detection map for an object of
interest. When one is found mark this
point as the centre of the object and con-
tinue the scan. Skip pixels in n/2 × n/2
square to right and below this point.

3. Match these detected objects with the known
locations of each of the desired true objects
and their classes.

4. Calculate the detection rate DR, the false
alarm rate FAR, and the false alarm position
FAA of the evolved program.

5. Count the size of the program by adding the
number of terminals and the number of func-
tions in the program.

6. Compute the fitness of the program according
to equation 3.

fitness = K1·(1−DR)+K2·FAR+K3·FAA+K4·ProgSize

(3)

where K1,K2,K3, and K4 are constant weighting
parameters which reflect the relative importance
between DR, FAR, FAA, and the program size.

We expect the new fitness function to reflect both
small and large improvements of the genetic pro-
grams, bias the search towards simpler functions,
and accordingly to improve both the efficiency and
the effectiveness of the evolutionary search. It will
also have a tendency to reduce redundancy, making
the programs more comprehensible.

2.4 Parameters and Termination Criteria

In this system, we used tree structures and Lisp S-
expressions to represent genetic programs [2]. The
ramped half-and-half method [1, 2] was used for
generating the programs in the initial population
and for the mutation operator. The proportional
selection mechanism and the reproduction [11],
crossover and mutation operators [1] were used in
the learning process.

Parameter values used in this approach are shown
in table 1. The learning process is run for a fixed
number (max-generations) of generations, unless it
finds a program that solves the problem perfectly,
or there is no increase in the fitness for 10 gener-
ations, at which point the evolution is terminated
early.

Table 1: Parameters used for GP training.

Parameters Parameter Name Shape Coins Heads/tails

population-size 800 1000 1600

Search initial-max-depth 2 2 5

max-depth 6 7 8

Parameters max-generations 50 150 200

input-size 20×20 72×72 62×62

reproduction-rate 2% 2% 2%

Genetic cross-rate 70% 70% 70%

Parameters mutation-rate 28% 28% 28%

T 100 80 80

Fitness K1 5000 5000 5000

K2 100 100 100

Parameters K3 10 10 10

K4 1 1 1

3 Image Data Sets

We used two data sets in the experiments. Exam-
ple images are given in figure 4. Data set 1 (Shape)
was generated to give well defined objects against
a uniform background. The pixels of the objects
were generated using a Gaussian generator with
different means and variances for different classes.
There are two classes of small objects of interest
in this database: circles and squares. In data set 2
(coin), the task is detecting the head side and the
tail side of scanned New Zealand 5 cent coins with
various orientations from a cluttered background.
Given the low resolution of the images, this detec-
tion task is actually very difficult — even humans
cannot distinguish these objects perfectly.

No. of images: 10 No. of images: 20
Object size: 18×18 Object size: 60×60

(Shape) (Coin)

Figure 4: Object detection problems.

In the experiments, we used one and five images
as the training set and used five and ten images
as the test set for the Shape and Coin data sets,
respectively.
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4 Results and Discussion

4.1 Effectiveness: Detection Accuracy

To investigate the performance of this approach,
we compared this approach with the basic GP ap-
proach [8, 12] and a neural network approach [13,
14] using the same set of features. The basic GP
approach is similar to the approach described in
this paper, except that it uses the old fitness func-
tion without considering the program size and false
alarm areas (equation 2) and that genetic programs
are learned from the full training images directly,
which is a single stage approach. In the neural net-
work approach[13, 14], a three layered feed forward
neural network is trained by the back propagation
algorithm [16] without momentum using an online
learning scheme and fan-in factors. For all the
three approaches, the experiments are repeated 50
times and the average results on the test set are
presented in this section.

Figure 5: Object detection results.

All the three approaches achieved the ideal results
for the Shape data set, reflecting the fact that the
detection problem in this data set is relatively easy.
For the difficult Coin data set, none of the three
methods resulted in ideal performance. While all
the three approaches also achieved 100% detection
rate for the Coin data set, they produced very
different false alarm rates. The false alarm rates
for the two classes and the overall task are pre-
sented in figure 5. The results suggest that the new
two-phase GP approach described in this paper
achieved the best performance and that both GP
approaches achieved better results than the neural
network approach using the same set of features.

4.2 Efficiency

Although both of the GP approaches achieved bet-
ter results than the neural networks overall, the
times spent on the training/refining process are
quite different. For the Coin data set, for example,
the two phase GP approach found good programs
after 23 hours on average, while the basic GP ap-
proach took an average of 45 hours. The first phase

is so fast because the size of the training data set
is small, and the task of discriminating the classes
of objects (when centred in the input window) is
relatively simple. However, the programs it finds
appear to be very good starting points for the more
expensive second phase, which enables the evolu-
tion in the second phase to concentrate its search
in a much more promising part of the search space.

The execution times of the two GP approaches
on the test sets are only a few seconds, which is
much shorter than the neural network approach.
There are two main reasons. Firstly, the functions
in the best evolved genetic programs are simpler
than those in the trained neural networks such as
complex transfer functions. Secondly, while the
neural networks must use all the features in the
terminal set, the GP approach only selects those
relevant to a particular task and makes the evolved
programs more concise.

4.3 Example Evolved Programs

To check the effectiveness of the new fitness func-
tion at improving the comprehensibility of the pro-
grams, an evolved genetic program in the shape
data set is shown below:

(/ (if (/ (- F4µ T) F4µ)

F3µ

(* (- F4µ F2µ) F1σ))

(/ F4µ F4µ))

This program detector can be simplified as follows:

(if (- F4µ T) F3µ (* (- F4µ F2µ) F1σ))

where Fiµ and Fiσ are the mean and standard de-
viation of region i (see figure 2, left) of the window,
respectively, and T is a predefined threshold. This
program can be translated into the following rule:

if (F4µ > T) then

value = F3µ;

else

value = (F4µ - F2µ) * F1σ;

If the sweeping window is over the background
only, F4µ would be smaller than the threshold (100
here), the program would execute the “else” part.
Since F4µ is equal to F2µ in this case, the pro-
gram output will be zero. According to the classi-
fication strategy — object classification map, this
case would be correctly classified as background. If
the input window contains a portion of an object
of interest and some background, F4µ would be
smaller than F2µ, which results in a negative pro-
gram output, corresponding to class background. If
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F4µ is greater than the threshold T, then the input
window must contain an object of interest, either
for class1 or for class2, depending the value of F3µ.

While this program detector can be relatively eas-
ily interpreted, the programs obtained using the
old fitness function are generally hard to interpret
due to the length of the programs. The trained
neural networks, with many links and a complex
transfer function at each node, are almost a “black
box”.

5 Conclusions

The paper investigated a two phase GP approach
with a new fitness function including a program
size and a false alarm area components. Our re-
sults suggest that the two phase approach is more
effective and more efficient than the basic GP ap-
proach and more effective than a neural network
approach on the two data sets using the same set of
features. The modified fitness function resulted in
genetic program detectors that were better quality
and easier to interpret.

While this approach considerably shortens
the training times, the training process is still
relatively long. We will explore better classification
strategies and add more heuristics to the genetic
beam search to the evolutionary process in the
future.
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Abstract 

In this paper, we address the problem of recognizing 3D object from a single image using objects models 
database. We used geometric quasi-invariant features issued from images to build up the database. These 
features sets are the object indexes. To code these indexes, and to enhance the recognition process, we propose a 
modified X-tree technique. On the other hand, to overcome high database dimensionality retrieval difficulties, 
we introduce a vector approximation file to transform the indexes space into a similarity space. Distance between 
image and database models indexes are calculated in the similarity space. Our final vote method is used to reject 
not matching objects within the database. 

Keywords: object database, geometric quasi invariant, content based, similarity, indexing, retrieval.

1 Introduction 

An easy way to recognize an object in an image is to 
find object with best resemblance in the database [1, 
2]. This problem can be considered as an indexing 
retrieval problem which consists in index calculation 
from a set of image features, and comparison with 
object database indexes. Several image features can 
compose object index. We have used geometric 
features.  

3D object indexing problem is the purpose of a large 
number of research work [3, 4, 5]. Segments are 
interesting features because of their robustness to 
noise and their connectedness constraint (based on a 
topological reality in the image). They also have the 
properties to vary slightly with a small change in the 
viewpoint, and to be invariant under similarity 
transform of the image [6].  

We used geometric invariant features to match 
objects. These features are geometric quasi-invariants 
(ρ, θ) defined by intersecting segments [7]. These 
features are also used as object indexes.  

The object indexing retrieval system we propose is 
based on geometric quasi invariant indexes. Instead of 
interpreting 3D information, we perform the object 
indexing and retrieval in 2D index space (figure 1).  

The X-tree algorithm has been adopted to code these 
indexes instead of the hashing table. This creates high 
dimensionality database. The vector approximation 
file technique [6] provides a method to overcome the 
high dimensionality curse, by following not the data 
partitioning approaches of conventional index 
methods, but rather act as a filter based approach.  
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Figure 1.  Object indexing retrieval system. 

431



To recognize an object in a request image, we propose 
a three step method. First, (ρ, θ) features are extracted 
from image and geometric indexes built. Second, the 
indexes are coded in a X-tree and then in a similarity 
space by the VA file technique. Third, distance 
between the image request indexes and the object 
database indexes are calculated in the similarity space. 
A final vote step identifies the best matching object 
from the object database. Once the object is 
recognised, it is easy to back track the 3D 
information. 

2 Geometric Indexes 

2.1 Quasi-invariants and Similarity 

The quasi-invariants (ρ, θ) are the angle θ between 
intersecting segments, and segments length ratio ρ 
[7]. 
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Considering two geometric configurations (figure 2), 
similarity is expressed as homothety k, rotation α, and 
translationT  : 
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Figure 2. Geometric quasi invariant and similarity. 

2.2 Image Features  

We propose the following image features: quasi 
invariant (ρ, θ), colour RGB, intersecting segments 
lengths (l1 , l2) and the image identifier (number). 
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Figure 3.  Index composition. 

2.3 Geometric Features analysis 

In order to build the indexing structure, we first 
analyzed the (θ, ρ) distribution. Figure 4 shows that 
π/2 is the θ distribution most frequent value. Figure 5 
shows a non uniform ρ distribution. 
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It has been shown [4] that feature uniform distribution 
performs better indexing retrieval results. Therefore, 
we considered logarithmic function ln(ρ) (figure 6) 
which shows that values beyond the bound [-4 , +4] 
are not relevant.  
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number 
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Figure 6 : ln(ρ)distribution. 

2.4 Features Index composition 

We proposed the following image features and index: 

( )ρln θ R G B θ0 l1 l2 x0 y0 No Imag

index
For each image, a set of features are calculated, and 
the corresponding indexes are coded in a structure. 
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3 Object database  

3.1 Features structure 

We considered 3D polyhydric objects. For each 
object, several images are taken from different points 
of view (figure 7). For each image, adjacent 
intersecting segments and corresponding geometric 
quasi invariants are calculated. The corresponding set 
of features and indexes are added to the object 
database structure. 

  

  

Figure 7. Object images. 

Building the object database is the off line indexing 
process. The on line retrieval process good 
performance are much more of our concern. 
Therefore, we designed the database to fulfil the 
retrieval process needs: velocity and accuracy. To 
achieve these needs, we proposed two storage 
structures:  
• One for the indexes : kept in the primary memory, 

which makes database access for retrieval process 
faster,  

• One for image features: kept in a secondary 
memory.  

On the other hand, for efficient query processing in 
large data sets, it is necessary to build an index 
structure that reduces the size of the retrieved set 
needed to answer a query. The general approach is to 
prune the search space and eliminate irrelevant data 
objects without accessing the corresponding features 
subspace. This had led to several index structures 
such as VQ tree [8], R*tree [9], X-tree [10]. In our 
case, image features lead to a multi dimensional index 
space. We’ve adapted the X-tree indexing structure to 
avoid irrelevant overlapping hyper cubes and empty 
leaves. 

3.2 Indexes X-tree structure  
When adding data to the database, X-tree leave split 
process creates leaves misdistribution. To create new 
leaves with balanced data distribution, a gravity 
center driven split process is used (figure 8).  

Figure 8.  Split processes 

3.3 Indexes similarities and VA-File 
approximation: similarity space  

Due to image features quasi invariants properties, 
dense clusters in index space correspond to database 
objects. Finding dense clusters is a conventional 
nearest-neighbour approach that uses 
multidimensional access method. Unfortunately, 
while this method performs well for a low 
dimensionality, performance degrades as 
dimensionality increases.  

To overcome this well known “dimensional curse”, 
we introduce vector approximation file descriptor [13] 
to analyze clusters density. The VA-file method is a 
geometric approximation that split in 2 each data 
space dimension di (this is coded on di bits). The index 
space is then split in 2b hyper cubes (b = Σ di ). Each 
index is coded by the interval number it lies in. To 
avoid poor or empty partitions, intervals with less 
than one index are ignored (figure 9 shows a 2D index 
space case).  
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Figure 9.  VA-file approximation 

4 Retrieval process 

It is a two step process. First, image features and 
indexes are extracted from the request object image, 
and then approximate in the similarity space. The 
second step is a match step: similarities of these 
indexes with neighbours are calculated and a vote 
eliminates the false matches.  

4.1 Indexes similarity estimation 

Similarities are calculated for each indexes neighbour. 
The VA-file answering request seeks then for the 
closest hyper cubes to the request. Euclidian distance 
is measured in between hyper cubes, and those for 
which the distance is bigger then a predefined ε value 
are rejected. This step is more like a filter that 
eliminates all non suitable hyper cubes.  
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Figure 10. Request process 
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The result of these processes is a list of possible 
matches and corresponding similarities which forms 
clusters. After analyzing these clusters, we find the 
best request matches by a vote step process. 

4.2 Vote step 

The best match is the one with the higher density 
cluster. Our vote process is a three steps process: 
 Initialization: for each request image, an empty 

hypercube counters list, labeled with hypercube 
numbers, is created. 

 For each similarity, we determine the interval 
number it lies in (ième dimension that contain its 
jème component). This gives us the hypercube 
number that contains these similarity parameters.  

 If the hypercube number already appears in the 
initial list, its counter is incremented. Other wise, 
the hypercube number is added to the list and it 
counter set to 1. 

When all the similarities have been treated, the 
matched indexes refer the more resembling objects in 
the database. The corresponding images are selected 
and sort out by the vote number. 

5 Evaluation 

5.1 Object Database  

We considered 28 polyhydric objects seen under 
several point of view for each of them (average object 
rotation is 200). From the resulting 856 images we 
extract the geometric features and build the indexes.  
 

 

  

 

 

 

5.2 The tree composition 

During the object database building process, several 
tests have been conducted. We were specially 
concerned by the tree leaves composition.  

5.2.1  Leaf fullness 

Test have been conducted on hole, half and third 
index database (figure 11). The best fullness rate for 
leaves is achieved with 400 indexes. 

55%
50%
45%
40%

Leafes fullnes rate

100 500 1000 1500
Indexes number
per leafe

49764 indexes
24380 indexes
16652 indexes

Figure 11. Leaf fullness 

5.2.2 Leaf size versus request time 

We tested a long request index (100 images indexes).  
Over 800 request indexes, the request time changes 
slightly (figure 12). Therefore, the maximum number 
of indexes stored in each tree leaves is 400 indexes. 
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Figure 12. Time request 

5.3 Indexes distance threshold 

We evaluate the threshold used to compare indexes. 
With a set of 24 views of the same object, we 
analyzed identical geometric configurations and 
evaluate the difference between their quasi invariants 
features (figure 13). Half these values is the threshold:   

( ln(ρ), θ )  <=  (0,14 ,  11,2) 
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Figure 13.  Similarities of quasi-invariants 
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5.4 VA-file Parameters 

In the VA-file process, the similarities representation 
space is split into   hyper cubes, and each 
dimension is divided in  intervals, with the 
condition:  

b2
ib2

∑
=

=
4

1i
ibb  

The VA-file parameters are the hyper cubes bounds 
and the intervals number bi. They are defined in 
regard to the similarities variations. In our case, the 
similarities are homothety k, rotationα, and 
translation over X and Y axis. 
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Figure 15.  Rotation α distribution 
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Figure 16. Translation X distribution 
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Figure 17.  Translation Y distribution 

The homothety distribution (figure 14) is a non 
uniform distribution. To ensure a uniform 
distribution, a logarithmic function is used (figure 18).  
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Figure 18.  Homothety distribution ln(k) 

The interval numbers for each dimension is 
determined by the existing similarities (figure 14, 15, 
16 and 18). We evaluate average similarity distance 
which leads us to these intervals numbers: 

 Interval gap  bi = Interval / gap 

k [-3, +3] 0,13 bk = 6 

α [0°,360°[ 4,32 bα = 6 

X [-5000,+5000] 49,83 bx = 8 

y [-5000,+5000] 61,21 by = 8 

5.5 Results  

We show below a 3D object request image and the 
best matched images from the image database. The 
object (a disk) is well identified even if two different 
objects looked similar. This vote rate is due to an 
incomplete description of this object. The Quasi 
invariant features used to describe and identify objects 
from images didn’t provide a unique description. We 
propose in a future work a new object description that 
insures uniqueness of the description.  

  

Figure 19.  Object request Image  

The request image has an average of 55 indexes. The 
response of the request from the geometric model 
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base gives an average of 241 similarities for each 
request index. The matching rate is 63%. In the fail 
case, the request image is matched with the right 
object with 58% vote rate and with wrong objects 
with 22% vote rate. 

6 Conclusion 

We proposed in this paper an efficient method for 
object indexing and retrieval from database. Our 
method for coding the indexes and their similarities 
improved the request time. The test with polyhydric 
objects images, taken with different points of view, 
shows good matching rates. 

The use of geometric quasi invariants features as 
indexes make the use of images, regardless to the way 
they’ve been taken and without any information on 
the point’s view possible (no calibration parameters 
are needed). Indexes can in the future be a 
combination of geometric and photometric features 
(reflectance). This combination will be used during 
the vote process to reject indexes which geometric 
similarities that leads to false matching.  
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Abstract
For understanding atmospheric structure, it is important to detect cloud patterns in satellite images, since
cloud pattern is closely related with atmospheric state. In this paper, we propose an image processing
method to detect cirrus streaks of cloud pattern in satellite images utilizing a cloud movement. The
proposed method is comprised of a detection step, an evaluation step and an unification step. In the
detection step, some candidate streaks are detected in the area with a large variance of the brightness and a
large velocity, which are regarded as a cirrus cloud. The detection is based on the Hough transform. In the
evaluation step, every candidate streak is evaluated with its shape and movement. In the unification step,
more than two close streaks are unified according to their positions and movements. Some experimental
results are shown to verify the proposed method.

Keywords : cirrus streak, cloud shape, cloud movement, Hough transform, automatic interpretation

1 Introduction

In meteorology, weather forecasters analyze the
atmospheric phenomenon based on observational
data and their knowledge. They then extract
useful information for weather forecast such as
temperature changing and atmospheric pressure
pattern. Cloud patterns visually shown in satellite
images are closely related with the distributions
of temperature and moisture, atmospheric flow
and so on. Hence, it is important to detect cloud
patterns to understand atmospheric structure.
Some cloud patterns such as frontal areas, fogs [1]
and contrail [2] came to be extracted automatically
utilizing textual features such as brightness and
its deviation. However, there exists some cloud
patterns which can not be detected automatically
only using the textural features. One of them is
the cirrus streak which is important for locating
the jet stream. Consequently, meteorological
experts detect cirrus streaks manually at present.

It is known that cirrus streaks have some features
in its texture, shape and movement. One of tex-
tural features is that the cirrus streak, which is an
upper layer cloud, containing small streaks vertical
to the cirrus streaks. Regarding features of the
shape and movement, the cirrus streak is elongated
and flows fast along the flow of the upper layer.
Considering the cloud shape and movement are
effective features to express the dynamics of the
cloud, we propose a novel method to detect the cir-
rus streak utilizing the features of the cloud shape
and movement in addition to textural features.

� ��� � � � � �
� ���
	�
 � 
 �� �
� ��� ���

��� � � � � 
 ������� � ������� � ��� � 
 ��� ��� � �

! ��� �����

" � �����$#�� %�� ��� �
" � �����&	'� � ��� 
 � (
" � ����� " � �)� �

" � �����*��+�� ���
" � �����$,-����� ��� ���

� �������

� ��� ���

. 
 � +
" 
 � � ���
��� � � � /��

0$��
 � 
 � � � 
 ������� � �

" � �����$12��� 
 � 
 ���
" � �����$,-����� ��� ���

Figure 1: Overview of the proposed method.

In Section 2, we describe the detection of cirrus
streaks based on the Hough transform. In Section
3, we show the experimental results with various
satellite images to confirm the effectiveness of the
proposed method. Finally, we give the conclusions
and perspectives in Section 4.

2 Proposed Method

We firstly explain the overview of the proposed
method. Figure 1 shows the overview. As an
input we use infrared images and visible images
taken from a meteorological satellite at different
frequency bands. In general, visible images are
used to see lower clouds and infrared images have
advantage in understanding the dynamics of upper
layer clouds. The brightness of the visible image
corresponds to the thickness of the cloud, while the
brightness of the infrared image corresponds to the
temperature of the cloud, namely the top altitude
of the cloud. As shown in Figure 2 and Figure 3,
a cirrus streak surrounded by the dotted line in
an infrared image is more distinct from the other
clouds than that in a visible image. Hence, in the
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Figure 2: Infrared image with the cirrus streak
surrounded by the dotted line.

Figure 3: Visible image with the cirrus streak
surrounded by the dotted line.

proposed method we mainly use infrared images,
which are observable throughout the day and we
use visible images only for the decision of the cloud
class. Utilizing satellite images all the clouds are
classified into a certain cloud class such as cirrus,
cumulonimbus and so on [3][4].

The detection of cirrus streak is performed in
three steps; the detection step, evaluation step
and unification step. In the detection step, the
objective pixels are selected according to the
cloud class, cloud velocity and deviation of the
brightness in the respective neighborhood. Then,
candidate streaks are detected based on the
Hough transform for the objective pixels. In
the evaluation step, some candidate streaks are
omitted by evaluating candidate streaks with
their movement on the streak and their shape. In
the unification step, conclusive cirrus streaks are
determined by unifying close candidate streaks
according to their positions and movements.
Finally, an infrared image with the detected cirrus
streaks is output. Details of the detection are
described as follows.
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Figure 4: Parameter sets and Wdr,dθ
.

2.1 Detection of the candidate streak

In general, a cirrus streak is a straight or a slightly
curved line. We therefore approximate a cirrus
streak as an arc of a circle or its combination. The
candidate of a cirrus streak is detected based on the
Hough transform [5][6]. In the Hough transform, a
figure which we want to detect in the image is de-
scribed as parameters of the equation of circle. The
reliable parameters are selected in the parameter
space by voting. The Hough transform is known
to be robust to the noise and discontinuities of
the figure. By selecting appropriate parameters,
multiple curves can be detected at one time. Three
parameters are needed to represent a circle.

We define ~C and r (> 0) as the vector of a circular
center and the radius of a circle, respectively. A
circle is described as a parameter set ( ~C, r) shown
in Figure 4. Pixels for voting are selected based
on certain conditions as given in the procedure 1.
The selected pixel in an image casts a vote to the
corresponding grids in the parameter space. We
then select parameter sets corresponding to the
grids voted a lot. The arcs of the cirrus streak are
obtained by selecting the appropriate areas of the
circle. Cirrus streaks detection can be summarized
as the following three procedures.

procedure 1: selection of voting pixels

Considering that a cirrus streak belongs to the
cirrus class, flows fast and has a small wavy cloud
lines which are almost perpendicular to the flow of
the streak, we applied the Hough transform to the
pixel which belongs to the cirrus class and has a
large deviation of brightness and a large velocity.
The calculated deviation is the standard deviation
of the brightness of an infrared image in the neigh-
borhood of 13×13 pixels. The cloud class of a pixel
is determined by its brightness and deviation in a
visible image and an infrared image. Details are

438



Figure 5: Infrared image including pixels for
voting.

described in previous works [3][4]. The velocity of
a cloud is obtained utilizing a pair of successive in-
frared images. The details are described in Section
2.2.

We define U as a set of pixels which belong to
the cirrus and have a larger brightness deviation
and velocity than a given threshold Td and Tv,
respectively. U are illustrated in Figure 4 and
Figure 5 as the gray areas and the shaded areas
in the infrared image, respectively. We performed
the Hough transform to the pixels which belong to
U .

procedure 2: decision of parameters

All pixels belonging to U are voted to a parameter
space. Then, some parameter sets are selected in
order of the votes. To detect appropriate parame-
ter sets, we introduce the threshold Th for the num-
ber of votes to select the remarkable parameter set
in a parameter space. The threshold Th is deter-
mined empirically. It should be small to detect the
short curved line which is difficult to be detected
by the Hough transform. Two close points in the
parameter space are regarded as the same circle
in the image. Therefore we select the parameter
set which locates away from the already-selected
parameter sets by 100 pixels for each parameter in
a parameter space.

We assume that pixels which have pixels belonging
to U in its neighborhood of 5×5 pixels are a part of
a cirrus streak. Arcs comprised of only these pixels
are selected from each circle as the candidate arcs,
only when their length of the arc is beyond the
threshold Tl. Let us define θ1 and θ2(θ1 ≤ θ2)
as the angles at end-points of the arc. Then, a
candidate streak is represented as a set of (~C, r)
and (θ1, θ2), as shown in Figure 4. An angle is
measured in anticlockwise direction.

procedure 3: correction of the candidate
streak

Each of candidate streaks obtained in the proce-
dure 2 has to be corrected, since performing the
Hough transform in the whole area which is much
larger than the cirrus streaks, causes the failure
detection. To exclude the influence, the Hough
transform is performed in the neighborhood of the
candidate streak, again. Let us define Wdr,dθ

as the
neighborhood area of the candidate streak which
is illustrated in Figure 4 as the shaded area sur-
rounded by the dotted line. The second Hough
transform is applied to the area Wdr,dθ

. Each pa-
rameter set is updated to that with the maximum
votes. The candidate streak is obtained as well as
the procedure 2.

2.2 Evaluation of the candidate streak

In the evaluation step, we use two features to clas-
sify the candidate streak as a cirrus streak or not.
When the conditions for these features are satis-
fied, the candidate streak is assumed to be a cirrus
streak. We define F1 and F2 as a feature of a
cloud shape and a feature of a cloud movement,
respectively. Each feature is described as follows.

feature 1: cloud shape

To evaluate the shape of candidate streaks, we
utilize the average width of the candidate streak.
Let us define wθ as the width of the candidate
streak at the angle θ, as illustrated in Figure 4. wθ

is comprised of consecutive pixels which have pixels
belonging to U in their neighborhood of 3×3 pixels.
F1 is calculated by the following Equation (1).

F1 =
1

N1
·

∑

θ1<θ<θ2

wθ , (1)

where N1 is the number of pixels on the streak. As
the shape of the candidate streak is more slender,
F1 gets smaller. A candidate streak with F1 over
the threshold T1 is omitted. As the feature for the
streak shape, the deviation of the width and the
distribution of parameters in parameter space are
assumed alternative. However, experimental result
suggests that the average width is best to evaluate
the streak shape.

feature 2: cloud movement

Each pixel of clouds has a movement vector
as illustrated in Figure 6 To obtain the cloud
movement we use the normalized cross-correlation
method with variable template size adapted to
the cloud state. To obtain the cloud velocity
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Figure 6: Movement vectors. (Black dots and
white dots mean the origin and the end of each
movement vector, respectively.)

from an image at a given time, we have to detect
the corresponding cloud in the image of the next
frame. In the normalized cross-correlation method
[7], a template from the first image is matched to
a remarkable area in the second image by shifting
its position pixel by pixel. The pixel which has
the maximal correlation value is assigned as the
corresponding pixel. However, we often lose the
correct corresponding pixel in the cloud area,
since the variance of brightness on a cloud area
is small for a temporal change. Utilizing not an
area of the clouds but a boundary of cloud area,
we can obtain a more accurate velocity, since
the variance of the brightness in a boundary is
relatively large. To include enough boundary to
obtain the accurate velocity, the template size is
adaptively enlarged until the number of pixels in
the boundary exceeds a threshold Tb determined
empirically. In the experiments, the initial size
of template and Tb were set as 31×31 pixels and
100pixels.

To consider whether the flow of the remarkable
streak is fast and along the flow of the upper layer
clouds, we define F2 as the summation of an in-
ner product of the tangential unit vector and the
movement vector of the clouds on the remarkable
streak. Let us define ~vs,φ and ~nθ as a movement
vector of the cloud and a tangential unit vector of
the arc as illustrated in Figure 7. F2 is calculated
by Equation (2).

F2 =
1

N2
·

∑

θ1<θ<θ2

~vs,θ · ~nθ , (2)

where N2 is the number of pixels on the streak,
the direction where the candidate streak flows is
determined as the direction with the larger F2. F2

gets larger, when the velocity of clouds is faster
and the vector is along the flow of the upper layer
clouds. The arc with F2 below the threshold T2 is
omitted.
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Figure 7: Tangential vector and movement vector.

2.3 Unification of the candidate streak

There exist some candidate streaks regarded as a
cirrus streak in the image, although they disgre-
gate each other in the parameter space. To obtain
a candidate streak fitting the cirrus streak, some
streaks are to be unified when the both ends of one
streak are in the region Wdr,dθ

of the other streak.
When unifying two streaks, the candidate streak
with a larger F2 remains as a candidate streak.
Since the streak with large F2 flows along the upper
cloud, it can be regarded as a cirrus streak.

3 Experiments

Visible and infrared images of a GMS5 image
database 1 were used for the experiments.
Sequential images acquired in July and August,
1999 at time 0:00UTC and 1:00UTC were chosen
from the database. These images were taken
every hour and the size is 500×500 pixels covering
a large area of the Pacific Ocean around Japan
(the spatial resolution is 5km/pixel). In the
experiment, the thresholds were set as follows.
(Td: 8, Tv: 6, Tl: 100, Th: 100, T1: 20, T2: 8). The
parameter sets (dr [pixel], dθ [degree]) of Wdr,dθ

were set as (40, 20). The thresholds concerning
voting are not so sensitive parameters. Depending
on them only the length of the detected streak can
be changed. The thresholds concerning features
are sensitive parameters, which effect on the
determination of detected streaks.

To examine the effectiveness of the proposed
method, we conducted some experiments for
images with cirrus streaks and images without
cirrus streaks. Two typical examples are given
in Figures 8 - 13. Figure 8 and 11 are the input
infrared images. Figure 9 and 12 are the results of
the proposed method. The white lines, gray lines
and black lines in these images represent detected
streaks and omitted streaks in the unification
step and evaluation step, respectively. Figure
10 and 13 depict the movements of the clouds.

1http://weather.is.kochi-u.ac.jp/
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Figure 8: Infrared images with two cirrus streaks
surrounded by the solid line.

A

C

B

Figure 9: Result of the proposed method.

The calculated arcs fitted a slightly curved and
straight cirrus streaks with an appropriate radius
(See Figure 9 and 12). The cirrus streak A in
Figure 9 shows that a cirrus streak which can
not be approximated by a circle is expressed with
a combination of two or more arcs and that a
cirrus streak with slightly disconnected parts is
detected as a combined streak. From these result,
it seems that the proposed method can fit arcs
to a cirrus streak robustly. However when clouds
with a brindle texture exist in the neighborhood
of a cirrus streak, the direction and the length
of the detected streak were made different from
the actual streak in consequence of these clouds
(See the area B in Figure 9). A cirrus streak in
the area where resultant cloud movements were
wrong was not detected in the detection step
(See the area B in Figure 12). As shown in the
area C in Figure 9, the candidate streaks which
were not a cirrus streak were omitted utilizing F1

or F2. These results show that some candidate
clouds are omitted by the cloud movement or
cloud shape. However some actual cirrus streaks
were incorrectly omitted by the condition of the
cloud movement, since the movement vectors on
the streak were not obtained properly. The cirrus
streak A in Figure 12 shows that three candidate
streaks are unified appropriately in the unification
step.

Figure 10: Movement vectors, of which the velocity
gets larger as the brightness of its pixel gets larger.

Table 1: Experimental result of the decision about
the detected streaks. (Each row of the table
represents the number of detected streaks for each
streak by the expert.)

Cirrus streak Not cirrus streak
Cirrus streak 12 5

Not cirrus streak 4 14

The experimental result of the decision about
whether the detected streak is a cirrus streak or
not is shown in Table 1. Each of the detected
streaks was decided by the visual observation
method compared to the expert’s result. The
total number of detected streaks was 35. The
detection rate of actual cirrus streaks was 75%,
and the error rate of not actual cirrus streaks was
26.3%. The streaks detected as a cirrus streak
but not an actual cirrus streak tend to follow the
upper layer clouds and to have a large textual
change. They seem similar to a cirrus streak by
appearances. From these result, it can be found
that the proposed method is effective to detect
cirrus streaks. However, small cirrus streaks
comprised of a few pixels could not be detected in
detection step.

4 Discussion and Conclusions

In this paper, we proposed a novel method for de-
tecting cirrus streaks utilizing the cloud shape and
movement. We demonstrated some experiments
with various images to examine the effectiveness
of the proposed method. A cirrus streak was de-
tected based on the proposed method, when it had
apparently features related to the cirrus streak. In
the experimental result, there existed disconnected
cirrus streaks and cirrus streaks crossing the other
cirrus streaks. Hence, the process to connect such
streaks should be added.

The experimental results showed that the cloud
movement has a positive effect on classifying the
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Figure 11: Infrared images with two cirrus streaks.

A

B

Figure 12: Result of the proposed method.

cirrus streak. Cirrus streaks which follow the flow
of the upper layer clouds were correctly detected.
However, cirrus streaks in the area where cloud
movements can not be measured properly failed in
the detection and the other types of cloud were
incorrectly detected as the cirrus streaks. Since
the detection accuracy depends on the precision of
cloud movements, we are improving the method
to obtain the accurate cloud movements based on
its temporal and spatial consistency. In the future
work, we will apply this method to the detection
of the jet stream from water vapor images and
streaks belonging to the other cloud classes such
as Cumulonimbus and Cumulus.
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Abstract 
This paper presents a new Markov Random Field (MRF) energy model for region-based moving object 
segmentation in video. The proposed MRF model is defined by a combination of normalized distances of regions, 
where mean colour, edge magnitude on the boundary, and motion of regions are considered. In addition, we 
introduce a weight term that adds region growing characteristics to the MRF model so that the accurate boundary 
of an object is acquired. The procedure for moving object segmentation is as follows. A watershed algorithm is 
used to partition every frame into a set of homogenous regions. As the watershed algorithm produces, in general, 
irregular shaped regions of various size, block-wise subdivision and small region merging is applied to improve 
the regularity of the regions. A region adjacency graph (RAG) is constructed and the motion vector of each 
region is estimated by a modified diamond search. Then, an MRF model with the proposed energy function 
labels the foreground or background of each region. The minimization of the energy function is carried out by a 
highest confidence first (HCF) algorithm. In the experiments, we confirmed that the proposed energy model has 
the region growing characteristics and segments the moving object accurately in various videos with or without 
camera motion. 

Keywords: Moving object segmentation, MRF model, region-based, region growing, RAG 

 

1 Introduction 
Moving object segmentation in video is an essential 
process for analyzing video data. It is a base 
technology for object-based compression in MPEG-4 
[1] and content-based retrieval in MPEG-7 [2]. 
Moving object segmentation has been studied in the 
form of Video Object Plane (VOP) extraction in 
MPEG-4 or motion layer extraction. Moving object 
segmentation is computationally expensive, but a 
region-based approach is a solution for reducing such 
computational complexity.  

Tsaig and Averbuch proposed a framework for 
automatic segmentation of moving objects with a 
Markov Random Field (MRF) model [3]. They 
partitioned each frame into homogenous regions by 
using a watershed algorithm, and constructed a 
Region Adjacency Graph (RAG). The MRF model is 
defined on the RAG to acquire accurate segmentation 
results. Zeng and Gao followed that framework with a 
solution to occlusion problems [4]. They detected the 
occlusion region by a forward and backward motion 
validation scheme and obviated the potential miss-
classification of uncovered background regions. Zeng 
and Gao also proposed a hierarchical MRF model [5]. 
MRF models are generally used to assure spatial and 

temporal consistency. However, they often fail to 
acquire the accurate boundary of the object, and thus a 
region growing technique is used to improve the 
segmentation results [4]. The region growing tech-
nique has also been used to obtain the accurate 
boundary of objects [6]. In that study, Kim et al. 
proposed a semi-automatic segmentation method, 
because full automatic moving object segmentation 
often fails when the motion information acquired is 
insufficient.  The initial location of semantic objects 
was provided by user input. Kim et al. defined an 
uncertainty region on the object’s boundary and found 
the accurate boundary by a bi-directional region 
growing technique.  

In this paper, we present a new MRF energy model 
for region-based moving object segmentation in video. 
Basically, the energy model is defined by a 
combination of the normalized distances of the 
region’s features such as mean colour, edge 
magnitude on the boundary, and motion. In addition, 
we introduce a weighting factor derived from the edge 
directional information of the regions. As the 
weighting factor imparts region growing character-
istics to the energy model, the object’s accurate 
boundary is gradually acquired.  In the experiments, 
we show the performance of the proposed method 
with video segmentation results.  
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2 Region-Based Image 
Representation  

To partition an image into a set of homogenous 
regions, in this study, we used a watershed algorithm 
that treats the input image as a topological surface and 
divides the image into homogenous regions [7]. The 
watershed algorithm has been widely used in region-
based segmentation methods [3][4][5][6]. As the 
watershed algorithm is very sensitive to image noise, 
generally a noise reduction filter is applied as a pre-
processing. In this study, an isotropic diffusion filter 
is used because it successfully removes the noise 
without destroying the topological structure of the 
image [8]. The watershed algorithm is applied to the 
gradient magnitude of the input colour image, which 
is computed in the YUV colour space. Let GY, GU, and 
GV denote the gradient magnitude of the three colour 
components Y, U, and V, respectively. Then, the 
gradient magnitude of a colour image, Gcol, is 
computed by 

 2 2

col Y U VG G G G= + + 2 . (1) 

The watershed algorithm generally produces irregular 
shaped regions of various sizes, which fact increases 
the motion estimation error in the subsequent step [9]. 
Therefore, we subdivided the result of the watershed 
algorithm in a block-wise manner and merged the 
small regions to their neighbourhood. Figure 1 shows 
an example of the initial partitioning. 

In order to estimate a motion vector of a region, we 
modified the diamond search (DS) algorithm [10]. 
The DS algorithm is one of the block matching 
methods for estimating a motion vector, and produces 
very fast and accurate results. In this study, we used a 
region instead of a block as the unit of template 
matching. Accordingly, every region had its own 
motion vector. 

The region-based representation of an image is 
converted into a region adjacency graph (RAG). A 
vertex of the RAG contains the region’s own features 
such as mean colour, shape, and its motion vector. A 
weight on an edge represents the similarity of two 
adjacent regions.  

 

3 Segmentation by Region-Based 
MRF Model  

Markov random field (MRF) model, a branch of 
probability theory, has been widely applied to the 
computer vision problem [11]. Since Geman and 
Geman used an MRF model in image restoration [12], 
many researchers have used MRFs in various areas of 
image processing including moving object 
segmentation [3][4][5].  

 
(a) Result of watershed algorithm 

 
(b) Result of block-wise sub-division of (a) 

Figure 1: Examples of region-based image 
representation 

 

Segmentation by MRF model can be obtained by 
labelling each region as either foreground (F) or 
background (B). By introducing a maximum a 
posterior (MAP) solution, the segmentation results 
can be obtained by minimizing the posterior energy 
function U in 

 * arg min ( | )
f

f U f d= , (2) 

where f = {f1, …, fn | fi = F or B} is a configuration of 
labels and d denotes the observations. 

The segmentation procedures using the MRF model 
are depicted in a flow chart (Figure 2). Every frame in 
a video is transformed into a RAG, as described in 
section 2. The inputs to the MRF models are region-
based representation of frame, motion information, 
and the segmentation result in the previous frame. 
Then, the MRF model provides the segmentation 
result of the current frame. At the first frame, a user 
input is used instead of the previous segmentation 
result. 
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Figure 2: Block diagram of region-based moving 

object segmentation 
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3.1 Proposed Energy Model  
The most important aspect of MRF modelling is the 
design of the energy function. The energy function 
should be defined so that its minimum corresponds to 
a good result. Large energy is interpreted as being 
unstable and likely to be changed. Modelling the 
energy function and finding a configuration that 
minimizes the energy function is the main procedure 
in MRF optimization.  

The conditional posterior potential is generally 
written as 

 . (3) ˆ( | , ) ( | ) ( ),
ii i N i i c i j

j Ni

U f d f V d f V f f
∈

= + ∑

The first term on the right side in equation (3) is 
defined as 

 
( , )

1
( | ) ( , )

ii

i i i
x y RR

V d f f S x y
N ∈

= −∑ , (4) 

where NRi is the number of pixels in  region Ri. 
Assume that fi is 0 if region Ri is labelled as 
background, and 1 if foreground. S(x, y) is a binary 
image and denotes the expected location of objects in 
the current frame. The potential V(di | fi) becomes zero 
if we assign an appropriate label to the region. S(x, y) 
is given by a user at the first frame of the video and 
updated by the motion information and the 
segmentation result of the previous frame, as shown 
in figure 3. In the figure, n represents the frame 
number. This term guarantees temporal consistency.  

In advance of the definition of the clique potential Vc, 
the following is assumed: If two labels of adjacent 
regions are the same, it is desirable that the regions 
have similar characteristics; that is, that the 
dissimilarity of those two adjacent regions with the 
same label be small. However, if the labels of 
adjacent regions are different, the dissimilarity would 
be large.  

By using these properties, the clique potential is 
defined in two cases, 

( , | )

( , ) ( , ) ( , ),
c i j

c e m

V i j f f

d i j d i j d i jα β γ

=

= + +
 (5) 

[ ] [ ] [
( , | )

1 ( , ) 1 ( , ) 1 ( , ) ,
c i j

c e m

V i j f f

d i j d i j d i jα β γ

≠

= − + − + − ]
 (6) 

where dc is the colour distance, de is the edge distance,  
dm is the motion distance of regions and α, β, and γ 
are the associated weight coefficients. The distance 
measures are normalized to the interval [0, 1]. 

The colour distance is computed in the YUV colour 
space. If the mean colour of region Ri is defined in 
vector form, that is, ci = (yi, ui, vi), then the colour 
distance between two regions Ri and Rj is defined as 

 
Figure 3: Update of Sn(x, y) 

 

2 2( , ) ( ) ( ) ( ) /c i j i j i jd i j y y u u v v T= − + − + − 2

c , (7) 

where Tc is the normalization constant. 

The edge distance of two adjacent regions is defined 
by the average value of the gradient magnitude on the 
common boundary: 

 
( , )

1
( , ) ( , ) /

cc

e col
x y BB

d i j G x y T
N ∈

= ∑ e , (8) 

where Bc is a set of pixels on the common boundary, 
NBc is the number of pixels in Bc, and Te is the 
normalization constant. 

Each vertex in the RAG contains a single motion 
vector of the corresponding region. To reflect human 
perceptual characteristics for motion similarity, we 
adopted the distance metric used in a previous study 
[13]. The motion distance measure is defined as 

 

( )1/ 22 2
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2
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where , ,i j iL L θ  and jθ  are calculated by 
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=

v

v
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For the details of the motion distance, see [13]. 

 

3.2 Edge Directional Weight 
Previous researchers have tried to use a region 
growing technique as a post process in order to 
acquire the exact boundary of the object [4][6]. If we 
assign a region growing characteristic to the energy 
model, the accurate boundary of objects can be 
detected more simply. 
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Let vg be a vector that indicates the normal direction 
of the boundary of objects, as shown in figure 4. The 
vector vg can be computed by the gradient vector field 
(GVF) method [14]. Figure 5 shows an example of 
GVF, where every vector points in the normal 
direction of the object’s boundary. The vector vn is a 
normal contour vector of a region near the object. 
Then, the edge directional distance can be defined as 

 ( , ) g n

ed g n

g n

d
⋅

=
v v

v v
v v

. (11) 
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Figure 6: Function form of edge directional weight 

with various values of λ 

 If vg and vn point in the same direction, then ded is 1. 
Otherwise, ded is smaller than 1 and becomes -1 when 
the direction is completely opposite. Using ded, an 
energy function weight is defined by 

4 Experiments  

 
1 1
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+

),d

d
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The proposed segmentation method was applied to 
video sequences with or without camera motion. The 
experiments were performed with a 3 GHz Pentium 
IV PC with 1 GBbyte RAM, and were implemented 
with Microsoft visual C++ 2005. The weight 
coefficients in equations (5) and (6) are set as α=0.7, 
β=1.0, and γ =0.5.With the current implementation 
without any effort of optimization, the execution time 
for processing one frame size of 352×288 was about 
1~2 sec.  

The weight function has a value in the range of [0.5, 
1.5]. Figure 6 shows the general form of the weight 
function with various values of λ.  

By using the weight factor, equations (5) and (6) are 
modified as 

Figure 7 shows the segmentation results from the 
‘mother & daughter’ sequence. This video has no 
camera motion, and the movement of the mother and 
daughter is very small. At the first frame, the initial 
location of the object was revealed by user input, and 
is displayed in figure 7(a) as yellow. Figures 7(b)~(d) 
show the segmentation results without the edge 
directional weight. The results fail to segment the 
accurate boundary of the objects. However, these 
undesirable segmentation results are gradually refined 
when the edge directional weighting factor is used, as 
shown in figures 7(e)~(g). 

  (13) * ( , | ) ( , | ) (c i j c i j eV i j f f V i j f f w d= = =

  (14) * ( , | ) ( , | ) ( ).c i j c i j eV i j f f V i j f f w d≠ = ≠

The weight function emphasizes the relation of two 
adjacent regions with a high value of ded so that it 
imparts a region growing characteristic to the MRF 
model. 

The minimization of the energy function is carried out 
by the highest confidence first (HCF) algorithm [15].  

 
Figure 8 show the segmentation results for a movie 
clip. In this video, a man moves from left to right and 
the camera follows the man, so the background is 
changing rapidly. The left columns show the original 
frames of video, and the right columns are the 
segmentation results for the selected frames. We 
confirmed that the proposed method extracted the 
boundary of the moving object successfully even 
though the video contained large camera motion. 

gv

nv

gv

nv

gv

nv

 

Figure 4: Edge directional information 
   

(a) (b) 

5 Conclusions 
In this paper, we presented a new MRF model that has 
region growing characteristics for region-based 
moving object segmentation.  From the region 
growing characteristics, the accurate boundary of 
objects is gradually acquired.  In experiments, we 
confirmed that the proposed method segments the 
moving object in videos with or without camera 
motion. Figure 5: Samples of GVF (a) GVF for the human 

body silhouette (b) Enlarged GVF in the box in (a) 
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 (a) 1st frame  

  
(b) 2nd frame (c) 4th frame (d) 6th frame 

  
(e) 2nd frame (f) 4th frame (g) 6th frame 

Figure 7: Segmentation results in a video without camera motion  
 
 

 
(a) 1st frame 

 
(b) 8th frame 

 
(c) 16th frame 

Figure 8: Segmentation results in a video with camera motion  
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Abstract 
Particle filters are a powerful and widely used visual tracking technology. Their strength lies in their ability to 
represent multi-modal probability distributions that capture and maintain multiple hypotheses about target 
properties. A potential weakness, however, is that the particle set can become diffused, dispersing across the 
image plane rather than clustering around the target. A number of solutions to this problem have been proposed, 
including the use of the more recently developed Kernel Mean Shift tracker to guide particles towards a local 
mode. While this hybrid Condensation/Mean Shift tracker is effective, in most cases the Condensation 
component is an unnecessary overhead: Kernel Mean Shift is a competent tracker that only needs the particle 
filter to deal with more ambiguous situations in which errors might be made. We therefore propose an alternative 
hybrid approach in which Kernel Mean Shift is the dominant tracking technology, with a small number of 
particles being generated, in a structured fashion, to explore further and so resist errors when confidence in the 
Mean Shift algorithm is low. The proposed algorithm, which we term the Structured Octal Kernel (SOK) filter, 
has been implemented and is compared with Condensation, Kernel Mean Shift and Hybrid trackers. The SOK 
filter provides the most robust results, with comparable accuracy, at the lowest computational cost. 

Keywords: Tracking, particle filter, Mean Shift, kernel, hybrid. 

1 Background and Motivation 
Visual tracking has received much attention in recent 
years, with particle filtering [1] being one of the most 
successful and widely adopted approaches. The 
strength of the particle filter lies in its use of a set of 
discrete particles to represent multi-modal probability 
distributions that capture and maintain multiple 
hypotheses about target properties.  Particle filtering 
is an iterative process in which particles are 
repeatedly selected, projected forwards using a 
motion model, dispersed by an additive random 
component, and evaluated against the image data. 

Many particle filter-based trackers have been 
developed since Blake and Isard first introduced the 
Condensation algorithm [1]. The Auxiliary Particle 
Filter [2] selects particles in a more intelligent 
manner, making them concentrate around the true 
target and yielding better results. The approximation 
to the posterior is smoothed in the Regularized 
Particle Filter [3], while ICondensation [4] uses 
importance sampling to combine high and low-level 
information within Condensation. A survey of 
commonly used particle filters can be found in [5] 

A potential weakness of the particle filter, however, is 
that the particle set can become too diffuse, spreading 
across the image plane rather than clustering around 
the target. When this happens particles tend to migrate 
towards local maxima in their evaluation function, 
becoming caught on clutter and losing track of the 
true target. A number of solutions to the problem have 
been proposed. The Annealed Particle Filter [6] uses 
annealing to smooth out the evaluation function, 
making the global maximum clearer and reducing the 
chance of particles becoming caught on local clutter. 
The Kernel Particle Filter [7] applies the Mean Shift 
hill climbing algorithm to the particle set to pull the 
centre of the particle distribution towards the target 
centre. The Kernel Particle Filter can be effective, but 
clusters weighted particles without further reference 
to the image data, assuming them to sample a 
unimodal distribution. This may not be the case.  

Recently, Maggio and Cavallaro. [8] used the kernel 
Mean Shift tracking algorithm [9] to move particles 
towards local maxima on each iteration of 
Condensation [1]. Kernel Mean Shift tracking is a hill 
climbing approach which first computes the 
likelihood of each pixel in a circular search space 
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around the prior target centre being the next target 
centre, then moves the previous centre towards the 
maximum likelihood solution. The object model and 
candidate model both comprise probability density 
functions (pdfs) approximated by 2-D normalised 
histograms over the RGB colour space. The two 
dimensions are the ratios red/blue and green/blue A 
kernel mask is used to give a higher weighting to 
pixels nearer the centre of the circular search region; 
making the algorithm more robust to target 
localisation errors and partial occlusions. Kernel 
Mean Shift tracking is an iterative process which 
continues until the Bhattacharya distance between the 
target pdf and the candidate pdf is either zero or a 
minimum value [9]. 

Kernel Mean Shift provides efficient and effective 
tracking as long as the target object does not move 
further than its own diameter or leave the search area 
between frames, a number of variations on the theme 
have been described. Yang et al [10] replace the 
Epanechnikov kernel used in the original formulation 
[9] with a Gaussian, while Leung and Gong [11] 
improve the efficiency of the method by computing 
the pdfs and Bhattacharya distance over only a small 
sample of the pixels in the search region. The search 
area is first segmented to identify foreground pixels, 
to which a uniform random sampling is applied. 

Maggio and Cavallaro’s [8] hybrid tracker combines 
Condensation with Mean Shift tracking to provide a 
system in which particles are alternately diffused by 
Condensation and clustered by Mean Shift. Multiple 
hypotheses are maintained by projecting a number of 
particles randomly around the prior position, but then 
hill climb towards the best target centre.  

The hybrid tracker shows performance advantages 
over both Condensation and Mean Shift tracking, but 
also has some drawbacks. As the particles are 
randomly projected we need a good number to cover a 
given search space. Running N Mean Shift trackers, 
where N is the number of particles in the system, also 
makes the system computationally expensive. 
Furthermore, many of the particles coalesce during 
the Mean Shift phase, moving to the same hypothesis 
and making the representation redundant.  

Mean Shift is a competent tracker and in many 
situations can maintain tracking without the multiple 
hypotheses represented by the particle set. While 
valuable in areas of high ambiguity, in most cases the 
Condensation component of the hybrid tracker is an 
unnecessary overhead. These observations lead us to 
propose an alternative hybrid approach in which 
Kernel Mean Shift is the dominant technology, with a 
small number of particles being generated, in a 
structured fashion, to explore further when confidence 
in the Mean Shift algorithm becomes low. 

The proposed algorithm, which we term the 
Structured Octal Kernel (SOK) filter, is described in 
Section 2. The SOK filter has been implemented and 

is compared with Condensation, Kernel Mean Shift 
and Hybrid trackers in Sections 3 and 4. The approach 
is discussed in Section 5 and conclusions are drawn in 
Section 6. 

2 The Structured Octal Kernel Filter 
The Structured Octal Kernel (SOK) filter is a kernel 
Mean Shift tracker augmented by a backup strategy 
triggered when confidence in the current location  
estimate is low. Confidence at time t is given by  

Ct = (1.0 – bhata(t)) 

where bhata(t) is the Bhattacharya distance between 
object model and image data at time t.  

A user-defined threshold, T, is applied to C at each 
time step. If Ct is below threshold a set of eight 
independent kernel Mean Shift trackers are spawned, 
each with the same object model as the original but at 
locations designed to cover a search area around the 
current position estimate (Figure 1). When these 
additional trackers have also each converged, nine 
estimates of target location are available, each with an 
associated confidence level. The estimate with the 
highest confidence is selected and the process 
continues. This mirrors the hybrid tracker of [8]; the 
algorithm effectively generates eight evenly spaced 
particles when confidence in the Mean Shift is low. 

 
Figure 1. The SOK particle distribution. A hatched circle 

shows the primary KMS tracker, light circles the secondary 
“particles”, a dark circle the target. 

The SOK algorithm is therefore: 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

SOK Algorithm 
 
1. Pick a target area (centre) 
2. Compute a Normalized 2-D Histogram for area to get the 
target. 
3. Loop { 

• Get a frame. 
• From the current centre compute the candidate

normalized 2-D Histogram. 
• Compute Bhattacharya distance between target and

candidate 
• Loop Till Bhattacharya distance Becomes constant 

1. Hill climb towards the maxima 
2. Compute candidate histogram again 
3. Compute Bhattacharya distance again 

• If Confidence < threshold value T 
1. Using current centre and radius place

eight search areas in a structured
manner as shown in the figure. 

2. Hill climb each particle towards the
nearest maxima. 

3. Choose the one with the lowest value of
Bhattacharya distance 

4. The chosen particle is the new target 
centre. 

} 
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Normalisation ensures that the bin entries sum to 1, 
providing some robustness to movement along the 
line of sight. Note that r and T remain fixed 
throughout and that bhata(i,j), and so C, varies 
between 0 and 1, easing selection of T, which is 
chosen empirically.   

The SOK algorithm combines particle filtering with 
the kernel Mean Shift algorithm in a simple, but 
effective manner. Recognising the strength of the 
kernel Mean Shift algorithm in many situations it uses 
a single such tracker when confidence in the target 
location is sufficiently high. In areas of low 
confidence a burst of particles (cf. [8]) is emitted, 
allowing the tracker to search more widely. In the 
initial design the intention was to distribute these 
particles randomly. As there is no motion model in 
the Mean Shift tracker, however, and no prior 
distribution available to drive particle location, only a 
simple random distribution about the current location 
(e.g. uniform or Gaussian) was possible.  

Noting the ability of the kernel Mean Shift tracker to 
climb to a local maximum if and only if the tracking 
window overlaps the target object, we adopt the 
simple particle distribution of Figure 1. This uses a 
small, fixed number of particles to cover a regular 
search area around the current hypothesis. To be 
beyond this search area the object would have to 
move more than twice its own radius between frames; 
which is unlikely.  If high velocity motion is expected 
the particle set can be extended to create a larger 
search area, though in such circumstances kernel 
Mean Shift may not be the best approach and an 
explicit motion model may be required. 

3 Experimental Evaluation 

3.1. Algorithms 
The proposed tracker has been experimentally 
compared with three existing algorithms. Here we 
briefly review the methods involved and describe 
their implementations. The image sequences used are 
presented and discussed in section 3.1.2. 

3.1.1 Kernel Mean Shift Tracker 
The kernel Mean Shift tracker [9] hill climbs from the 
previous location estimate toward a local minimum in 
the Bhattacharya distance between normalised, kernel 
weighted colour histograms representing the object 
model and local image data. We use a linear kernel 
having maximum weight at the centre and zero weight 
at boundaries and beyond. The object model and 
candidate model are 256 x 256 bin histograms 
recording red/blue against green/blue. This provides 
some robustness to changes in illumination. The 
histogram is normalised so the bin values sum to 1.   

The Bhattacharya distance between model and 
candidate target is: 

bhata() = 1− p(i, j) × d (i, j)
j

M

∑
i

M

∑  

where M is the size of each dimension of the 
histogram (256), and p and d are the object and the 
candidate models respectively. Note that the object 
model is computed only once. The candidate model is 
calculated in each frame from the position of the 
object in the previous frame.  

The iterative Mean Shift operation is as follows: 
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where x and y are the coordinates of the next estimate 
of the position of the centre of the object, and M is 
again the resolution of the histograms modelling 
object p and candidate d. 

3.1.2 Condensation 
The particle filter used in the experiments conducted 
here is a straightforward implementation of Isard and 
Blake’s [1] Condensation. The object and candidate 
models are exactly the same as those employed in the 
kernel Mean Shift filter, with Bhattacharya distance 
between them computed in the measurement phase. A 
simple motion model – constant velocity – is used 
throughout and, unless otherwise stated, all 
experiments use 100 particles. 

3.1.3 Hybrid Condensation/Kernel Mean 
Shift Tracker 

This again is a straightforward implementation of an 
existing technique – the hybrid tracker of Maggio and  
Cavallaro [8]. The Condensation algorithm outlined in 
section 3.1.2 provides a harness into which the Kernel 
Mean Shift tracker outlined in section 3.1.1 is slotted. 
At each tine step 100 (unless stated otherwise) 
particles are evaluated by computing the Bhattacharya 
distance between the object and their candidate 
model. A further 100 particles are then selected with 
probability proportional to their measurement value 
and projected into the next image by a constant 
velocity motion model. A kernel Mean Shift tracker is 
initialised at each particle location and run until its 
associated Bhattacharya distance becomes zero or 
constant. The process is then repeated. This disperses 
the particle set in the Condensation phase, then draws 
it together in the Mean Shift phase (Figure 2). 
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Figure 2. Mean Shift tracking alternately disperses and 

coalesces particles in the hybrid filter of [8]. 

3.2. Image Sequences and Evaluation 
Criteria 

The four trackers described above have been 
evaluated and compared using a variety of real and 
artificial image sequences: 

- Artificial sequences showing a multicoloured 
circular target moving across a white background 
allow the trackers’ positional estimates to be 
compared to ground truth in the presence of 
controlled amounts of noise: 

- To examine robustness to background clutter a 
hand-held ball is moved in front of a complex 
environment and viewed by a fixed camera. The 
sequence comprises 220 384 x 288 pixel frames, and 
is available from [12].  

- To examine robustness to unpredictable motion, a 
hand-held camera is used to capture a 420 frame 
sequence of a child at play. Each frame is 720 x 576 
pixels. 

- To provide a quantitative comparison of the 
robustness of he four algorithms, McNemar’s is 
applied to a set of 30 experiments on a variety of 
image sequences. All the sequences used here can be 
obtained from [13]. 
 
Mc-Nemar’s statistic is a form of chi-square test for 
matched paired data. Consider the following 2 × 2 
table of results for two algorithms: 
 

 Algorithm A 
Failed 

Algorithm A 
Succeeded 

Algorithm B 
Failed Nff Nsf 

Algorithm B 
Succeeded Nfs Nss 

Table 1. Terminology used in McNemar’s test 

.Mc Nemar’s statistic is then 
 

x 2 =
(|N sf − N fs |−1)2

N sf + N fs

 

where the −1 is a continuity correction. The central 
limit theorem states that if the sample size is 
moderately large and the sampling fraction is small to 
moderate, then the distribution is approximately 

Normal. In such a case, the Z score (standard score) is 
obtained from (1) as: 
 

z =
(|N sf − N fs |−1)

N sf + N fs

 

 
Z 

value 
Degree of confidence 
Two-Tailed prediction 

Degree of confidence 
One-Tailed prediction 

1.645 90% 95% 
1.960 95% 97.5% 
2.326 98% 99% 
2.576 99% 99.5% 

Table 2. Confidence limits associated with z value. 

If the two algorithms give similar results then Z will 
tend to zero. As their results diverge, Z increases. 
Confidence limits can be associated with the Z value 
(Table 2). Two-tailed and one-tailed predictions are 
chosen according to the hypothesis: when testing if 
two algorithms differ, a two-tailed test should be 
used; when determining whether one algorithm is 
better than another, a one-tailed test is needed [14]. 

4 Results 
Figure 3 shows the result of applying the four trackers 
to an artificial sequence in which a multicoloured 
target followed the path shown in Figure 4. This path 
comprises a number of straight sections corrupted by 
high levels (σ = 10 pixels) of Gaussian noise. 
Absolute error (in pixels) is plotted against frame 
number. 
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Figure 3. Absolute error (pixels) in four algorithms’ 

tracking of a noisy (Gaussian, σ = 10) synthetic sequence 
showing a multicoloured target. 

Kernel Mean Shift and Condensation both fail after 
the first sudden change in trajectory, while Maggio 
and Cavallaro’s [8] Hybrid and the SOK filter track 
successfully. Note however, that the SOK filter used 
only one or eight particles, depending on tracking 
confidence, while at least 50 particles were needed to 
gain the same level of performance from the Hybrid.  

McNemar’s test [14] was applied to a set of 30 
assorted image sequences [12] to provide quantitative 
comparison of the robustness of SOK with the 
Condensation, Mean Shift and Hybrid trackers. To 
apply McNemar, a definition of success and failure is 
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Figure 4. The multicoloured target moved over a white 

background to construct artificial test data. 

required. Focussing on robustness, rather than 
accuracy of tracking, we define consider algorithm A 
to have succeeded and algorithm B to have failed if 
algorithm A maintains tracking for a greater 
proportion of a given image sequence, from the same 
starting parameters. In effect we define success to be 
tracking as long as the best of the two trackers. The 
results of this exercise are presented in Table 3, and 
show: 

- 97.5% confidence that SOK is more robust 
than Mean Shift. 

- 96% confidence that SOK is more robust 
than the Hybrid filter. 

- 98% confidence that SOK is more robust 
than Condensation 

 
 SOK vs. 

Mean Shift 
SOK vs. 
Hybrid 

SOK vs. 
Condensation 

Z 2.041 1.809 2.219 
Confidence 97.5% 96% 98% 

Table 3. McNemar’s comparison of SOK with Mean Shift, 
Condensation and Hybrid trackers over the image 

sequences available from [12] 

Figure 5 shows selected frames from the four 
algorithms’ tracking of a quickly moving, hand-held 
ball. Condensation fails after frame 35, when the 
particles diffuse towards different false local extrema. 
Kernel Mean Shift hovers around a confined area and 
loses the ball as soon as it moves quickly. Though it 
recaptures the ball later, when it passes under the 
Mean Shift window, this is not a robust effect. The 
Hybrid filter tracks quite well, but slips away a couple 
of times around frame 40. SOK tracks very well, 
using its structured backup when the ball slips away, 
e.g. in frames 40 and 220.  

Figure 6 summarises tracking of a young girl running 
and jumping in front of a hand held, moving camera. 
Condensation starts to fail before the camera Shifts 
suddenly around frame 180. Mean Shift and Hybrid 
track well until frame 180, then fail due to high levels 
of both camera motion and target acceleration. SOK 
uses its structured search strategy to lock on to the girl 
at frame 180 and tracks her for the remainder of the 
sequence. 

 
Figure 5. Tracking a hand-held ball through clutter. 

 

 
Figure 6. Tracking a girl at play. 

5 Discussion 
The Kernel Mean Shift tracker [9] is a robust and 
effective tracker with a very low computational cost. 
It performs well as long as the target object does not 
jump suddenly beyond its radius, or become occluded 
by an object with a similar model.  

Condensation [1] outperforms Mean Shift during 
sudden object or camera motion, provided that a large 
enough particle set is employed. Increasing the 
number of particles used, however, quickly increases 
computational cost. 

Maggio and Cavallaro’s [8] Condensation/Mean Shift 
hybrid typically shows the performance expected of 
Condensation, but requires noticeably fewer particles, 
greatly reducing computational cost. The hybrid 
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tracker typically requires 80-90% fewer particles than 
regular condensation to achieve similar results [8]. 

The experimental evaluation presented here shows the 
proposed SOK filter to be more robust than the 
Condensation, Kernel Mean Shift, and the Hybrid 
trackers over a statistically significant set of (30) 
image sequences. SOK also provided more accurate 
tracking than Kernel Mean Shift and Condensation, 
with the Hybrid tracker performing comparably but 
requiring >5 times more particles. The SOK filter can 
easily be used at frame rates above 30fps, i.e. in real 
time, while the other three are quite costly 
computationally.  

6 Conclusion 
The ability of a particle set to represent a wide variety 
of distributions is both the main strength and primary 
weakness of particle filtering trackers. The particle set 
must sample widely enough that it can represent all 
reasonable alternatives in areas of ambiguity, but 
must not become diffuse, spreading across the image 
plane rather than clustering around the object of 
interest. When this happens particles tend to migrate 
towards local maxima in their evaluation function, 
becoming caught on clutter and losing track of the 
true target.  A key issue in the design of particle filter-
based trackers is how to manage the spread of the 
particle set to balance these conflicting requirements. 

Maggio and Cavallaro’s [8] hybrid tracker can be 
viewed as attempting to manage particle spread by 
alternately diffusing the particle set using 
Condensation and clustering it with kernel Mean 
Shift. Particle selection and initial posterior location 
is, however, managed by standard Condensation. If 
Condensation tends towards an incorrect local 
maximum, mean-shift will accelerate the process. 

We have proposed a hybrid tracker that makes explicit 
the iterative diffuse-cluster structure implicit in 
Maggio and Cavallaro’s work, only diffusing when 
necessary and then carpeting a fixed area around the 
prior with particles. The algorithm has been compared 
with Condensation, Kernel Mean Shift and Hybrid 
trackers. It provides the most robust results, with 
accuracy comparable to the Maggio and Cavallaro 
tracker [8], at the lowest computational cost. 
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Abstract 
In this paper, a novel image segmentation method based on active contour model is proposed. The primary 
requirement of this model is robustness to noise and brightness variation throughout the entire image. This model 
is based on Mumford-Shah functional for image segmentation and level sets. The boundary of an object in a 
given image is expressed as evolving curves that are zero level set of level set function φ. To make the zero level 
set of φ approach easily to the object boundary, the values of the function φ near the object boundary are 
controlled based on Laplacian of the image, direction of edge components and gradient of φ. The proposed 
method is applied to vehicle license plate images, and shows improved result compared to the existing methods. 

Keywords: active contours, image segmentation, level sets 

1 Introduction 
Active contour models are widely used in many 
computer vision applications, including object 
segmentation. The basic idea in active contour models 
for object segmentation is to evolve a curve based on 
some constraints for a given image such that the 
contour converges toward the object’s boundary[3-5]. 

Chan, et al. [1] proposed an active contour model 
based on techniques of curve evolution, Mumford-
Shah functional for image segmentation, and level 
sets. This model can detect objects whose boundaries 
are not necessarily defined by gradient. When the 
brightness distribution of the background area over 
the image is not uniform, however, the contours 
cannot converge toward satisfactory boundary 
positions with Chan’s method. 

Non-uniform illumination condition like this is quite 
common in lots of applications, such as visual 
inspection in assembly lines, outdoor surveillance 
systems, etc. Lee, et al. [2] proposed an improved 
active contour model for these cases. The proposed 
method is based on modified Chan’s energy 
functional, and shows significant improvement in 
non-uniform background brightness condition. The 
problem is that the energy functional in Lee’s method 
includes a 2nd derivative term and it is too sensitive to 
small noise in background. 

The purpose of this study is to provide a robust active 
contour model that can be used to segment objects in 
a given image. For curve evolution, level set method 
is applied to stop the evolution on the desired 
boundary. 

2 Active Contour Models for Image 
Segmentation 

In active contour models for object segmentation, an 
initial curve moves toward its interior normal until it 
reaches the boundary of an object. Let u0 be a given 
image and C be a closed curve(active contour) in the 
image domain Ω. In the classical active contour model 
by Kass [3], a curve C(s):[0,1]→ 2 is moved to 
minimize the energy functional J(C), where 
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The first two terms control the smoothness of the 
contour, and the third term attracts the contour toward 
the object in the image. It means that classical active 
contour models rely on the image gradient |∇u0|, that 
acts as an edge-detector, to stop the curve evolution 
and they can detect objects with edges defined by 
gradient. 

A general edge-detector can be defined by a positive 
and decreasing function g. For instance, 
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where p≥1 and 0uG ∗σ is a smoother version of u0. In 
practice, however, g is never zero on the edge, and the 
contour may not converge toward the object’s 
boundary. For these cases, Chan and Vese[1] 
proposed an active contour model that does not 
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depend on edge calculation. Chan’s model is based on 
Mumford-Shah functional for image segmentation 
and level sets. When we apply level set method to 
curve evolution, the unknown curve C(t) that varies 
according to time t is replaced by the level set 
function ),,( tyxφ . At any time t, 0>φ  if any point 

is inside C; ),( yx 0<φ  if is outside C; and ),( yx
0=φ  if is on C. ),( yx

 
Figure 1: Curve C propagating in normal direction[1]. 

Suppose that an object is in a given image u0, as in 
figure 1. The values c1 and c2 are the averages of u0 
inside and outside of C respectively. Chan introduced 
an energy functional F(c1, c2, C) defined by 
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where ,0≥µ  ,0≥ν  0, 21 ≥λλ  are fixed parameters. 
Chan rewrote equation (3) as a function of φ : 
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where Hε is a regularized Heaviside function and δε is 
the derivative of Hε. Keeping c1 and c2 fixed, and 
minimizing Fε with respect to φ, the associated Euler-
Lagrange equation for φ is deduced as equation (5). 
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Chan’s model shows good result when the brightness 
distributions are uniform both in background and 
foreground. In case of non-uniform brightness 
condition, however, the difference between c1 and c2 
is not prominent enough for equation to lead contour 

toward correct boundary position. Figure 2 is an 
example of the former case, while figure 3 and 4 is an 
example of the later case. In figure 2, overall 
brightness distribution is uniform, and all the 
characters are correctly segmented. In figure 3, on the 
other hand, brightness on the upper side of the image 
is brighter than that of lower side, and some of the 
stripes are mixed up together in the segmentation 
result. In figure 4, some of the characters are lost in 
the segmentation result because of the brightness 
difference between left and right part of the image. 

(a) original image(u0)        (b) segmentation result 

Figure 2: Segmentation result of Chan’s model (test 
image-1)  

 

(a) original image(u0)          (b) segmentation result 

Figure 3: Segmentation result of Chan’s model (test 
image-2) 

(a) original image(u0)        (b) segmentation result 

Figure 4: Segmentation result of Chan’s model (test 
image-3)  

To solve this problem, Lee, et al. [2] proposed a 
modified energy functional. Figure 5 shows a 
relationship among the image u0, the gradient ∇u0, 
and Laplacian ∆u0, when a bright object is placed on a 
dark background. The value of ∆u0 is greater than 0 at 
the area near the boundary of dark background, and 
less than 0 at the area near the boundary of bright 
object. This idea can be realized as in equation (6). 
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Figure 5: |∇u0| and ∆u0 of a given image u0 

The value of equation (6) will be it’s maximum when 
the contours are positioned at the boundary of the 
objects. Based on this idea, Lee, et al, proposed a 
modified energy functional FL(φ) :  
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The Euler-Lagrange equation to minimize FL(φ) is 
given in equation (8). 
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(a) original image(u0)          (b) segmentation result 

Figure 6: Segmentation result of Lee’s model (test 
image-2) 

(a) original image(u0)      (b) segmentation result 

Figure 7: Segmentation result of Lee’s model (test 
image-3) 

When Lee’s model is applied to the same image in 
figure 3, stripes are separated as shown in figure 6(b). 
Also, in figure 7(b), all the characters in test image-3 
are segmented. 

In spite of this improvement, Lee’s model shows a 
weakness for images that contain noise, as in figure 8. 
This problem is caused by the Laplacian term in 
equation (8) that can dominate other terms when noise 
is added to the given image.  

(a) original image(u0)      (b) segmentation result 

Figure 8: Segmentation result of Lee’s model (test 
image-4) 

3 Proposed Active Contour Model 
Chan’s model and Lee’s model show weakness in 
robustness against brightness change and noise 
respectively. In the area near the contour, we can 
include terms into φt to change φ appropriately. These 
terms are decided under the consideration on the way 
how to change φ according to the direction of ∇u0 and 
∇φ. 

When the direction of ∇u0 is similar to that of ∇φ as 
in figure 9, the zero level set of φ should be moved to 
the edge. This can be implemented by increasing or 
decreasing φ according to the value of ∆u0. If ∆u0 is 
positive at any (x, y), this position is outside the object 
boundary, and φ should be decreased to push 0-level 
set of φ toward the boundary. Similarly, if ∆u0 is 
negative at any (x, y), this position is inside the object 
boundary, and φ should be increased to push 0-level 
set of φ toward the boundary. 

On the contrary, when the direction of ∇u0 is similar 
to the opposite direction of ∇φ as in figure 10, the 
zero level set of φ should be moved away from the 
edge. If ∆u0 is positive at any (x, y), this position is 
outside the object boundary, and φ should be 
decreased to push 0-level set of φ away from the 
boundary. Similarly, if ∆u0 is negative at any (x, y), 
this position is inside the object boundary, and φ 
should be increased to push 0-level set of φ away 
from the boundary. 
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Figure 9. Modification of φ at any position where the 

direction of ∇u0 is similar to that of ∇φ. 

 
Figure 10: When the direction of ∇u0 is similar to the 

opposite direction of ∇φ. 

This concept can be implemented by modifying φ 
near it’s 0-level contour as in equation 9. 
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The algorithm is implemented in two phase. In the 1st 
phase, equation (8) is applied to a given image to find 
initial contours. In the 2nd phase, equation (9) is 
applied to the result of phase-1 to refine the result. 

4 Experimental Result 
To evaluate the performance of proposed algorithm, 
Chan’s method[1], Lee’s method[2], and the proposed 
algorithm are compared by applying those algorithms 
to several vehicle licence plates images. The values of 
parameters are as follows: 

2
0 )max(01.0 u=µ , 1=ν , ,121 == λλ  

10001 =η , 1002 =η , 1.0=γ  

Figure 11 shows the segmentation results for an 
image that has relatively uniform background 
brightness and contains only small amount of noise. 
All of the three method segments characters correctly. 

 
Figure 11: Image Segmentation Results(test image-1), 

(a) Original Image, (b) Chan’s method, (c) Lee’s 
method,           (d) proposed method 

 
Figure 12: Image Segmentation Results(test image-2), 

(a) Original Image, (b) Chan’s method, (c) Lee’s 
method,           (d) proposed method 
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Figure 13: Image Segmentation Results(test image-4),

(a) Original Image, (b) Chan’s method
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Image s vital in 
computer vision systems. In this paper, an image 

at can be applied to pattern 

his paper is based on level-set theory 

hows robustness in non-uniform 

. Vese, “Active 
contours without edges,” IEEE Trans. Image 

eeding, Vol.10, No.2, pp. 

[3] 
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The original image in figure 12 and figure 13, 
wever, has non-uniform background brightnes

n’s method fails to segment objects
given images. Both Lee’s and proposed method 
segment objects in the images, and the proposed 
method shows slightly better results. 

The original image in figure 14, however, has non-
uniform background brightness and contains noise. 
Chan’s method(figure 14(b)) fails f
because of the non-uniform background brightness. 
Lee’s method(figure 14(c)) shows weakness against 
noise. Proposed method shows better result compared 
to previous methods. 

 
Figure 14: Image Segmentation Results(test image-3),

(a) Original Image, (b) Chan’s method, (c) Lee’s 
method etho

5 Conclusion 
egmentation is a fundamental and 

segmentation algorithm th
recognition, visual inspection, visual surveillance, etc 
is proposed. 

In many practical applications, brightness distribution 
over the image is not uniform. More over, the image 
may contain noise. The active contour model 
proposed in t
framework to achieve image segmentation for these 
cases. Function φ is controlled to move 0-level set to 
object’s boundary.  

Compared to Chan’s [1] and Lee’s [2] algorithm, 
proposed method shows improved result. In particular, 
proposed method s
illumination and noisy environment. 
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Abstract

Today PCA is very popular in various areas of
pattern recognition, computer vision, and image
retrieval, so its robustness to interfering data vari-
ations, e.g. nuisance image detail, is of a great
practical value. This paper proposes to build a ro-
bust PCA by “soft masking” artefacts in an image
database. Data variations with respect to a linear
subspace of PCs are described by the mixture of
Gaussian noise and uniformly distributed outliers.
Soft masks of outliers for data items are produced
by an iterative Expectation-Maximisation (EM) al-
gorithm. Then, the characteristic PCs are formed
for the masked database. Our experiments show
the proposed JOPCA overcomes drawbacks of some
conventional robust PCA techniques.

Keywords: pattern recognition, face recogni-
tion, robust PCA, Expectation-Minimization

1 Introduction

Statistical dimensionality-reduction techniques
have proven to be useful in many pattern
recognition, computer vision, and image retrieval
applications. They are particularly important for
image recognition and learning tasks where “the
curse of dimensionality” [1] makes it impossible to
deal with the problem space of an untransformed
pixel domain. Principal component analysis
(PCA) is one of the most significant and universal
tools among them both historically [2] and
practically [3].

PCA works well on datasets where images were
regularized with respect to many spatial domain
parameters including positioning, rotation,
lighting, size, background, and so on [4]. However,
some interfering features cannot be eliminated
completely due to practical considerations. For
example, frequent visual occlusions in face
recognition are caused by facial hair, glasses,
scarves, and so on. A pixel affected by one of these
unwanted artefacts can be defined as an outlier.
A more formal definition is presented in Section 3.

Outliers in images are detrimental to recognition
accuracy due to two peculiarities of PCA. First,
if a subject’s image is corrupted with outliers, the
ability to classify subsequent “clean” images of the

(a) Original image and its reconstructions from 1, 3 and 5
PCs

(b) Corrupted image and its respective reconstructions

Figure 1: Effects of outliers on a lossy PCA recovery.

same subject will predictably suffer. As an exam-
ple, let us consider the lossy reconstruction of an
image from its 1, 3 and 5 most significant PCs as
displayed in Fig. 1. If no images were occluded,
the computed approximation appears as expected
(Fig. 1(a)). However, if an image was corrupted
with visible nuisance features (Fig. 1(b)) its recon-
struction displays their evident presence even when
only one PC was used.

Second, due to the nature of PCA, artefacts in
even a single image will pervade all other images
in the database. In Fig. 2 just as in the previ-
ous example one of the images is corrupted. The
respective pixels in the other images will also be
contaminated with the introduced error once they
are reconstructed from their PC scores. One can
notice the silhouettes of the glasses and moustache
on the image which did not contain them originally.
Simultaneously, the retrieval accuracy will decline.

Not only occlusions should be treated as outliers.
Background is likely to considerably vary in
different facial images and thus its inclusion into
PCA is equally a bad strategy. At present the
standard approach in building face databases is
to crop images in order to completely eliminate
their background. However, if background
pixels are regarded as outliers they could be
eliminated automatically, like occlusions. This
paper introduces an algorithm for eliminating
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Figure 2: Original “clean” image and its reconstruc-
tions from 1, 3 and 5 PCs when one other image in
the database is corrupted with noise. The effect of
noise is noticable even when 5 PCs were used.

outliers. The suspicious pixels are simply masked
out before PCA is conducted. The computed
mask can eliminate both occlusions and arbitrary
backgrounds. Our approach adopts soft masking
where each pixel is weighed by a corresponding
mask entry ranging from 0 to 1. The masks
are found with an Expectation-Maximisation
(EM) algorithm which is much faster and more
flexible than more conventional available methods.
In addition, our approach strictly enforces the
orthogonality of the transformed space1, and hence
it is more suited for large databases where the
orthogonality is essential to guarantee successful
scalability.

2 Background

Our data model extends the conventional PCA
model described in brief below. A reader familiar
with PCA can skip Sections 2.1 and 2.2.

2.1 Generalised PCA

LetG be a p×nmatrix of n images, each of size of p
pixels, such that each element gij is the value of the
i-th pixel in the j-th image in the mean-deviation
form. Each image is a column gj of the matrix G.
The size p = |gj | is a product of horizontal and
vertical resolutions of the image. All images have
identical dimensionality.

Generalised PCA (GPCA) starts with finding a
covariance matrix S of G: S = 1

n−1GG
T where

T denotes transposition. Since S is symmetric, its
eigenvectors form an orthogonal basis. Let E be
a p × p matrix of eigenvectors-columns ei sorted
in the descending order of the magnitude of their
eigenvalues λi: E = [e1 e2 . . . ep]. These eigenec-
tors, called principal components (PC), are used
to linearly transform the matrix G into the ma-
trix Y of its PC scores: Y = ETG. Although
algebraically each element (PC score) of Y is a
linear combination of pixels in G, it is also viewed

1This property is sometimes dropped in the known
algorithms to increase their computational efficiency.

geometrically as a projection of an image gj rep-
resented as a point in a p-dimensional space onto
a one-dimensional subspace defined by the corre-
sponding eigenvector ek. Each eigenspace k in E
explains the λk/trace(S) part of the total variance
in G. Since E is sorted in the descending order
of λ, the score yk stores more or equal information
about G than yk+1 for 1 ≤ k < p. Consequently, in
a lossy GPCA the first m PC scores, 1 ≤ m < p,
corresponding to the eigenspaces with the larger
λ are required to guarantee the minimum error in
reconstructing G from any m PCs. The approxi-
mate matrix G is computed from a subset Em of
p eigenvectors in E as Ĝ = (ET

m)−1Y . In most
of applications its pseudoinverse E+

m is used: Ĝ =
(ET

m)+Y . In the case of a lossless PCA Em = E
and Ĝ = G.

2.2 Tractable PCA

GPCA finds the complete eigenspace E which is
grossly redundant and likely to be intractable. Al-
though the calculation of eigenspaces can find the
complete set of p eigenvectors, only a few of them,
j, 1 ≤ j < p, with the sizeably non-zero eigenvalues
λk, k = 0, 1, ..., j, are significant for the analysis.
The rest of the eigenspaces capture almost zero or
zero variance and hence do not serve any useful
purpose. For a database of images with an m×m
resolution, GPCA requires the memory of order
of m4 to represent the corresponding covariance
matrix. Not only this is a very large data struc-
ture, what is worse, finding eigenvectors for so large
matrices is computationally infeasible.

Tractable methods alternative to GPCA that
successfully compute eigenspaces by excluding
the brute force steps of GPCA made it possible
to use PCA for computer vision tasks [2]. Since
GTGe = λe and GGTGe = λGe, a subset E′ ⊂ E
of all eigenspaces of GGT could be obtained as
E′ = GẼ where Ẽ is the matrix of the eigenvectors
of S̃ = GTG. It can be shown that the eigenvector
ej ∈ E′ if and only if λj �= 0 ∀ej ∈ E. As a result,
only eigenspaces that capture non-zero variance in
the original data are found by this method. Also,
the memory requirements for S̃ are only of the
order of n2, making the eigenanalysis tractable
for reasonably large image databases. The rest
of the analysis, i.e. computing projections Y and
approximations Ĝ, is performed just as in GPCA.

2.3 Robust PCA

PCA does not deal successfully with noisy data. As
a result, more robust to noise algorithms have been
proposed [5, 6]. Unfortunately, they cannot be
extended onto high dimensional data sets typical
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to image processing. Only very recently a handful
of methods which could be applied with some suc-
cess to computer vision problems have appeared.
One of the proposed robust PCA techniques [7]
solves the following optimisation problem: error =
min(E;V ) ε(E;V ) where

ε(E;V ) =
n
∑

j=1

[

Vj

(

p
∑

i=1

(

gip −
m
∑

k=1

eikyjk

)2
)

+ η (1 − Vj)

]

Here, m is the number of PCs used and the binary
variable Vj ∈ {0, 1} indicates whether an image j is
discarded as an outlier or not. The term η (1 − Vj)
is a penalty to avoid the global optimum where
all images are rejected. Unfortunately, the main
problem with the approach in [7] is that entire
images would be rejected which does not make it
particularly practical.

A more interesting recent approach in [8] moves
from treating entire images as outliers to dealing
with the pixel domain. It optimizes the following
error function:

error =
min

E,Y,μ,σ

∑p
i=1

∑n
j=1 ρ (gij − μi −

∑m
k=1 eikyki, σi)

where m is as above, μi is the average of the i-
th pixel across all images, ρ(w, σi) = w2

w2+σ2

i
is the

Geman-McClure error function, and the parameter
σi follows from the assumed normal distribution
of noise in every reconstructed pixel: errorip ∼
N (0, σ2

i ).

Although the approach in [8] successfully created a
robust system, it has serious drawbacks. First, the
learned vectors of E are not generally orthogonal
which will be a major obstacle to scalability of
the method since more vectors will be required to
capture the same amount of variance comparing to
regular PCA2. Secondly, the error is minimised by
using gradient descent (GD) in the error space that
consists of the four sets of parameters (E, Y, μ, σ).
The authors in [8] claim that the computational
cost of each iteration is O(pnm), where m is the
number of robust PCs3. Not surprisingly that for
a 256-image database with 20 robust PCs the al-
gorithm took hours to converge. Finally, what is
most important, an addition of extra images to the
database requires a complete recomputation of the
learned space.

Other known robust PCA methods, for example,
in [9, 10, 11], deal with either pixels or images as

2The lack of orthogonality, strictly speaking, means that
their robust method is not a PCA.

3Note that vectors in E are not, strictly speaking, the
PCs since they lack orthogonality.

outliers; however they all have very similar draw-
backs. Our approach introduced below detects out-
liers at the pixel level, but in contrast to the previ-
ous algorithms, avoids successfully all three afore-
mentioned problems.

3 Joint outliers and PC analysis

3.1 Error model

The reconstruction of an original image is
inevitably imprecise if a lossy transformation
(such as a lossy PCA) is used: gij = ĝij + εij

where εij ∈ [(−2b + 1), (2b − 1)] denotes the pixel-
wise error, b is the number of greyscale bits used to
encode the image, and ĝij is a reconstructed signal
defined as ĝij =

∑c
j=1 e

+
ijyjk. Here, 1 ≤ c ≤ n,

e+ij ∈ E+, and yjk ∈ Y is the score of the j-th PC
for the k-th image.

We assume that the error εij may be caused by
either noise or an outlier and in both cases er-
rors are statistically independent in the pixels and
images. This dichotomy forms the error model
for our approach. Informally, the objective is to
include pixels generating noise in PCA 4 , while
to detect and exclude outlying pixels. Formally,
the probability distribution of εij over all images
is specified as the mixture of a normal zero-centred
distribution for noise :

N (ε|0, σ) =
1

σ
√

2π
exp

(−ε2
2σ2

)

with a fixed but unknown variance σ2, and a uni-
form distribution for outliers:

Pr(ε) = αN (ε|0, σ) + (1 − α)ub

where α is an unknown prior probability of non-
outliers and ub = 1/(2b+1 − 1) is the probability of
uniformly distributed outliers.

Experimental results suggest that this simple hy-
pothesis is likely to be accurate due to a clearly
observable Gaussian shape of empirical distribu-
tions for small errors but levelled long tails for the
large ones. This provides us with a decision rule for
delineating noise from outliers: to mask out pixels
which errors are significantly larger than one might
expect from a normal noise. The like rule based on
a maximum likelihood estimator and an EM-based
evaluation strategy is introduced below.

3.2 Soft masking of outliers

The underlying idea is to detect outliers, mask
them out, and restrict PCA only to relevant pixels

4Since the noise is an inherent feature of lossy transfor-
mations
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in every image. Let a mask M exist for the data
matrix G such that every entry mij of M applies
to the corresponding pixel gij . One approach, the
binary mask, mij ∈ {0, 1}, simply cuts out pixels
with zero mask value and retain ones with the unit
mask value, i.e. converts every image gj into the
masked image g◦j . The computation of all pixel-
wise and pairwise statistics to obtain the covari-
ance matrix S̃ involves the masks in an obvious
way: M works as a ”mask-out”, namely, a mul-
tiplication by M erases unwanted pixels. Hence,
tractable PCA is easily adapted to the use of such
masked images.

Actually, the mask M has to be evaluated from
the available data using the assumed noise model.
To fit the EM framework [12], let us replace
the binary mask with a soft one such that the
smaller the value mij ∈ [0, 1], the higher the
plausibility that gij is an outlier. A single value
mij represents a degree of responsibility of a
pixel for both the categories “noise” and “outlier”
simultaneously. Initially all entries in M are
initialised to 1, so no information is filtered out:
all pixels are 100%-responsible for inclusion to
PCA and 0%-responsible for elimination. As the
PCs and the mask are recalculated iteratively, the
responsibilities mij change.

The first step in calculatingG◦, the masked version
of G, is to compute Ḡ containing vectors of means
ḡi for each pixel i:

ḡi =

n
∑

j=1

gijmij

n
∑

j=1

mij

; i ∈ {1, . . . , p}

G◦ is obtained in the mean-deviation form with
g◦ij = (gij − ḡj)mij .

Next, the covariance matrix S◦ is calculated with
the entries

s◦ij =

n
∑

k=1

g◦ikg
◦
jkmikmjk

n
∑

k=1

mikmjk

; i, j ∈ {1, . . . , p}

where the sum is taken over the i-th and j-th pixels
of all images. Then the matrix S◦ is processed as
usually by PCA.

To re-evaluate M , the soft mask values are formed
at every iteration t as expected responsibilities of
gij for the current reconstruction noise ε[t]ij :

m
[t+1]
ij =

α[t]N (ε
[t]
ij |0,σ[t])

α[t]N (ε
[t]
ij |0,σ[t])+(1−α[t])ub

α[t+1] = 1
np

p
∑

i=1

n
∑

j=1

m
[t]
ij

σ[t+1] =

√

√

√

√

√

pP
i=1

nP
j=1

“
ε
[t]
ij

”
2

m
[t]
ij

pP
i=1

nP
j=1

m
[t]
ij

The mask is calculated iteratively until the local
minimum of the L2 error function over G is found.
The only parameters which need to be estimated
experimentally are σ and α determining the soft
decision for gij of being a noise or an outlier.

3.3 Computational considerations

As was mentioned in Section 2, the current state-
of-the-art systems have at least three major draw-
backs: non-orthogonality, the use of GD-based op-
timisation, and the need to recompute the entire
space after updating the dataset. Compared to
them, our system is better scalable, faster, and
more flexible.

First, the orthogonality of PCs is preserved in our
method. Therefore, the efficient data compression
of PCA is guaranteed, and this makes the system
scalable easier than its predecessors.

Second , we need not use GD to solve the optimisa-
tion problem and hence avoid a number of compu-
tational issues connected to a GD paradigm: slow
convergence and locally optimal solutions which
are too far from the desired optimum. Most of
current robust PCA methods for computer vision
minimise the error of a lossy PCA-based recon-
struction of images in a multidimensional parame-
ter space, as e.g. in [8] (see Section 2.3). In our case
the parameter space is much simpler with only two
unknown parameters α, σ to be estimated by the it-
erative EM-algorithm, where the mask the maskM
is dependent analytically on these parameters. The
previous approaches had to use GD for searching
for an acceptable local minimum of error in spite of
all its inherent computational limitations such as
slow convergence and high chances of getting stuck
with some dramatically suboptimal solution. Our
approach deals with a more global search of the
error space because iterative readjustments of the
masking weights in M result in pretty large move-
ments across the parametric space, roughly in the
direction of the global minimum as justified by the
underlying EM algorithm [12]. Consequently the
computations are much faster. The improvement
comes from a dramatic reduction of the number of
iterations required to find an acceptable subopti-
mal solution.
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(a) Original image (b) Computed mask

(c) No mask applied (d) Mask applied

Figure 3: The effect of the mask on the reconstruc-
tion of an image with outliers

Finally, the method does not require a complete
recomputation of the mask if additional images are
added to the database. We only need to recompute
the PC space of the updated database, with recom-
putation of the mask left as a periodic off-line task.
This is a significant advantage over all other robust
methods published up to date which would require
a complete rerun.

4 Experimental results

A subset of the MIT dataset [13] was selected con-
sisting of two images with different lighting for each
of the 10 people (20 grayscale images in total; 8
bits per pixel). All images are normalised and have
the resolution of 200 by 200 pixels. Our algorithm
was implemented in accord with its description so
that each pixel in G had its own unique mask.
Experiments suggest that the best results can be
achieved when the number of PCs k 	 n. In fact it
appears that filtering is most effective when k → 1.
Specifically, fig. 3 displays the success of JOPCA
with k = 1. Clearly, the occlusions created by
the glasses and moustache appear to have been
successfully removed. More experiments are under
way at present for other values of k.

An interesting consequence of calculating the
unique soft mask mij for every pixel is that some
of the legitimate signal variations are filtered out
as well. The mask in Fig. 3(b) shows that some
relevant detail is removed from the face. Although
this has not caused a problem for this particular
image, other images in the same dataset had some
additional auxilliary noise in their reconstructed
images. Fig. 4 demonstrates this undesired effect.

(a) Original image (b) Computed mask

(c) No mask applied (d) Mask applied

Figure 4: The effect of the mask on the reconstruc-
tion of an image with no outliers

We expect that less auxilliary noise will be gener-
ated by JOPCA if we move away from calculating
a unique mij for every pixel. Some possible refine-
ments are discussed below, in Section 5.

5 Future work and conclusions

Our initial experiments confirm that the proposed
JOPCA works quite effectively and is computa-
tionally much more attractive than other known
robust methods. Unfortunately, we cannot com-
pare the performance of algorithms experimentally
since other authors have not published information
which will make such benchmarking possible. It is
our objective though to make the detailed results
obtained from running our method available pub-
licly.

Our current work-in-progress is to refine our ap-
proach further and at present we are in the process
of comparing the following methods for computing
the soft mask:

Uniform image mask: One of the ways of pre-
venting the appearance of auxillieary noise in
reconstructed “clean” images is to calculate
one uniform mask which could be applied to
all images uniformly. Thus, entire “difficult”
areas where occlusions such as glasses appear
frequently would be ignored by PCA.

Region-based image mask: Another possibili-
ty is to implement a region-based filter.
Hence more attention will be paid to error
pervasivly present in the area rather than
error randomly generated by a lossy PCA.
The size of the frame needs to be selected by
a separate procedure.
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Uniform region-based image mask: The idea
behind this is to see whether the expected
advantages of either could be combined into
one robust implementation.

The results reported so far were obtained from run-
ning the algorithm on the MIT dataset [13] where
all images have their background cropped out. We
are also in the process of creating a working model
which should demonstrate how well the algorithm
works with non-trivial background. So other avail-
able databases, such as the Yale dataset [14], will
be considered in the future work.

Another pending project is to evaluate the algo-
rithm with more realistic outliers (not just thick
artefacts used in the initial experiments).

Finally, we are looking at evaluating JOPCA for
image retrieval purposes. At this stage, the chal-
lenges are to assess to what extent the elimination
of outliers provided by JOPCA and the additional
noise introduced by JOPCA affect the accuracy of
image retrieval.

In total, we have presented a novel robust PCA
model, JOPCA, and have demonstrated that it is
much faster and more flexible than other available
alternatives. It successfully deals with noisy in-
put data which makes it important as a practical
platform for many computer vision applications.
Our new model successfully overcomes the three
significant drawbacks of many of contemporary al-
gorithms: it offers optimal compression due to pre-
serving the orthogonality of the PC space, rapid
conversion, and flexibility to online updating.

References
[1] R. Bellman, Adaptive Control Processes.

Princeton University Press, 1961.

[2] M. Turk and A. Pentland, “Face recognition
using eigenfaces,” in Proc. IEEE Computer
Society Conf. on Computer Vision and Pat-
tern Recognition (CVPR’91), June 1991, La-
haina, Maui, Hawaii, pp. 586–591, IEEE CS
Press, 1991.

[3] K. Delac, M. Grgic, and S. Grgic, “Indepen-
dent comparative study of pca, ica, and lda on
the feret data set,” Int. J. Imaging Systems
and Technology, vol. 15, no. 5, pp. 252–260,
2005.

[4] W. Zhao, R. Chellappa, P. Phillips, and
A. Rosenfeld, “Face recognition: A literature
survey,” ACM Computing Surveys, vol. 35,
no. 4, pp. 399–458, 2003.

[5] N. Campbell, “Robust procedures in multi-
variate analysis 1: Robust covariance esti-
mation,” Applied Statistics, vol. 29, no. 3,
pp. 231–237, 1980.

[6] F. Ruymgaart, “Robust principal component
analysis,” J. Multivariate Analysis, vol. 11,
no. 4, pp. 485–497, 1981.

[7] L. Xu and L. Yuille, “Robust principal com-
ponent analysis by self-organizing rules based
on statistical physics approach,” IEEE Trans-
actions on Neural Networks, vol. 6, no. 1,
pp. 131–143, 1995.

[8] F. De la Torre and M. Black, “Robust princi-
pal component analysis for computer vision,”
in Proc. Eighth Int. Conf. on Computer Vi-
sion (ICCV’01), July 7–14, 2001, Vancouver,
British Columbia, Canada, vol. 1, pp. 362–
369, IEEE CS Press, 2001.

[9] J. Karhunen and J. Joutsensalo, “General-
izations of principal component analysis, op-
timization problems, and neural networks,”
Neural Networks, vol. 8, no. 4, pp. 549–562,
1995.

[10] M. Black and A. Rangarajan, “On the unifi-
cation of line processes, outlier rejection, and
robust statistics with applications in early
vision,” Int. J. Computer Vision, vol. 19,
no. 1, pp. 57–91, 1996.

[11] R. Rao, “An optimal estimation approach
to visual perception and learning,” Vision
Research, vol. 39, no. 11, pp. 1963–1989, 1999.

[12] T. Hastie, R. Tibshirani, and J. Friedman,
The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer,
2001.

[13] MIT face database, accessed 24 Aug 2006,
http://vismod.media.mit.edu/pub/images/

[14] YALE face database, accessed 20 Sept
2006, http://cvc.yale.edu/projects/yalefaces/
yalefaces.html

466



Integrated Test Pattern Generator and Measurement Algorithm 
for Colour Compression Artefacts in Ubiquitous Colour Spaces  

G. A. D. Punchihewa, D. G. Bailey, and R. M. Hodgson
 

Institute of Information Sciences and Technology, Massey University, New Zealand 

Email: g.a.punchihewa@massey.ac.nz 

Abstract 

This paper presents an environment to evaluate image codecs for the colour bleeding artefacts objectively. It is 

difficult to detect and measure individual artefacts in coded images. A synthetic random colour test pattern 

generator and a colour gamut transfer algorithm are developed to emphasise and measure colour bleeding 

artefacts due to image compression. The performances of a JPEG and a JPEG2000 codec implementations are 

compared in colour reproduction for television colour gamut. Both types of codecs show an increasing level of 

colour bleeding artefacts with increasing compression ratio. The objective artefact measures can be used in the 

image codec development process, in parameter optimisation of codec performance and in selecting a codec for a 

given application. Artefact metrics can also be used to select suitable parameters for video codecs while creating 

video streams for the Internet applications and in any multimedia application in general.  

Keywords: colour bleeding, image compression, image artefacts, objective assessment, image quality, 

artefact metric, test pattern, colour space, colour gamut. 

1 Introduction 

In digital television broadcasting, video streaming and 

other multimedia communications, image and video 

are the dominant components. With limited 

communication bandwidth and storage capacity in 

terminal devices, it is necessary to reduce data rates 

using digital codecs. The techniques and quantisation 

used in image and video compression codecs 

introduce distortions known as artefacts. The Digital 

Fact Book defines artefacts as “particular visible 

effects, which are a direct result of some technical 

limitation” [1].  

High levels of compression result in undesirable 

spurious features and patterns, and incorrect colours 

in the reconstructed image; these are the artefacts 

defined above. Image compression schemes may 

result in colour errors in addition to the blockiness, 

blur, contouring and ringing artefacts also found in 

coded images [2]. We have developed static test 

patterns and objective artefact metrics for blockiness, 

blur, ringing and colour bleeding artefacts in coded 

images [3, 4, 5], so blockiness, blur, and ringing 

effects will not be considered further in this paper.  

JPEG2000 is an image compression standard based on 

the use of wavelets. It is gaining popularity because it 

delivers higher compression than JPEG for a given 

quality. It uses the complete image data at once in 

processing to obtain the frequency domain 

representation. JPEG is an image compression 

standard which has been common use over a longer 

time than JPEG2000. However, very little research 

has been done to benchmark and compare these two 

codecs for colour artefacts. JPEG has been in use for 

compression of still images in video and television 

production facilities.  

For many years, broadcasting engineers have been 

using standard colour bar test patterns for testing and 

adjustment of analogue colour television and video 

systems [6]. Analogue information is transformed into 

the hue-saturation-luminance colour space before it is 

transmitted to the viewers [7]. In analogue image and 

video systems, subjective assessments are made on 

preview monitors and objective assessments on 

measuring instruments such as a vectorscope. These 

enable an evaluation of perceptual quality as well as 

provide accurate and swift measurements. The 

synthetic colour bar test pattern used for analogue 

quality evaluation does not stress the codecs and does 

not provide suitable content for the measurement of 

colour artefacts in digital image and video systems 

[8]. Traditional vectorscope or waveform monitors do 

not provide assistance in making objective 

measurements on such codecs. 

The approach in this paper is to use the full-

referenced technique [9]; this involves the comparison 

of the reconstructed test pattern with the original test 

pattern. A random synthetic test pattern having known 

spatial distributions of coloured pixels will 

supplement the earlier static test pattern pool [3, 4, 5]. 

This paper demonstrates the concept of colour artefact 

assessment for a given colour space of luminance, hue 

and saturation and the colour gamut of PAL television 

colour system by performing a comparative study of 

coding colour artefacts due to the use of block 

processed discrete cosine transform (DCT) and 

wavelets in digital codecs. The procedure and the 

environment can be applied to any colour space or 

colour gamut and any colour image or video codec. 
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2 Methodology 

In our previous work of colour artefact evaluation and 

test pattern generation, a static colour test pattern was 

designed to evaluate coding colour bleed artefacts [5]. 

When a synthetic static colour test pattern is used, an 

advanced image compressor which can optimise 

performance for the specific colour test pattern with 

the result that the metrics are not useful to compare 

performance with another codec. The aim of this 

research was to design and develop a random colour 

test pattern generator and gamut transfer algorithm 

which enables the evaluation of the colour 

reproduction performance of digital codecs based on 

any colour space and any colour gamut. A block 

diagram of the proposed environment is shown in 

Figure 1.  

Most image compressors have a control parameter 

known as quality factor that can be set by the user to 

adjust the compression ratio. In general, the higher the 

compression ratio the more visible any colour 

artefacts become. At low compression ratios, the 

colour variations are not obvious to the human eye 

and visual appraisal is not effective. The display of 

these colour errors on a measurement instrument 

provides a better indication of the colour errors 

present. Since the original image is known, it is 

possible to determine the presence and extent of any 

colour artefacts. 

2.1 Definition of colour components 
and colour space conversion 

In general, it is possible to transform the red, green 

and blue signal values (R, G and B) to luminance, Y, 

and chrominance or colour difference signals, Cr and 

Cb, for use in image and video communication 

interfaces [10]. Different media applications each use 

their own colour space as shown in Table 1. In 

general, the transformed components can be defined 

as: 

 
1 1 1

= + +Y r R g G b B  (1) 

 
2 2 2

= + +
r

C r R g G b B  (2) 

 
3 3 3

= + +
b

C r R g G b B  (3) 

where ri, gi, and bi, {i=1, 2, 3} are the coefficients of 

the red, green and blue signal values in a given colour 

space. 

In analogue PAL colour television broadcasting, the 

two colour difference signals are used to modulate a 

colour sub-carrier using quadrature modulation. They 

can therefore be treated as two components of a 

vector, where the angle corresponds to the dominant 

colour, or hue, and the magnitude is the strength of 

the colour (or saturation): 

 1tan−
 

=  
 

r

b

C
Hue

C
 (4) 

  
2 2

= +
r b

Saturation C C  (5) 

Hue, saturation and luminance defined in equations 

(4), (5) and (1) respectively are similar to and are 

compatible with analogue television measurement 

systems. The quantities hue and saturation as defined 

in equations (4) and (5) can be applied to any of the 

colour spaces listed in Table 1.  

Many colour digital codecs use a similar approach to 

that used to represent colour in analogue television 

systems. The colour image is first transformed to 

luminance and chrominance. The human visual 

system has greater acuity to intensity than colour 

(chrominance); this fact allows a 2:1 chrominance 

compression without introducing any visually 

significant colour artefacts. Based on the codec type, 

the two chrominance components are down-sampled 

and coded separately. For video compression, MPEG-

Figure 1: Block diagram of the integrated test pattern generator and colour artefact measurement environment 

Table1. Different colour spaces for common image and video codecs 

Colour 

Space 

Luminance Colour Difference Signal Colour Difference 

Signal 

PAL .299 .587 .114Y R G B= + +  .147 .289 .436U R G B= − − +  .615 .515 .100V R G B= − +  

NTSC .299 .587 .114Y R G B= + +  .596 .274 .322I R G B= − −  .211 .523 .311Q R G B= − +  

SECAM .299 .587 .114Y R G B= + +  R Y−  B Y−  

JPEG2000 .299 .587 .114Y R G B= + +  .16875 .33126 .500bC R G B= − − +  .500 .41869 .08131rC R G B= − −  

JPEG2000 

lossless 

.25 .5 .25Y R G B= + +  U R G= −  V G B= − +  

CCIR 601 .257 .504 .098 16Y R G B= + + +  .148 .291 .439 128bC R G B= − − + +  .439 .368 .071 128rC R G B= − − +  

CIE XYZ .4306 .3415 .1784X R G B= + +  .2220 .7067 .0713Y R G B= + +  .0202 .1295 .9394= + +Z R G B  

 

Random 

Test 

Pattern 

Generator 

Perform 

Colour 

Gamut 

Transfer 

 

CODEC 

Artefact 

Algorithm  

based on a 

Colour space  

Vectorscope 

and 

Image 

Display 

468



2 codecs use a complex and flexible down sampling 

technique based on two coding parameters known as 

profiles and levels. However most of the colour 

compression standards use the luminance and colour 

difference signals as shown in Table 1. 

In JPEG and JEPG2000, each of the two chrominance 

components is then coded separately using block 

based DCT and wavelets respectively. 

2.2 The random colour test pattern 

Colour bleeding is introduced by digital codecs at 

colour boundaries or edges. In the reconstructed 

image, colour bleeding appears as the blurring of the 

colour boundary as a result of lossy compression. 

Coding colour bleed is identified here as the leakage 

of colour from one region of colour to another at 

colour boundaries. Figure 2 shows an example of 

coding colour bleed when a digitally coded colour 

image having circles of six colours is reconstructed.  

 

 

Figure 2: Example of coding colour bleed around the 

colour edges resulting from a JPEG codec 

A random synthetic colour test pattern generator has 

been designed to generate a distinct test pattern each 

time it is run. The test pattern consists of 

approximately one hundred colour circles from N (in 

this case six) colours within a uniform background 

pattern of 25% grey value of full scale. The centre and 

the radius of the small colour circles are chosen 

randomly. The colour circles fit within the preset 

pattern size (480x640 in our tests) and they may 

overlap with each other. The intensity value within 

the circular colour regions is set to 75% of full scale. 

One such a random colour test pattern is shown in 

Figure 3. There are many forms of colour boundaries. 

For most colour regions, a variety of colour 

transitions is available so that the test pattern stresses 

the codec at all compression ratios as required to 

emphasise the colour bleeding artefacts. 

 

Figure 3: An original random colour test pattern 

designed for testing digital codecs 

2.3 Definition of coding colour bleed 
and three artefact metrics 

The luminance, hue and saturation colour space 

corresponds to the human perception system. Hence 

the red, green and blue components of the random 

colour test pattern are converted to hue and saturation 

prior to the calculation of artefact metrics defined in 

this paper.  

Colour bleeding appears as a spreading of the hue 

angle, saturation and luminance for a colour region. 

The higher the leakage of colour, the higher the 

visibility of colour error and value of the coding 

colour bleed. We define coding colour bleed with 

three metrics, each representing the three components 

of colour, namely, hue, saturation and luminance as 

follows. 

The human eye can not discriminate individual colour 

pixels in reconstructed pattern at a distance but tends 

to integrate over small regions. Hence the mean 

values of colour in individual colour regions are 

considered for defining metrics. 

Consider a test pattern containing N distinct colours. 

Let the mean hue value of colour region r in the 

original image be 
r

H and the mean hue value of the 

corresponding colour in the reconstructed pattern 

be
∧

r
H , then the coding hue bleed can be defined as: 

 1

∧

=

∑
≜

N

r r

r

H - H

CHB
N

 (6) 

Let the mean saturation value of colour region r in the 

original pattern be 
r

S and the mean saturation value 

of the corresponding colour in the reconstructed 

pattern be
∧

r
S , then the coding saturation bleed can be 

defined as:  

 1

∧

=

∑
≜

N

r r

r

S - S

CSB
N

 (7) 

Original test pattern 

Colour leakage 
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Let the mean luminance value of colour region r in 

the original pattern be 
r

L and the mean luminance 

value of the corresponding colour in the reconstructed 

pattern be
∧

r
L , then the coding luminance bleed can be 

defined as:  

 1

∧

=

∑
≜

N

r r

r

L - L

CLB
N

 (8) 

2.4 The colour gamut 

The colour gamut is defined as the subset of colours 

that can be represented in a given application or 

system. They have been defined in standards for 

different applications as shown in Figure 4.  

 

Figure 4: Comparison of colour gamut for different 

applications [11]. 

The random colour test pattern can be transformed to 

obtain the legal colours—the colours that can be 

displayed or printed within a given application. The 

test pattern generator creates a colour pattern based on 

a set of tri-stimulus values in a CIE-xy chromaticity 

diagram based on PAL colour gamut. The x and y 

values are then transformed to R, G and B values. The 

required colour gamut is also transformed to R, G and 

B values. The mapping algorithm replaces R, G and B 

values of the test pattern with the required values. 

This allows using the pattern generator for any colour 

gamut. Figure 5 shows a transformed test pattern of a 

random pattern. The algorithm maintains the 

structural information within the test pattern.  

 

Figure 5: Transformed test pattern from the random 

colour test pattern shown in Figure 2. 

3 Experiments and Results 

3.1 Reconstructed test patterns 

As a result of the multiplicity of edges present in the 

test pattern that are neither vertical nor horizontal, 

block processing or wavelet based compression 

techniques introduce errors into the reconstruction 

process. Figure 6 demonstrates the coding colour 

bleed observed when the test pattern is compressed 

using a JPEG codec with a compression ratio of 120. 

Similarly, Figure 7 demonstrates the coding colour 

bleed observed when the test pattern is compressed 

using a JPEG2000 codec with a compression ratio of 

120. 

 

Figure 6: The reconstructed random colour test 

pattern when encoded with a JPEG codec with a 

compression ratio of 120. 

 

Figure 7: The reconstructed random colour test 

pattern when encoded with a JPEG2000 codec with a 

compression ratio of 120. 

3.2 Three artefact metrics 

The CHB, CSB and CLB artefact metrics were 

evaluated by applying them to the random test pattern 

described in the section 2.4. A JPEG and a JPEG2000 

codec were tested over a range of compression ratios 

with the results shown in Figures 8, 9 and 10. When 

the random colour test pattern was compressed by a 

range of quality factors, this resulted in compression 

ratio between 2 and 230. It was observed that 

perceived colour errors increase with increasing 

compression ratio for the random test pattern with 

both types of codecs.  

x 

y 
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Figure 8: Coding hue bleed as a function of 

compression ratio with the random colour test pattern 
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Figure 9: Coding saturation bleed as a function of 

compression ratio with the random colour test pattern 
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Figure 10: Coding luminance bleed as a function of 

compression ratio with the random colour test pattern 

As shown in Figures 8, 9 and 10 the random colour 

test pattern also resulted in an increasing trend in all 

three measures of coding artefact metrics in equations 

(6), (7) and (8), which is in agreement with perceived 

quality. An increasing coding artefact metric value 

represents increasing bleeding artefacts. Hence the 

perceived quality of the reconstructed patterns 

decreases with an increasing bleeding measure. 

Coding hue bleed, coding saturation bleed and coding 

luminance bleed increase rapidly with increasing 

compression ratio. As the test pattern becomes more 

compressed, the distribution of colour values becomes 

more spread. Minor non-monotonic variations can 

also be observed. At some compression levels, errors 

may actually reduce for increased compression 

depending on exactly where quantisation levels fall. 

The circular shape of the colour boundaries has the 

result that the block boundaries for JPEG will not fall 

on colour boundaries or parallel to them. This stresses 

the codec to produce more errors, which are 

perceivable on a monitor.  

As colours from adjacent regions mix, in addition to 

change of hue, a significant effect of colour bleeding 

is a loss of saturation and luminance. This tends to 

make regions more grey, reducing the saturation and 

luminance as shown in Figure 9 and Figure 10. 

JPEG2000 loses slightly more intensity or luminance 

than JPEG codecs. The losses for both codecs are less 

than 2% of the original value. The human eye may not 

be able make the distinction, hence can be treated as 

negligible. 

3.3 Influence of random signal on CHB 

A test was carried out to investigate the influence of 

random test pattern on coding hue bleed. For the same 

quality factor nine randomly generated test patterns 

were coded. As shown in Figure 11 the coding hue 

bleed varies with different random test patterns for the 

same quality factor expressed as the compression 

ratio. When the test pattern is coded, due to random 

nature, pixel contents, colour transitions and 

boundaries vary from one pattern to the other. As a 

result, for a given compression ratio, the coding 

colour bleed can vary by up to 20%. Hence random 

test pattern generator is more useful in benchmarking 

different codecs where each codec is fed with the 

same test pattern from each generation. The 

individual codec performance can be evaluated using 

the previously designed static test pattern described in 

[10] which enables repetitive results. 
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Figure 11: Variation of coding hue bleed with 

different random test pattern generations at different 

quality factors on the JPEG codec 
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4 Conclusions 

Coding colour bleed is an undesirable visible effect 

found around colour edges of reconstructed, digitally 

coded images. In this paper, three objective artefact 

measures of coding colour bleed were used to 

evaluate and compare the colour reproduction 

capability of JPEG and JPEG2000 codecs with a 

random colour test pattern. All three colour 

components, namely hue, saturation and luminance 

are degraded in reconstructed patterns. In general, 

JPEG2000 performs better than JPEG in reproduction 

of colour despite the reduction of luminance or the 

intensity of the colour. Based on the random colour 

test pattern, it is observed that bleeding increases with 

increasing compression ratio. The higher the level of 

compression, the higher the loss of each of the colour 

components. The approach used is based on a known, 

random synthetic test pattern and measurement in 

each colour region of the leakage of hue, saturation 

and luminance made in the spatial domain. The 

artefact metrics provide a good representation of the 

coding colour bleed artefact and are readily 

calculated. The three artefact metrics clearly 

distinguish between the hue leakage, saturation 

leakage and luminance leakage. 

The colour random test pattern proved to be useful 

over a wide range of compression ratios (from 2 to 

240) for benchmarking two or more codecs by 

simultaneous testing. The random colour test pattern 

generator is designed with knowledge of the specific 

mechanisms and weaknesses inherent in compression 

algorithms. The JPEG image compression standard 

uses the discrete cosine transform (DCT) whereas 

JPEG2000 uses wavelets. JPEG resulted in higher 

colour errors compared to JPEG2000. We may 

deduce that wavelet based compressors would result 

in less colour errors compared to DCT based 

compressors for a given compression ratio. The gamut 

transfer algorithm as shown in Figure 12 enables to 

test codecs used in other applications by applying the 

proposed test pattern generator. The authors intend to 

perform further research to investigate the 

applicability of the random colour test pattern and 

these artefact metrics for other types of digital image 

and video codecs and to generalize the findings.  
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Abstract
In this paper, we propose a seamless and dense 3D reconstruction method that uses an uncalibrated long
image sequence. First, we divide a long image sequence into subsequences. Camera motion parameters
in each subsequence are estimated by a factorization method optimized for near planar motion. This is
reasonable because we can assume that camera motion will be near planar motion in short sequences.
Dense 3D points are reconstructed by applying a multi view stereo technique to each subsequence using
the estimated camera motion parameters. We then find the relationships between the subsequences
from the overlapping frames of adjacent subsequences. Finally, seamless and dense 3D reconstruction is
achieved by merging all 3D points obtained from each subsequence. Experiments conducted on a long
image sequence captured by a handheld camera while walking demonstrate that the proposed method
yields good results.
Keywords:3D reconstruction, Factorization, Stereo

1 Introduction

The 3D reconstruction of objects and scenes
has a wide range of applications such as the
digital archiving of cultural sites and modeling
of environment for visual surveillance[1]. Several
recently proposed methods can automatically
reconstruct 3D models from short image sequences
(a few hundred frames) captured by moving
hand-held cameras[2, 3]. However, no study has
described a method that can stably reconstruct
broad-area 3D models from long image sequences.

In [4], camera motion parameters are reliably es-
timated by tracking several predefined markers of
known 3D positions and image features. However,
this approach is expensive since the measuring the
marker positions needs special equipment.

We focus on extracting robust camera motion pa-
rameters by using a factorization method; the re-
dundancy of image sequences and camera motion
parameters allow us to utilize a multiview stereo
technique which can reconstruct dense 3D points.

This paper proposes the combination of a factor-
ization method and multiview stereo. The original
factorization method[5] has two important prob-
lems as described below:

• Projection model is limited to orthogonal

• Feature point tracking must be performed in
all frames of an image sequence

To deal with a long sequence, we first divide it
into multiple subsequences and apply the factor-
ization method optimized for planar motion. This
is feasible because camera motion in a short se-
quence(subsequence) can be assumed to be nearly
planar motion while still permitting feature points
to be tracked in all frames of each image sequence.
The projection model of this factorization method
is perspective and camera motion parameters rep-
resenting 6 degrees of freedom are reliably esti-
mated by bundle adjustment using the planar mo-
tion obtained as the initial solution.

We apply the multiview stereo technique to each
subsequence using the estimated camera motion
parameters to reconstruct dense 3D points. Fi-
nally, seamless and dense 3D reconstruction is ac-
complished by using global coordinates to merge
the 3D points computed from each subsequence.

2 Overview of the method

The proposed method can construct a 3D model
from an uncalibrated long image sequence captured
by a hand-held camera that was moved so as to
capture the target. Figure1 overviews the proposed
method.
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Figure 1: Overview of proposed method.

First, we divide the input, a long image sequence,
into N subsequences. Each subsequence consists of
Fn frames and adjacent subsequences overlap by dn

frames. Fn should be as large as possible to more
robustly estimate the camera motion parameters.
However, if Fn is too large, feature point track-
ing fails because the feature points will eventually
move out of the field of view. Accordingly, Fn

is determined as the maximum number of frames
yielding stable feature points tracking.

The next step is to estimate the camera motion
parameters by applying the factorization method
optimized for planar motion to each subsequence.
Camera motion parameters, camera pose(ψi,ωi,θi)
and its 3D position Ti = (Txi, Tyi, T zi), are de-
termined in each frame. We can robustly esti-
mate camera motion parameters(Motion#n) be-
cause camera motion closely approximates planar
motion when the subsequence is short. Note that
each set of camera motion parameters is given in a
different local coordinate system.

At this point, camera pose and 3D position in all
frames of all subsequences have been recovered.
We then apply the multiview stereo technique for
dense 3D point reconstruction to each subsequence.
Note that each N 3D point group is also given in
a different local coordinate system.

Merging the N 3D point groups is achieved by
using the overlapping frames. Each overlapped
frame has two sets of camera motion parameters
derived from different (adjacent) subsequences.
We can reconstruct the 3D points by using the
two sets of camera motion parameters. Finding
the relationship between the two coordinate
systems is achieved by comparing the 3D points
common to the two coordinate systems. We
compute the relationship between all adjacent
subsequences and merge the 3D point groups
using a global coordinate system that can taken

as the local coordinate system of an arbitrarily
selected subsequence.

3 Camera motion parameter estima-
tion by Factorization method based
on planar motion

We assume that the input, a long image sequence,
is captured by a hand-held camera that is moved
at walking speed so as to capture a long target.
Figure2 shows the situation envisaged and shows
the coordinate relationships between the camera
and 3D points. We introduce here a factorization
method based on planar motion projection which
is optimized for near planar motion. We derive a
projection model under the assumption that the
camera has near planar motion. We assume that
the camera motion parameters ψi and ωi contain
only modest amounts of deviation. Using this as-
sumption, we derive the approximated projection
model as follows:[

uij

vij

]
= εij

[
xij

yij

]
−

[
ζi
ηi

]

≈
[

cos(θi) sin(θi) Tui

−sin(θi) cos(θi) Tvi

] ⎡⎣ Xj/Zj

Yj/Zj

1/Zj

⎤⎦
(1)

where, we define εij as follows.

εij = 1 + ωi(
Xj − Txi

Zj
) − ψi(

Yj − Tyi

Zj
) (2)

[
ζi
ηi

]
=

[
cos(θi) sin(θi)

−sin(θi) cos(θi)

] [ −ωi

ψi

]
(3)[

Tui

Tvi

]
= −

[
cos(θi) sin(θi)

− sin(θi) cos(θi)

] [
Txi

Tyi

]
(4)

(uij, vij) is the projection point under planar
motion, and (xij, yij) is the projection point
observed in the image. Considering all
frames(i ∈ {1, 2, · · · , F }) and all N 3D points, (1)
can be represented as follows.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uF1 uF2 · · · uFN

v11 v12 · · · v1N

v21 v22 · · · v2N

...
...

. . .
...

vF1 vF2 · · · vFN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mT
1

mT
2
...

mT
F

nT
1

nT
2
...

nT
F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
S1

S2

...
SN

⎤⎥⎥⎥⎦
T

(5)
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The two vectors,mi = (cos(θi), sin(θi), Tui)
and ni = (− sin(θi), cos(θi), T vi), represent the
planar motion in the i-th frame, and vector
Sj = (Xj/Zj , Yj/Zj, 1/Zj) is the 3D vector that
represents the 3D coordinate value of the i-th
point.

By assuming that the transformed points (uij , vi,j)
are equal to the observed 2D points (xij, yij), both
the planar motion(mi,ni) and the 3D coordinate
value(Sj) can be recovered using the factorization
method based on the matrix decomposition shown
in (5).

The camera motion parameters representing 6 de-
grees of freedom,(ψi, ωi, θi),(Txi, Tyi, T zi), are es-
timated by bundle adjustment[6] using the planar
motion(mi,ni) and the 3D coordinate value(Sj) as
the initial solution.

Figure 2: Relationship between camera viewpoint
and target.

4 Dense 3D points reconstruction by
multiview stereo

The 3D points yielded by the factorization method
are very sparse because only feature points are
reconstructed. However, if we know the camera
motion parameters, the multiview stereo technique
can be used to output a dense set of 3D points. We
apply the multiview stereo technique by regarding
each frame of the image sequence as a multiview
image. We reconstruct the 3D points from each
subsequence.

4.1 Keyframe image

Depth estimation by stereo matching using
adjacent frames is unstable because the baseline
in these frames is insufficient. Therefore, we select
some frames as keyframes from each subsequence
so that the keyframe interval provides a sufficient
baseline to make depth estimation stable.

First, we select multiple base frames and decide the
smallest baseline Lmin for stereo matching by us-
ing camera motion parameters that are estimated
by factorization. We select multiple comparison
frames for each baseframe that satisfy the condi-
tion that the baseline is longer than Lmin.

After keyframe selection, we compute the
projection matrix of each keyframe. The rotation
matrixRi = Rzi · Ryi · Rxi and the translation
matrix Ti= (Txi, Tyi, T zi)T in the ith frame
are obtained from the camera motion parameters
described in Section3. The projection matrix in
the ith frame is computed as follows:

Pi = A · [Ri,Ti] (6)

where A is the camera’s intrinsic parameter ma-
trix.

4.2 Stereo matching

We employ area based matching and depth z is
determined so as to minimize the SAD(Sum of
Absolute Difference). To suppress mismatching in
pattern-free areas, we use linear interpolation to
compute the depth value z in the regions that have
low DCDX = |Ib

i,j − Ib
i+1,j|; Ib

i,j represents the
intensity value of pixel(i, j) in the base frame.

After stereo matching all image pixels in the base
frame, we compute the correspondence between
the pre-rectified stereo pair using the obtained
depth data. 3D points M= [X, Y, Z] are computed
as follows:

M = B†b (7)

B =

⎡⎢⎢⎣
up31 − p11 up32 − p12 up33 − p13

vp31 − p21 vp32 − p22 vp33 − p23

u
′
p′31 − p′11 u′p′32 − p′12 u′p′33 − p′13

v
′
p′31 − p′21 v′p′32 − p′22 v′p′33 − p′23

⎤⎥⎥⎦
b = [p14−up34, p24−vp34, p

′
14−u′p′34, p

′
24−v′p′34]

T

where, (u, v) and (u′, v′) are corresponding pixels
in the base frame and the comparison frame. pij

and p′i,j are the (i, j) component of the projection
matrix of base frame P and the projection matrix
of comparing frame P′, respectively. B† is the
pseudo-inverse matrix of B.

4.3 Fusing multiple depth data

We fuse the depth data computed from the base
frame and multiple comparison frames by using the
multiple baseline characteristic. Stereo matching
using a wide baseline stereo pair is more precise in
terms of depth estimation than using small base
line stereo pair, but correct matching is difficult.
Setting the baseline length involves a tradeoff be-
tween precision and correctness in matching.

We assume that the depth Zb estimated from the
smallest baseline stereo pair from among multiple
comparison frames is not far from the true value.
Moreover, the depth Z estimated from the widest
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baseline stereo pair that satisfies the condition
|Z − Zb| < TH(TH :threshold value) is adopted as
fused depth data. The obtained depth Z offers a
lower possibility of mismatching and yields high
precision because the advantages of small and
wide baselines are combined.

5 Seamless reconstruction by merg-
ing 3D points

The 3D points reconstructed from each
subsequence are represented using different
local coordinate systems. For seamless shape
reconstruction, merging all 3D points into a global
coordinate system is needed. For this, we use
the overlapping frames of adjacent subsequences.
Each overlapping frame has two camera motion
parameters derived from the two subsequences.
We reconstruct the same 3D points using the two
different camera motion parameters and develop
a 3D point correspondence table. The conversion
matrix between the two local coordinates is
computed from this table. After computing the
conversion matrices for all adjacent subsequences,
we arbitrarily select one local coordinate system
as the global coordinate system and seamless
shape reconstruction is achieved by converting all
3D points into this global coordinate system.

5.1 3D point correspondence table

Creation of the correspondence table is described
below. For simplicity, we consider two adjacent
subsequences(subsequence#i, subsequence#i+1).
We apply the multiview stereo technique to
the overlapping frames of subsequence#i and
subsequence#i+1 and reconstruct 3D points from
depth data using projection matrix Pi computed
from subsequence#i and projection matrix Pi+1

computed from subsequence#i+1. All pixels
(u, v) of the base frames have two 3D points, one
is computed using Pi and the other is computed
using Pi+1(Figure3). These two 3D points are
the same point, but represent the use of two
different coordinate systems. Thus, we can obtain
an enormous number of 3D point correspondences
so the estimation of the conversion matrix is
extremely stable.

5.2 Merging 3D points

We find the relationship(scale factors, translation
(Tx, Ty, Tz) and rotation ψ, ω, θ) between
the local coordinates derived from adjacent
subsequences as a conversion matrix using the
3D point correspondence table. To compute the
conversion matrix, we employ the method[7] that

Figure 3: 3D point correspondence.

uses unit quaternion. We take a local coordinate
system derived from the center subsequence in the
time-series as the global coordinate system. To
merge all 3D points into this global coordinate
system, we sequentially convert 3D points between
adjacent subsequences. This results in a seamless
and dense 3D model.

6 Experiments

6.1 Flow of experiments

In this experiment, we use a hand-held digital
camera(DimageZ3) made by KONICA MINOLTA.
This hand-held camera can capture VGA image
sequneces at 30fps. We captured long sequences
while walking along the target. Figure4 shows a
typical sequence. The significant level of scene
flow makes it imposible to track feature points in
all frames. First, we divided each long sequence

Figure 4: Typical long image sequence

into subsequences. The number of frames of
subsequence#n Fn is defined as feature points
detected in center frame in subsequence are not
frameout and can be tracked stably. In these
experiments, we consider walking speed while
capturing is nearly constant, so we set Fn and dn

which is number of overlapping frames are fixed
number.

We detected feature points in the center frame of
each subsequence and tracked these feature points
forward and backward in the time series. Camera
motion parameters were estimated by using the
result of feature points tracking. Multiview stereo
was applied for dence 3D points reconstruction in
each subsequence. Reconstructed 3D points from
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each subsequence were merged into a global coor-
dinate system. Fig5 shows an example of recon-
struction.

Figure 5: Example of integrated 3D points

6.2 Evaluation experiment

To confirm the performance of the proposed
method, we conducted a evaluation experiment.
We evenly spaced 5 room dividers and captured
a long sequence by a hand-held camera while
walking in front of the dividers. Fig6 shows the
experimental setup.

The captured long sequence consisted of 300
frames. We divided this sesquence into 7
subsequences and reconstructed the 3D points by
our proposed method.

Fig7 shows a bird’s eye view of the reconstruction
result. To evaluate the deviation from flatness
of the reconstructed dividers and reconstruction
errors, we computed the standard deviation from
flatness, divider spacing intaevals and relative an-
gle of dividers(relative to divider1).

Table1 shows the results of this evaluation. Our
proposed method yielded very good results, consid-
ering that the caputure distance from each divider
was about 2m ∼ 4m.

With regard to standard deviation, the center di-
viders had worse reconstruction accuracy than di-
vider1 or divider2.

Fig8 shows the relationship between distance
and number of 3D points. Reconstructed center
dividers exhibited a bimodal distribution while the
end dividers exhibited a unimodal distribution.
This difference was due to merging errors, because
the center dividers appeared in many more
subsequences than the endmost dividers.

Note that the standard deviation of divider3, the
worst case, was only 1.79cm, which shows that the
proposed method achieved very stable merging of
3D points.

6.3 Experiment in a real environment

To confirm the proposal’s performance in a real
envionment, we applied it to the long sequence
shown in Fig4.

Figure 6: Experimental setup

Table 1: Evaluation results

SD(cm) Angle(degree) Distance(cm)
divider1 1.11 0.00 0.00
divider2 1.44 2.15 47.32
divider3 1.79 1.44 95.75
divider4 1.45 2.94 147.38
divider5 1.12 5.75 202.47

Figure 7: Reconstructed divider group

This long sequence consisted of 1100 frames. Fig5
shows the reconstruction of the dence 3D points.
For visualization, we colored each 3D points us-
ing the color of correspoinding image pixel. Final
result(Fig9) shows that the proposed method re-
constructed seamless and dence 3D shape in a real
environment.

7 Conclusions and future works

This paper proposed an automatic 3D recon-
struction method that takes as input long image
sequences captured by hand-held cameras. The
method divides each long sequence into short
subsequences and merges the 3D points that are
reconstructed from each subsequence into a global
coordinate system.

Experiments confrimed the good performance of
our method with regard to deviation from flatness,
angle, and interval of reconstructed room dividers.

In future work, we will tackle more precise 3D
reconstruction by re-estimating camera motion in
a global coordinate system and reconstruct 3D
points using all frames of a long image sequence.
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Figure 8: Relationship between number of 3D
points and range
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���� ����� ;�,�������� �	�)����� ���� ����� ����
��� ���� � �		��������<' 5� #	�� �� ��� �����
	
 � ������� ����	�J�� ������ #���� �� �������
#��� ��� ��
� ��� ����� ������ ��� ��� �� 	�����
	� ��� (������� ���
,#�� (��#��� ��� ���� ������
	������ �������' G� ���� ����	�J�� ������ � ���
� �		�������� ��� �������� �	 � ��� � �		��������
�� ��� ����� ����� (�� �� 	���	�	��� ����� �.��
���������� �,������������ �� 	
 ��� �	�����	�����
�	����� �'�' �� �� ��� ������	��� 	
 ��� ����� �����
	� 
 �.�� ��������' %���	��� ����� 
	��	# ���� �����
�� ��� � �������	� �� ���� �	�0������	�� �	 ����
�������� ��#��� �.������ �	���� #��� �	��	� �

�		��������' � ������ � E 8� K:� #��� �	���
;������������ ����� �	���� ������ 	��	 ��� ���,
���� 	
 ���������� ��.���< � E �;�� �� �< & � E
 � 	 	 	 �� � !K � E  � 	 	 	 � � � !K � E ����� 	 	 	 � ���	�
��� ������ � (��#��� ��� �	��� ��� ������(� ���
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��(�� �& ����	 A"	���B 	�����
	���� "	��� �����
����� ������	�������� �����
������ ;���� ��	��,����<

-������ (�����	�� 	
 ������	��� ������� ;���� ������	� ��	�,�	���<
-�����+���	� �	��� 
�	� ������+��� ����,������ ����	��� �������

%�����	���� ��������� ����������� �������	�� (��#��� ������� ;���� ��@����� 	������ 	�
������	��� ���� ��������<�
��@����� A���� �	���B ������

6�	����� �������� ��.�� ����	�� #��� 0���� �����
/������	���
����������� ����	���	�

/����� ��@����� ������ ��������� ����������� ���� 
	��� ������� ���� ����	���	�� ���
�	�,���
	�� ���������� ;�	�,?��(������ ���
����<�
(������� ��� �	 0���� �����,	
,0��� 	
 ���� ��������
��L����	�� ��� �������� �����������
����� ��������� �	�	�� ���������� ;A�������B �@����<�
�������� �������	� ��� �	 ��@����� ���# ������

	(�����(�� �������� 	
 	������ ���
���� , -�����+��
(� ��� �������� ��.�� ������ 	
 ��� ����	�'

�� 	(������ ����� ��� �	����� �������� ���
�����
(�� ����� ������ 	(������ � ������� (�� �	���(��
���)	��� ���
���' �	������	��� �����	 ���	������
������ � ������ �	�����	�� 	��-�� ���
��� ������
, �� �	�� , ���
,	������	�� (�� �	 
	��� ��	�� ���
�,�.��' G� ��� ����	�J�� ������ � �	�� ;�����
�	���< ��� 0�� ����(����� ������&

� � , ������������

� � , (��	������� ����(�� 	��-�� ���
��� �	����

� 2? ;	� 2>< , � �	�	������� ����(�� 	��-��
�	��� 	(������ 	��� (� ��� ��
� ;	� �����< ���,
��� ��� 	������� (� ��� ���� ���
��� 
�	� ���
	���� ������

� G , ������(�� 	������� (� ��� ���
��� 
�	� (	��
�������'

��� ������ � ��� G ��� ���������� �����0�� (� ���
���
��� ������� ��� ���� �	� ������ �.��������� ����
��� ���
��� �	��� ��� �	����� �	���� �� ������& ��
2? 	� 2> 83: , ��� 7��' �' ��� �	 ��� ���,
����� 	
 ��� ����	�J�� ���#�	��� ��� ����(�����
�	���������� ����� 
�	� ����� �	�� ;�� �� �< 	� �
���
��� 	��� ���� ��� ����� ������� �	���� �;� F
 	3� �� �� !<K ;�F !� �� �<K ;�F  	3� �� �F !<�'

2	�� ��������� 1,� ������ #��� �������� ���)	���
���
���� ���� � �	�� L�.�(�� ���#��� ��	�����'
6��������� ������� 	��-�� ���
���� �.��� �� ��� �,
�������	� 
	� ����� ;�� �<,�	��� �� ��� ����	�J��
������ ����	��� ����� ������ 	(������ 	��� � ������
(�� �	���(�� ����	�����	�� ���
��� 
	���� 
�	� ���
����(�� ����� 	
 ��� ��� ���
����' ��� �����������

7����� �& ����� �	�����	�� ;�� �<,��	0�� 	
 ��
	������ ���
��� �� ��� ����	���� ;�� �� �<,�����'

�	���� ���	 ���� ����� ������ ��������� 	� ���,
�	���������� �� ��� ������ ������� 
���� ��������,
��� �	���� ;�<� �	���� ����������� 	��� 
	� ��� ��
�
;�?< 	� ����� ;�>< ������ (�� 	������� 
�	� ���
	���� ������ �� ��	#� �� 7����� 1' G� ��������
��� 	������� �	�������� �	�� �	� �	�� ��� ���
���
����	���������� ��� 	� �	� ������ ������������ 	

��� ������������ �	����'

3.1 Signal model - including noise

?�� � E � � 	 	 	 � � � !� ���	�� � 0���� ���
	
 ���� ������ ;�����������< ��� � E �;�� �< &
� E  � 	 	 	 �� � !K � E  � 	 	 	 � � � !� (� �
0���� ���������� ������� ����	����� �������
������' 7	������� #� ������ ���� ��� ����	�J��
��������#�� 
�	� ��� ����	��� 	
 ��� (������� ,
�
 & � � � , �� ��� ��
������ ;����< ����� ���
�	������ ��� ��
� ��� ����� ������ , �� & � � �
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7����� 1& %.����� 	
 �������� ���)	��� ;�� �<,
��	0��� �� ��� ����	�J�� ;�� �� �<,�����'

��� �� & � � � , ������� 
�	� ���' ?��
� & � � ��� F !� 	 	 	 �  � !� 	 	 	 � � � !� ���	�� �
�	��� �	��	���� 	
 �� ��������� �� � ���� �����'
��� ��
� ;?< ��� ����� ;>< ������ ��� ����
��@����� ���� ;	� �	������< ������� ����� 	@�����
���� ��� �	��� �	����(���	��� ����&

��
�
�F �

� � �
�
E ���
;�� �< F �� F ��;�� �<

��
�
�� �

� � �
�
E ���
;�� �< F �� F ��;�� �<

;!<
"	�� ���� �� �� �	���(�� �	 ������ ���� ��� ��,
��	�J�� ����� ��� ��� ���� �	������ ��� 	@���
���������� �� 	�� 	
 ��� ������� ���� ��� ��
� 	���
��� ��� �� E !� �� E  � �������� ��� ���(�� 	

��)����(�� ����������' ��� �������� �	��� �	���
��� �#	 �	��	�����&

!' � ������� 6������� 	� �	�� ������� ������,
��� �	��� #��� +��	 ���� ���;�� �<� E  	���
�	�����	����� ����� �� ��� ������� ���

�' 	������� ���
	���� ������(���� 	��� ��� �����
	
 ��������(�� ����������� �� �� �����'

6��������� (	�� ��� ������(���	�� ��	��� ����	.�,
���� ���� ��������� ������(���	�� 	
 ��� ���������
������� ��� ���������� 	��� ��� ������ 8I: ;��
����	� 9'�'!<'

��� (���� ���� ���������� ��� �	��� ;%-' !< �� ����
������ ��@������� ���� ��	#�� ���	�� ��� ������� (��
������ ���������� ����� �� ��� ������� ����� �
 �����
��	(�� �	������� �� ��� 	@���� �� �������	�� ���
�.������� #������ ����� #��� (� 	������� #��� �����
��@������� ��� ��(������ �������' ����� ������
������ ��@�������� Æ��;�� �� �<� ���� ���	�� ������,
����� �� �������� ��	��� ������ �	 �	� #	��'

����� ���� ���� 	�
�� ������ �������� �� 	���������
������� ����� �� 
���������� ���� � �������� ���� ������
���������� ������� ������ ��� ������ �� ���� �� � ���������
����	���� � �
� � ��� ������ �� �

������� ���� �������
����	����� � ������ ����	���� �� �� 	�
� ��� �
	��������� ������� �����

4 Concurrent Stereo Matching

4.1 Step 1 - Estimating the noise

G������� #� ��	��� (� �(�� �	 ��������� �	�� �����
	
 ��� �	��� 
�	� ������ ����(����	�� ����� ���
�������� ������������� (�� , �� #��� ��� (����,
���� ������ �	��	��� ���� 
	� ��������� �����	
���	����� ���
	������8!!: , ���� �� 	
��� �	� 
����,
(�� ��� �� �� ��������� �	 ��������� �	��� 
�	� ���
������ ��	��'

=��� #� ������� ������� ������� 	
 A�	���B �.����,
���� ������ ���� ��� �	 (����� ��� �	����� ���	 ��
����	.����� �	���' 7������� #� ���	# 
	� ���������
������� �	��� ��� �	 �	� 0� � ��	(�� �	��� , ��,
������ �� �	������	��� �	�������	� ���	�������'

G��������� ��� ����� �� ��������� 	��� ���� ���� ���	
����	�� #���� ��	# �	# �������� �� ������ ���������'
>���	�� 	
 ������� ���	� ;����� ��� = �	��	����
�� �� =G �	�	�� �����< �� ��� 	���� ����� ��� ����
�	���� ��� ��� ������ �	������ ��� 	@��� �������	��
�� #��� �� ��� ����	� ������ �	��� ��� �	���� (�
�	����� %-' ;!< 	��� ��� ����	�'

4.1.1 Pixelization errors

/()��� (	�������� ��� ������������� (� �����0����
������� �� 	������ ������' ���� ��	����� �� A��,
������(��B ��.�� �
 ��� ��������� �� �	� ��	�� �	 ��
�������� ����� , ��� (	������ �� 	�� ����� #��� 
���
�� ��� ������ 	
 	�� ��.��� #���� ��-����� �� �����,
���� (��#��� ��� ������ ����������� 	
 (	�� 	()����'

4.2 Matching with outliers

�� ���� ��������� ������ �� ��� � �	
� ��(�� 	� #������
�
�� � 8 � !:� �������� ��� ��	(�(����� ���� � ��.��
�� � ��������� ����� ��� �	� �� 	������' ����
��	(�(����� �� ��������� �	�	�	�� #��� ������� �	
��� �(�	���� �������	� �� 	���� �	 ���	# ��� �	���
�	 ���� ��� ���� �������� �������	�� �� �� ����
�����' ���� ��� ��������� ����� �-����� �����,
��� ��	�� M������� �� 	(������ (� ��� ��.����
�������		� ��������	� 	
 ��� �	��� ���������� � E
���� ��� ��� ��� �
� N 	������ �	��� 	
 %-' ;!<&

M������� E ���


M�������;�< ;�<

#����

M�������;�< E
�

�
�����

�
��
�
���;�� �< F ���;�� �<

�
�

��
������ ��
�� ��������	� 	�� ����	 �� ����
�
��������� ������ ���� �������� ��� ��� �������� �� ��	�������
� �� ��	��� ������ ���  ������� ����������! ����� ���� �����
�"������ �������� ��#�� ������

���� ������������ ���� �� ��� ���������� �����������
��$���� �� ��	���� ������ 
������ �� 	������ ������� �

�� �� ����
���
 ��������
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�� E
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��� ����
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 ��� �	��� ������ 
	� ��� ��.��
���� �	�������� �� ��� ��������� ����� ��� ���
	�������� ���� ��� )	��� 6������� ������� #����
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��� #������ �
�� ��� ��,��������� �� ����� �����,
��	�' ��� �������	�� ��������� #��� M������� (�,
�	��� ���	�� �	������' ��� #������ �������� ���
��������� ������� ���� ���� �
�� � �� #���� ��
�� � ������	�� �� ��� ����� 8 	3� !:' ����� �������
�� ��@����� ��������� ������ 
	� ��� ������ �� 7��' !
��� ��	#� �� 7��' 9'

4.2.1 Empirical noise distributions

����� ���������� 
	� �	���� #���� ��� �.������ �	
������ (���� 	� ��� ��	��� ������ ��� ��	#� �� ��,
(�� !' %�������� ������(���	�� 	
 ��� �(�	���� �����,
��� )	��� �	��� ��������� Æ E

�
���;�� �< F ���;�� �<�

��� ��	#� �� ��(�� 1& �� �� ��� ���������� 	
 �	����
#��� �	��� �� ��� ��������� ����� 
	� ��� ���������
������� #������ �� �� ��� ���������� 	
 �	���� #���
������� �	���'

��(�� 1& ������(���	� 	
 �������� �	��� ;�� � 
�����
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����� ��� �� �� ���� ����� Æ �� ��� �����	��� 	��� ��

	�� ���
	��� ������� �� � 
����� �� 
���� ���� �������

����� �� ��� �����	��� 	���<'
Æ  , !, �, C, !!, �!, C!,
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4.3 Step 3 - Surface fitting
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Abstract 

An image intensifier forms an integral part of a full-field image range finder under development at the University 

of Waikato.  Operating as a high speed shutter with repetition rates up to 100 MHz, a method is described to 

characterise the response, both temporally and spatially, of the intensifier in order to correct for variations in the 

field of view and to optimise the operating conditions.  A short pulse of visible light is emitted by a laser diode, 

uniformly illuminating the image intensifier, while a CCD camera captures the output from the intensifier.  The 

phase of the laser pulse is continuously varied using a heterodyne configuration, automatically producing a set of 

samples covering the modulation cycle.  The results show some anomalies in the response of our system and 

some simple solutions are proposed to correct for these. 

Keywords: Image intensifier, irising, optical gating, range imaging, imaging lidar 

1 Introduction 

A full field image ranging system is being developed 

by the authors [1, 2] capable of quickly producing 

high resolution images by simultaneously measuring 

the distance to each pixel in the field of view.  The 

system utilises an active light source, typically a 

number of laser diodes, modulated at frequencies up 

to 100 MHz.  Rather than using a collimated beam 

and mechanically scanning the field of view, which 

can take considerable time, this system produces a 

beam with a much wider angle to flood illuminate the 

entire field of view.  The light impinges on objects in 

the field of view and is reflected back towards a 

receiver, consisting of a CCD with a high speed 

shutter.  The shutter is modulated at a slightly 

different frequency to that of the light source, the 

difference typically a few hertz or less, and the mixing 

effect produces a low frequency output, refer Figure 

1. 

    

Figure 1: Heterodyning range imager. 

 

The phase of the modulation envelope of the received 

light is dependent on the distance to the object, and 

this phase is preserved during the mixing process.  A 

CCD is capable of capturing the low frequency signal 

(which is below its Nyquist rate) and digitising it.  

From a minimum of three frames the phase, and 

therefore range, of each pixel can be calculated.  

Further detail of the system and some results can be 

found in a companion paper [1]. 

The performance of the system is highly dependent on 

the “high speed shutter” component as the range 

precision is proportional to the modulation frequency.  

To achieve frequencies up to 100 MHz an image 

intensifier is used, with a modulating voltage applied 

to the photocathode.    

1.1 Background 

The image intensifier operates by focusing an image 

on to an input window coated with a suitable 

photocathode material, in our case S20.  When struck 

by a photon, due to the material’s low work function, 

an electron is released which is accelerated by an 

applied electric field.  The electron enters a micro 

channel plate (MCP) where collisions with the MCP 

walls release secondary electrons, producing a 

multiplication effect of many orders of magnitude as 

shown in Figure 2.  Upon exiting the MCP, the 

electrons are again accelerated by an electric field, 

this time colliding with a phosphor screen.  The 

phosphor emits light, creating an output image which 

can be viewed by the CCD. 

To produce the ‘shutter’ function, the voltage applied 

to the input photocathode is varied – a negative 

voltage accelerates electrons into the MCP and hence 
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produces an output, whereas a positive voltage 

deflects the electrons away from the MCP and turns 

the intensifier off.  Further detail of the intensifier 

drive electronics can be found in [3]. 

 

Figure 2: Image intensifier 

The modulated voltage is applied to a metal ring 

around the outer edge of the photocathode and the 

voltage is conducted through the photocathode 

material – however the material does have a small 

resistance.  At high modulation frequencies an 

‘irising’ effect can occur where the centre of the 

image intensifier gating is delayed relative to the 

outer edge [4] due to the resistance of the 

photocathode and the capacitance between the 

photocathode and the MCP, forming a low pass filter.  

In the range imager case this causes a flat object to 

appear curved, with the centre of the image appearing 

further away [5]. 

Electrically measuring the (varying) photocathode 

voltage is not sufficient to produce information about 

the image intensifier response as it cannot easily 

account for this spatial variation.  The electrical input 

to optical output response of the image intensifier is 

very non-linear, and therefore requires knowledge of 

this function if a measurement of the electrical signal 

is to be attempted.  It is also worth noting that the 

capacitive loading by a typical high impedance 

oscilloscope probe (10-15 pF) would alter the 

waveform significantly (the photocathode capacitance 

is approximately 60 pF) and low impedance probes 

are not suitable for use with the high voltages (50 V 

peak to peak at frequencies up to 100 MHz). 

1.2 Configuration 

A simple method of optically measuring the response 

of the image intensifier has been developed which 

only requires minimal modification to the original 

ranging system described above.  Instead of operating 

the laser source with sinusoidal (or 50% duty cycle 

square) modulation, it is replaced with a pico-second 

pulsed laser.  This pulsed source only illuminates the 

image intensifier for a very small percentage of each 

cycle as shown in Figure 3.  The output of the image 

intensifier is integrated over a number of pulses by the 

CCD to improve the signal to noise ratio.  The 

produced image is effectively a sample of the image 

intensifier “shutter” action for that particular point of 

the cycle.  

 

Figure 3: Picosecond illumination of image intensifier  

The heterodyne configuration produces a 

continuously varying phase between the laser pulse 

and the image intensifier electrical signals, which as 

indicated by the dash arrow in Figure 3 causes the 

laser pulse to constantly move through the intensifier 

shutter waveform taking samples over the entire 

period.  The signal generator also provides a 

synchronised frame trigger signal to the CCD so that 

each captured frame occurs at a known phase offset, 

and a predetermined number of samples can taken 

over the waveform period.  A similar configuration 

can be found in [4, 6], although discrete phase steps 

are manually set between each CCD capture making 

the process more cumbersome. 

2 Laser pulser 

Laser pulser systems are readily available from a 

number of manufacturers, such as the PDL 800-B 

manufactured by PicoQuant GmbH (Berlin 

Germany), however the requirements of this 

configuration make it relatively simple to construct a 

basic pulser circuit capable of low frequency (less 

than 100 MHz) repetition rates.  Only the pulse width 

is significant for this experiment as the MCP provides 

a large gain and therefore high laser peak power is not 

necessary.   

Gain switching a laser diode produces a short optical 

pulse, down to tens of picoseconds, from a longer 

electrical pulse [7].  Carriers (electrons) are injected 

into the active region of the laser, bringing the 

number of carriers above the lasing threshold.  Once 

above the threshold a large number of photons are 

produced by stimulated emission within the laser, 

which in turn reduces the number of available carriers 

back below the lasing threshold.  If the current 

injected into the laser is turned off at this point, a 

short optical pulse is generated.  

The circuit shown in Figure 4 converts the sine wave 

input into a short optical pulse.  A comparator  
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Figure 4: Laser pulser circuit 

generates a CMOS level square wave which passes to 

two inputs of an AND gate, although one input is 

inverted.  Every time the input comparator toggles 

from low to high, the propagation delay of the 

inverter ensures both inputs to the AND gate are high 

for approximately 3 ns, and hence a pulse is produced 

at the output of the AND gate.  An iC-HK laser 

switch (iC-Haus, Bodenheim, Germany) is used to 

provide the output drive to the laser diode, and allows 

the peak current level to be adjusted to optimise the 

generated output pulse.   

 

Figure 5: Generated laser pulse, FWHM 266 ps 

A recorded pulse is shown in Figure 5 using a Hitachi 

HL6501MG laser diode.  The FWHM pulse width of 

266 ps shown is limited by the ~2 GHz bandwidth of 

the photodiode used (Thorlabs SV2-FC), and 

therefore the laser pulse may be shorter than that 

shown.  For the purpose of this experiment the pulse 

width here is considered satisfactory as it is 

significantly shorter than the period of the image 

intensifier gating.   

3 Experimental Configuration and 
Results 

The pulsed laser beam is expanded, and to minimise 

geometric variation, the image intensifier is placed 

approximately 1.5 m from the light source so that the 

light pulse simultaneously illuminates the entire face 

of the image intensifier.  Ground glass is placed in 

front of the intensifier to remove interference patterns 

generated by the laser and to ensure the illumination 

intensity is uniform.  Under normal range finder 

operation a focusing lens is used in front of the image 

intensifier, but this is removed for this experiment.   

A direct digital synthesiser [8] provides the 

modulation signal to the image intensifier driver and 

the laser pulser at a selected frequency with a 0.1 Hz 

difference, hence it takes 10 seconds for the phase 

between the laser pulse and the image intensifier 

gating to cycle through 360°.  The output of the 

intensifier is imaged onto a CCD digital video camera 

(Dalsa 1M60), which is configured to operate at 100 

fps.  Therefore 1000 points are captured over the 

image intensifier period. 

3.1 Temporal Response 

To measure the ‘shutter’ action of the image 

intensifier, a small number of pixels in the centre of 

the recorded image are averaged (to increase the 

SNR) and are plotted against the frame number as 

shown in Figures 6 and 7. 

 

Figure 6: Image intensifier response at 10 MHz 

 

Figure 7: Image intensifier response at 65 MHz 

Figure 6 shows that the response is far removed from 

the desired square wave modulation.  Significant 

ringing occurs due to the capacitance of the 

photocathode combined with inductance from the 

interconnecting wires from the electronic driver.  

During the ‘on’ state the intensity varies up to 60%.  

During the ‘off’ state the electrical ringing peak is 

larger than the MCP input voltage, causing the 
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photocathode to turn on for short pulses.  The non-

zero output when the intensifier should be in the off 

state is due to CCD dark current.  The resonant 

frequency is seen to be approximately 50 MHz.  The 

response in Figure 7 approaches the ideal waveform; 

however the rise and fall times are significantly 

different.  The 10% to 90% rise time is measured to 

be 2 ns, while the fall time is 3.6 ns. 

3.2 DC Response 

To understand the optical gain occurring within the 

image intensifier as a function of the photocathode 

voltage, a separate experiment was performed.  A 

uniform DC light source is placed in front of the 

image intensifier, and a DC voltage applied to the 

photocathode is varied while capturing the image with 

the CCD.  The intensity recorded is graphed in Figure 

8.  

 

Figure 8: Image intensifier DC response 

For a positive photocathode voltage the output drops 

to zero (slightly above zero in the graph due to CCD 

dark current).  When the voltage becomes slightly 

negative, a large increase in gain occurs as the 

electrons emitted from the photocathode are 

accelerated towards the MCP.  From about -2 V 

onwards the number of electrons reaching the MCP 

does not significantly change, but each electron 

receives more kinetic energy from the applied electric 

field between the photocathode and the MCP, which 

produces higher gain due to more secondary electrons 

being produced within the MCP. 

The modulation voltage used to drive the image 

intensifier in section 3.1 was −40 V to +10 V.  By 

looking at the amplitude of the unwanted short pulses 

in Figure 6, it can be seen from the response in Figure 

8 that the ringing after the falling edge is likely to 

only be slightly negative at its peak, and therefore by 

altering the bias voltage by a few volts, for example 

modulating the photocathode voltage from −38 V to 

+12 V, these extra pulses will be removed. 

3.3 Spatial Response 

As mentioned in section 1.1, it is possible that the 

modulation voltage is delayed in the centre of the 

photocathode compared to the outer edge due to the 

resistance of the material forming a low pass filter 

with the capacitance to the MCP.  Figure 9 shows this 

effect, where the intensity of a single captured frame 

from the rising edge of the waveform is plotted.  

Instead of a flat surface, a bowl shape can be seen, 

with the intensity of the centre pixels being less than 

those at the outer edges. 

 

Figure 9: Irising during rising edge at 10 MHz 

The irising effect is dependent on the speed of the 

rising edge transition, and this can be affected by the 

modulation frequency, therefore the experiment was 

performed over a range of different frequencies.  

Figure 10 shows that the irising is much more 

pronounced at 100 MHz than at 10 MHz as was 

shown in Figure 9. 

 

Figure 10: Irising during rising edge at 100 MHz 

Figures 9 and 10 show the irising at the most severe 

point of the waveform (at the sharp rising edge), but it 

is useful to understand its effect over the entire pulse.  

Using the assumption that waveform is symmetrical 

over the round image intensifier, the intensity of a 

row of pixels through the centre of the image is 

recorded for each captured frame to represent the 

entire surface.  By plotting this intensity data for 

various captured frames the irising effect can be seen 
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as the waveform changes, as shown in Figures 11 and 

12.  It is worth noting that these graphs are generated 

by the same data capture as was used to generate 

Figure 7, however now the plot shows both temporal 

and spatial information. 

 

Figure 11: Irising during rising edge at 65 MHz 

 

Figure 12: Irising during falling edge at 65 MHz 

Figure 11 shows significant irising occurring during a 

600 ps interval where a large change in intensity 

occurs (the lines are separated by large spacing 

showing a rapid change).  The following 2.6 ns 

illustrate a much slower change in intensity, and as 

such the level of irising is significantly reduced 

(although still present).  From this figure, the 

electrical time delay from the edge to the centre of the 

image is estimated to be 150 ps.  The falling edge 

waveform at the same 65 MHz frequency, refer 

Figure 12, exhibits different levels of irising to that of 

the rising edge.  The waveform is not symmetrical as 

can clearly be seen in Figure 7, which leads to this 

variance due to the different rates of change.   

4 Evaluation 

By recording the response of the image intensifier and 

electrical driver, the results indicate that a number of 

enhancements could be made.  The first improvement 

is to simply adjust the bias voltages so that the 

electrical ringing after the falling edge cannot turn the 

image intensifier on as it did in Figure 6.  Despite 

appearing obvious in that figure, it should be noted 

that these short pulses are not visible in the captured 

data when the range imager is running under normal 

conditions. 

The pulse width of the image intensifier optical gating 

may not necessarily match the duty cycle of the 

electrical input.  Making the negative voltage as large 

as possible is advantageous as it increases the 

intensifier gain, refer Figure 8; while a large positive 

voltage is undesirable as it only increases power 

dissipation within the system.  A sinusoidal input to 

the photocathode with peaks at +10 V and −40 V is 

then expected to produce an asymmetrical output 

which is on 63% of the time (when the photocathode 

voltage is negative).  From the graphs in Figures 6 

and 7 a measurement of the duty cycle can be made 

without knowing the exact characteristics of the 

electronic pulse (which can often be difficult to 

measure due to the high voltages and frequencies 

involved).     

Electrical resonance produces significant ringing 

when frequencies below 50 MHz are used in our 

system, which distorts the waveform and will 

therefore introduce an error into the range 

measurements.  In the current configuration, the 

electrical amplifier output is connected to a second 

PCB which provides the bias voltages to correctly 

operate the image intensifier.  Redesigning a single 

PCB to include both the amplifier and bias 

electronics, as well as reducing the length of the wires 

to the photocathode, will lower the stray inductance 

and improve the overall response. 

As the magnitude of the irising is dependent on the 

rate of change of the electrical drive signal, the shape 

of the waveform becomes important.  In a system 

where the rising and falling edges are not symmetrical 

the exposure time near the centre of the image may be 

slightly longer (or shorter) than that near the edge.  

One possible method to achieve equal rise and fall 

times is to operate the image intensifier near its 

resonant frequency, which can be found by observing 

the oscillation on the rising transition such as that 

shown in Figure 6.  The most significant contribution 

to the irising occurs when the voltage is very close to 

zero and the output magnitude is less than 60%.  As 

the output image resolution is also dependent on the 

photocathode voltage [9], it is desirable to quickly 

transition through the range near zero volts to produce 

a higher quality image at the expense of increasing the 

irising. 

In the ranger imager application, the resultant range 

errors due to irising are independent of the distances 

measured in the scene.  They are dependent on the 

modulation frequency (as the electrical waveform 

may not be identical at all frequencies), but are 

constant for a given frequency and therefore can be 

calibrated for.  The 150 ps delay between the centre 

and edges of the image (estimated in Section 3.3) 
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corresponds to a range error of 22 mm, and is 

consistent with measured errors [5]. 

5 Conclusion 

An image intensifier is used as a high speed optical 

shutter as part of an image ranging system.  An irising 

effect, where the modulation at the centre of the 

image is delayed relative to the outer edge, causes the 

ranger to produce a reconstruction which is curved, 

with objects at the centre of the image appearing to be 

at a greater distance than those at the outer edges.  

Despite the temptation to simply numerically 

compensate for this effect, it was investigated in 

depth. 

A gain switched laser diode was used to produce pico-

second pulses that were temporally scanned across 

one cycle of the intensifier drive signal.  This 

effectively sampled the image intensifier gating 

waveform, allowing its optical response to be mapped 

both spatially and temporally.  This temporal 

scanning was achieved using a heterodyne 

configuration to continuously alter the phase between 

the laser pulser and the image intensifier driver.  A 

CCD camera, with a frame trigger synchronised to the 

other drive signals, was used captured the image 

intensifier output. 

The experiments revealed that the image intensifier 

response deviated from the ideal response, most 

notably with electrical ringing causing a number of 

problems for low frequency (<50 MHz) operation.  

This emphasised the fact that the response is 

dependent on both the image intensifier and the 

electronic driver as a complete system.  Simple 

variations to the image ranger configuration are 

proposed to improve its performance, including 

modifying the driver PCB, adjusting the bias voltages, 

and selecting the operating frequency at resonance.  It 

is noted that the irising effect cannot be eliminated 

from the imaging process as it will compromise the 

image quality, therefore we suggest compensation be 

added to the image ranger processing software.   
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Abstract

Symmetric dynamic programming stereo (SDPS) is less
accurate on the popular Middlebury stereo data base
than the today’s best performing stereo matching algo-
rithms. But comparing to them, SPDS is considerably
faster and more robust to contrast / offset signal devia-
tions. This paper evaluates to what extent more accu-
rate image noise models and bidirectional processing
of a stereo pair can improve the accuracy of the SDPS.

1 Introduction

Dynamic programming stereo (DPS) algorithms

have lower accuracy than today’s best performing

stereo matching techniques such as graph-cut [1] and

belief propagation [2] based ones. Nonetheless the

DPS is still of sound practical interest due to fast

reconstruction of an observed 3D scene and inherent

capability to real time processing of still stereopairs

and video sequences.

Computational stereo is an ill-posed inverse optical

problem with multiple solutions producing just the

same stereo pair of images. Human binocular vision

relies on visual similarity between images of the same

optical surface, and the goal of computational stereo

is to select a solution close to human reconstruction,

i.e. to approach the visually perceived ground truth.

Image similarity depends on an adequate mathematical

model of image noise where, in line with [6], the noise

is considered as an “umbrella term” embracing basic

differences between corresponding signals for every 3-

D point in both images of a stereo pair., e.g. pixel-wise

random deviations with known or estimated probability

distributions due to sensors, spatially constant or

variant area-wise contrast / offset deviations, and

partial occlusions resulting in image areas with no

stereo correspondence. Typically, stereo matching

algorithms are derived under quite simple noise models

that explicitly account only for pixel-wise random

zero-centred deviations and use heuristic thresholds to

discriminate between occlusions and large deviations.

Only correlation-based matching [5] having been

used for many years in digital photogrammetry, the

symmetric DPS (SDPS) [3], and recent concurrent

stereo matching [6] take explicit account of contrast /

offset deviations typical for real-world stereo images.

Experiments show that the SDPS is more robust to

such deviations than the best-performing graph-cut

and belief-propagation algorithms [4].

One may expect that refinement of noise models on

the basis of empirical noise estimates and explicit

account for multiple solutions equivalent with respect

to stereo matching would reduce the reconstruction

errors. One of main sources of errors in the SDPS (as

well as in all DP algorithms for stereo matching) is

independent reconstruction of each x-oriented epipolar

profile from the conjugate scan-lines in the images.

Because y-relationships of the signals are not involved,

the reconstructed 3D surfaces have typically large

“jumps” in y-direction on uniform or repetitive regions

where the surface is visually expected to be smooth.

The SDPS minimises the total squared distance

between the corresponding signals along the scan-lines

under the central-symmetric pixel-wise noise, slowly

varying limited contrast / offset signal deviations, and

explicit partial occlusions of a single opaque surface.

Because of many equivalent solutions giving just the

same minimum dissimilarity, the independent choice

obviously leads to large errors across the scan-lines.

This paper presents initial results of our study of to

what extent more accurate noise models and combined

bi-directional 3-D reconstruction along and across

scan-lines can improve the accuracy of the SDPS.

Comparative experiments are conducted with the

Middlebury stereo data base [7, 8] providing the

ground truth (x-disparity maps and occlusion maps)

for its stereo pairs.

2 Probability models of signals

SDPS exploits the canonical cyclopean geometry of a

stereo pair with image scan-lines parallel to the x-axis.

An epipolar profile of an observed 3-D scene is recon-

structed from signals of a conjugate pair of the scan-

lines by minimising an additive stereo matching score

derived from a probability model of these signals [3].

Let gL = (gL(xL,y) : xL ∈ RL) and gR = (gL(xR,y) :

xR ∈ RR) denote 2-D arrays of signals (grey values)

for the left and right images of a stereo pair. The

images are supported by the finite arithmetic lattices
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RL and RR with integer (x,y)-coordinates, the

conjugate scan-lines having the same y-coordinate.

3-D points depicted in the images are represented

by their (x,y)-coordinates and x-disparities d in the

cyclopean (x,y,d)-lattice such that x = (xL + xR)/2

and d = xL − xR, i.e. xL = x + d/2 and xL = x− d/2.

For brevity, the y-coordinate is omitted below.

2.1 Conventional noise model

Probability model of the corresponding signals in the

SDPS [3] combines independent random signal devia-

tions and interdependent contrast / offset changes along

the scan-lines:

gL(x+d/2) = aL(x)g(x)+bL(x)+nL(x)
gR(x−d/2) = aR(x)g(x)+bR(x)+nR(x) (1)

Here, g(x) is a noiseless cyclopean signal for the point

(x,d), aL(x), aR(x) and bL(x), bR(x) denote transfer

factors and background signals, respectively, describ-

ing slow and thus interdependent contrast / offset vari-

ations over the images, and nL and nR are the indepen-

dent residual normal random deviations of the signals.

Under natural constraints on the local contrast and off-

set changes, the model of Eq. (1) results in the sum of

squared residual differences between the mutually ad-

justed corresponding signals as the dissimilarity score

for stereo matching [3]. The residual signal difference

δ for a binocularly visible point (BVP) in an observed

3-D surface is evaluated after estimating the cyclopean

signals g and most likely parameters a, b under con-

straints preserving, to within a given range, the cyclo-

pean image after its projection onto the stereo pair of

images. The constraints apply to relative changes of

corresponding signal increments in the left and right

projections: if Δg is an increment of the cyclopean

signals between the adjacent BVPs along an epipolar

profile, then the corresponding increments in the left

and right images are ΔgL = εΔg and ΔgR = (2− ε)Δg
where ε ∈ [εmin,εmax]. The constraints εmin and εmax;

0 < εmin ≤ 1 ≤ εmax = 2− εmin < 2, govern local con-

trast / offset deviations of one image with respect to

the other image as regarding the BVPs. For every par-

tially occluded and thus only monocularly visible point

(MVP) in the surface, the matching score includes a

positive heuristic weight WM making the MVPs com-

parable to the BVPs in the total matching score.

The matching score for the SDPS follows from a

Markov chain model of the stereo signals along the

conjugate scan-lines representing each cyclopean

epipolar profile. Let d = ((xi,di,si) : i = 1, . . . ,N)
denote such a profile in the symmetric cyclopean

coordinates where si ∈ {B,ML,MR} indicates

visibility of the point (xi,di) in the profile (i.e. the BVP

or the MVP depicted on the left or right stereo image,

respectively). A Markov chain model of the signals is

specified by transition probabilities pi(si|si−1) for the

successive points along the profile. For a current BVP

(xi,di,si = B), the probability depends on a residual

signal difference δi:B|si−1
between the corresponding

signals for the BVP (xi,di,B) after their mutual

adaptation to account for contrast / offset deviations:

pi(si = B|si−1) = pB(δi:B|si−1
)

The residual difference δi:B|si−1
depends on the preced-

ing visibility state [3], namely, on the adjacent preced-

ing BVP along this particular profile.

2.2 Empirical noise model

Table 1 and Figs. 1 and 2 present empirical marginal

probability distributions of signal differences between

the corresponding signals for the ground truth

correspondence and of signal differences between

all possible pixel pairs in the Middlebury stereo

pairs ”Tsukuba”, ”Venus”, ”Cones”, and ”Teddy”.

According to these empirical distributions, true stereo

correspondences do not necessarily coincide with

the closest signal matches. The pairs “Teddy” and

“Cones” demonstrate also some offset between the

corresponding signals.

Table 1: Empirical distributions (in %) of signal
deviations δ ffor the ground truth correspondences
in the “Tsukuba” (Ts), “Venus” (V), “Teddy” (Te),
and “Cones” (C) stereo pairs [7, 8] (intervals of δ
– a: [−255,−101]; b: [−100,−51]; c: [−50,−21]; d:

[−20,−11]; e: [−10,−5]; f: [−4,−2]; g: δ = 1; h: δ = 0;

i: δ = 1; j: [2,4]; k: [5,10]; l: [11,20]; m: [21,50]; n:

[51,100]; o: [101,255]).

“Tsukuba”

δ a b c d e f g h

Ts 0.5 0.5 1.2 1.7 4.0 17 15 18

V 0.3 1.0 1.6 3.1 6.0 16 16 19

Te 0.3 1.1 2.2 3.6 11 28 13 12

C 0.3 2.4 3.7 6.0 29 30 7.3 5.0

δ i j k l m n o

Ts 16 18 4.9 2.0 1.1 0.2 0.0

V 14 13 5.3 2.6 1.4 0.3 0.0

Te 9.1 11 4.1 1.9 1.3 0.9 1.1

C 3.2 4.8 3.6 2.1 1.9 1.2 0.2

Due to low contrast and offset deviations in the

Middlebury stereo images, the adaptation to the

transfer factors in the SDPS does not notably change

the distribution of the residual signal differences

for the BVPs. Figures 1 and 2 show narrow

intervals, e.g. δ ∈ [−9,12] for the “Tsukuba”

pair, where the empirical probabilities of the true

signal differences exceed those for the purely random

pairwise differences. The weight WM = 50..200, i.e.

|δ | = 7..14, empirically chosen for the SDPS in most
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Figure 1: Empirical distributions of differences be-
tween the corresponding signals and of all pair-
wise signal differences for the “Tsukuba” (top) and
“Venus” (bottom) stereo pairs (the former empirical

probabilities exceed the latter ones in the intervals [−9,12]

and [−12,15], respectively).

of experiments roughly separates the true squared

signal differences from the random ones on these four

stereo pairs. All the four distributions of the true signal

differences are similar but obviously differ from the

conventionally assumed normal distribution in Eq. (1).

Nonetheless, the normal approximation (i.e. the

approximation with a quadratic function −α(δ − δ0)
2

for the logarithmic vertical scale in Figs. 1 and 2)

may be close to the actual distribution curve at least

in the above narrow intervals of the larger empirical

probabilities of true signal differences.

The empirical distributions suggest a more natural

probability model of stereo images that combines an

approximate distribution of residual signal differences

δ for the BVPs with a distribution of purely random

pairwise differences δ characterising the MVPs.

Let pB = (pB(δ ) : δ ∈ [−Q, . . . ,0,1, . . . ,Q]) and

pM = (pM(δ ) : q ∈ [−Q, . . . ,0,1, . . . ,Q]) where B and

M indicate a BVP and MVP, respectively, and the

signals have Q + 1 values denote the former and the

latter distribution: ∑Q
δ=−Q pB(δ ) = ∑Q

q=−Q pM(δ ) = 1.

The empirical distributions of random signal

differences in Figs. 1 and 2 are almost flat for

most of the differences. Hence, the probability of a

current MVP (xi,di,ML) or (xi,di,MR) can relate to

the most frequent difference:

Figure 2: Empirical distributions of differences be-
tween the corresponding signals and of all pairwise
signal differences for the “Teddy” (top) and “Cones”
(bottom) stereo pairs (the former empirical probabilities

exceed the latter ones in the intervals [−13,14] and

[−16,12], respectively).

pi(si = ML|si−1) = pi(si = MR|si−1) = p◦M

where p◦M = max
δ∈[−Q,Q]

pM(δ ).

The overall probability P(d) = pB(δ1)∏n
i=2 pi(si|si−1)

of signals along a profile d results in the maximum

likelihood stereo matching with the similarity score

S(d|gL,gR) = log pB(δ1)+
N

∑
i=2

log pi(si|si−1) (2)

to be maximised, or what is the same, the dissimilarity

score D(d|gL,gR) = −S(d|gL,gR) to be minimised for

selecting the most likely profile. The DP based optimi-

sation can easily incorporate any empirical probability

distributions pB and pM.

Below we experimentally compare a conventional

SDPS with the one where the distributions pB and

pM are estimated for each stereo pair from the known

ground truth. The goal is to determine whether a

more accurate probability model of the corresponding

signals can improve the accuracy of the SDPS

comparing to the conventional one with the normal

signal noise.
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3 Experimental results

Tables 2–4 present the reconstruction results for 3-D

scenes in the Middlebury stereo images “Tsukuba”,

“Venus”, “Cones”, and “Teddy”. Table 2 compares

the SDPS reconstruction with the conventional and

empirically estimated noise models. The range for

adapting the relative transfer factors is [0.8,1.2], and

the fixed weight for the MVP is WM = 50. Accuracy

of the reconstruction along the conjugate scan-lines

that accounts for the visibility conditions is practically

the same in both cases with a bit better behaviour of

the conventional noise model. Seemingly, the only

benefit of the use of the empirical signal distribution

is in more adequate selection of the weight WM on the

basis of the empirical value of p◦M.

Table 2: Reconstruction accuracy of the SDPS for the
conventional (”c”) and estimated (”e”) noise models
(the mean, ma, and maximum, em, absolute error and

the standard deviation, σa, of the absolute error; x –

reconstruction along the conjugate scan-lines; y – recon-

struction across the conjugate scan-lines in the candidate

3-D volumes estimated by the x-reconstruction).

ma σa em Errors ≤ θ ; % of points

θ :0 1 2 5

“Tsukuba”

c - x 0.55 1.2 12 71 90 93 99

c - y 0.49 1.1 12 72 92 94 99

e - x 0.56 1.3 13 70 91 93 98

e - y 0.58 1.2 11 70 88 93 99

“Venus”

c - x 0.64 1.7 19 72 90 93 97

c - y 0.61 1.8 19 75 92 94 97

e - x 0.61 1.7 19 75 92 93 98

e - y 0.59 1.8 19 75 93 94 98

“Cones”

c - x 1.24 3.2 46 64 84 88 93

c - y 1.12 3.1 46 66 86 89 94

e - x 1.39 3.2 46 61 81 85 92

e - y 1.38 3.1 45 69 81 87 93

“Teddy”

c - x 1.12 2.7 38 59 85 89 95

c - y 0.94 2.5 39 62 87 91 96

e - x 1.16 2.7 36 58 85 88 94

e - y 1.22 2.6 39 53 82 88 94

Combined stereo matching along and across the scan-

lines appears to have much better promise. The conven-

tional SDPS produces not only an output disparity map,

but also the residual signal differences δ for all BVPs

in the (x,y,d) search space. Just as in the concurrent

stereo matching [4, 6], the “optimal” differences for the

3-D points (x,y,d∗
x,y) included to the output disparity

map d∗ specify the candidate volumes of points such

that give stereo matches with the same or smaller abso-

lute residual difference δx,y,d ≤ δx,y,d∗x,y . Then the SDPS

reconstruction across the scan-lines (i.e. in y-direction)

is performed only to within the candidate volumes.

Table 3: Reconstruction accuracy (ma σa) of the
SDPS for the conventional noise model for the
parameters [εmin;εmax] and w◦

M.

Adaptation range [εmin;εmax]
w◦

M [1.0;1.0] [0.9;1.1] [0.8;1.2]
“Tsukuba”

50 c-x 0.55 1.2 0.53 1.1 0.55 1.2

c-y 0.46 1.1 0.48 1.1 0.49 1.1

100 c-x 0.56 1.3 0.55 1.3 0.60 1.4

c-y 0.47 1.1 0.50 1.1 0.51 1.1

200 c-x 0.65 1.4 0.70 1.5 0.75 1.5

c-y 0.54 1.2 0.61 1.3 0.65 1.3

“Venus”

50 c-x 0.77 1.8 0.65 1.7 0.64 1.7

c-y 0.65 1.8 0.59 1.7 0.61 1.8

100 c-x 0.74 1.7 0.69 1.7 0.69 1.7

c-y 0.68 1.8 0.67 1.8 0.67 1.8

200 c-x 0.77 1.7 0.75 1.7 0.75 1.7

c-y 0.75 1.8 0.74 1.8 0.73 1.8

“Cones”

50 c-x 1.52 3.7 1.28 3.3 1.24 3.2

c-y 1.26 3.3 1.16 3.1 1.12 3.1
100 c-x 1.58 3.6 1.35 3.3 1.42 3.4

c-y 1.31 3.3 1.23 3.2 1.27 3.2

200 c-x 1.61 3.5 1.56 3.4 1.63 3.5

c-y 1.40 3.2 1.37 3.2 1.42 3.3

“Teddy”

50 c-x 1.25 2.8 1.10 2.6 1.12 2.7

c-y 0.97 2.4 0.92 2.4 0.94 2.5

100 c-x 1.18 2.6 1.20 2.8 1.30 2.9

c-y 0.97 2.4 0.95 2.4 1.00 2.5

200 c-x 1.35 2.8 1.43 3.0 1.65 3.3

c-y 1.08 2.5 1.19 2.7 1.32 2.9

Table 4: Accuracy of the 3-D points that coincide in
the surfaces reconstructed by the conventional SDPS
along and across the conjugate scan-lines (p,% –

percentage of the coinciding points).

p,% ma sa em Errors ≤ θ ; % of points

θ :0 1 2 5

“Tsukuba”

77 0.27 0.8 12 83 96 97 99.7

“Venus”

79 0.27 0.9 11 84 96 98 99.5

“Cones”

74.3 0.67 2.5 46 77 93 94 97

“Teddy”

69 0.61 2.0 34 72 93 95 98
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The y-directed SDPS takes account of only the BVPs.

Its transitions and the matching score depend on the

corresponding signals: the more uniform are the sig-

nals, the smoother should be the surface. Generally, the

surface changes have no restrictions in the y-direction,

and the surface smoothness is governed by the match-

ing score. Tables 2 and 3 show that the sequential bidi-

rectional matching yields roughly a 10%-improvement

of the overall accuracy. The accuracy is slightly bet-

ter for the adequately chosen reconstruction parame-

ters [εmin,εmax] and WM, but it is still unclear how to

evaluate the former range from a given stereo pair. Si-

multaneously, as shown in Table 4, about 70% of the

reconstructed 3-D points coincide for both reconstruc-

tion directions, and the accuracy in these areas is (30–

50)% higher than the overall accuracy.

To detail these results, Figs. 3 and 4 present the Middle-

bury stereo pair “Cones” [8] with the ground-truth dis-

parity map for the left image, results of the x-directed

and subsequent y-directed SDPS reconstruction of the

cyclopean disparity map, and the map of coinciding

and non-coinciding disparities for both the reconstruc-

tion steps.

This scene contains multiple disjoint surfaces, and

some of them are not approximated with a single

opaque surface assumed in all the DPS algorithms (e.g.

the tops of cones and sticks in the mug that violate

the ordering constraint). These errors appear in both

disparity maps in Fig. 4,a-b because the candidate

volumes for the y-directed stage are specified at the

x-directed stage. The SDPS, as well as any stereo

algorithm reconstructing a single surface under the

ordering constraint, cannot escape these errors.

At the same time positions where the disparities differ

in the both reconstructed maps (Fig. 4,c) relate mostly

either to object boundaries (places of rapid changes of

disparities) or to boundaries between areas of constant

disparity. This suggests a promising direction for the

further work - to merge both the disparity maps by

propagating the coinciding disparities (if necessary,

with interpolation) to the “non-coinciding” areas.

4 Conclusions

The above experimental results show that there

are no significant improvements in accuracy if the

conventional simple signal model in Eq. (1) is refined

by using empirical estimates of the true probability

distributions of signal differences. At most, the

latter distributions allow us to more naturally select

weights for partially occluded points in the stereo

matching score, yielding only marginal changes in the

reconstruction accuracy.

The bidirectional SDPS reconstruction where the

second, y-directed stage is constrained to the candidate

volumes found at the first, x-directed one offers a more

Left image

Right image

Ground-truth disparity map

(black – points with unknown disparities)

Figure 3: Stereo pair “Cones” [8] (tops of cones and

sticks violate the ordering constraint assumed in the DPS).
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a: Disparity map along the scan-lines (x)

b: Disparity map across the scan-lines (y)

c: Non-coinciding (black) disparities in both the maps

Figure 4: SDPS reconstruction for “Cones”.

considerable promise. Although the reconstruction in

principle produces a single surface and thus cannot

avoid errors for objects that violate the ordering

constraint, the whole process outputs about 70–75%

of the whole scene with the twice better accuracy than

the unidirectional SDPS. Because the remaining areas

mostly separate the “more accurate” ones, there is a

good reason to expect that the former can be filtered

out by expanding the latter.

References

[1] Boykov, Yu., and Kolmogorov, V., An experi-

mental comparison of min-cut / max-flow algo-

rithms for energy minimization in vision, IEEE
Trans. Pattern Analysis Machine Intell., Vol. 26:9,

pp.1124–1137, 2004.

[2] Fetzenszwald, P. F., and Huttenlocher, D. P., Ef-

ficient belief propagation for early vision, Proc.
IEEE CS Conf. Computer Vision and Pattern
Recognition (CVPR 2004), Washington, DC, USA,
27 June - 2 July 2004. IEEE CS Press: Los

Alamitos, Vol. 1, pp.261–268, 2004

[3] Gimel’farb, G., Probabilistic regularisation and

symmetry in binocular dynamic programming

stereo, Pattern Recognition Letters, Vol. 23:4,

pp.431–442, 2002

[4] Gimel’farb, G., Liu, J., Morris, J., and Delmas,

P., Concurrent stereo under photometric image

distortions, Proc. 18th IAPR Int. Conf. Pattern
Recognition (ICPR 2006), Hong Kong, China, 20–
24 Aug. 2006. IEEE CS Press: Los Alamitos,

Vol. 1, pp.111–114, 2006.

[5] Helava, U. V., Object-space least-squares corre-

lation, Photogrammetric Engineering and Remote
Sensing, Vol. 54, pp.711–714, 1988.

[6] Morris, J., Gimel’farb, G., Liu, J., and Delmas,

P., Concurrent stereo matching: An image noise-

driven model, in: Proc. 5th Int. Workshop on
Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR 2005), St.
Augustine, Florida, USA, Nov. 6–9, 2005. (Lecture
Notes in Computer Science, vol. 3757). Springer:

Berlin, pp.46–59, 2005.

[7] Scharstein, D., and Szeliski, R., A taxonomy and

evaluation of dense two-frame stereo correspon-

dence algorithms, Int. J. Computer Vision, Vol. 47,

pp.7–42, 2002.

[8] Scharstein, D., and Szeliski, R., Stereo Vision Re-
search Page http://cat.middlebury.edu/stereo/
data.html [on-line] 2006.

498



Tracking iris surface deformation using Elastic Graph 
Matching 

 
Sammy S.S. Phang1, Wageeh Boles1 and Michael J. Collins2  

1School of Engineering Systems, Queensland University of Technology, Brisbane, Australia 
2School of Optometry, Queensland University of Technology, Brisbane, Australia 

Email:  s.phang, w.boles, m.collins@qut.edu.au  

Abstract  

We propose a method to track the iris surface deformation in image sequences captured by a special infrared 
illuminated high-speed camera using elastic graph matching. A circular grid elastic graph (iris graph) to track 
the iris radial and circular movement of pupillary activity caused by varying lighting conditions is introduced. 
We compare the phase similarity with the magnitude similarity for tracking iris features and we also relate the 
determination of the weight of topography preservation in the similarity cost function to the amount of 
movement of the object being tracked. The algorithm is tested with a series of synthetic iris images and a series 
of real iris images. We show that the deformation of the iris surface area during the constriction of the pupil 
operates mainly in the middle and the peripheral parts of the iris and that this deformation is non linear. 

Keywords: Iris movement, iris recognition, elastic graph matching, Gabor filters, tracking   

1 Introduction 
The role of the iris has become increasingly important 
compared to many other biometrics in many human 
recognition systems [1]. This is because of the 
exceptionally unique characteristics of the irises of 
every individual. However, one of the problems this 
technology still needs to address is its sensitivity to 
variations in the pupil size [2]. Since our pupil size 
fluctuates all the time as it responds to the ambient 
brightness conditions, chances of capturing images of 
the same person with a different pupil size are high 
[3]. This would affect the performance of iris 
recognition systems. For example, in a verification 
scenario, if the iris image captured on the spot 
registers a pupil size very different from the pupil size 
of the original iris image captured during the 
enrolment, the verification may fail. 

There are several ways to deal with the problem. One 
way is to ensure that the iris image captured during 
the recognition stage has the same as the pupil size as 
the one captured during the enrolment stage. However, 
this is not a feasible solution because of the constant 
fluctuation of pupil size with the existence of light. 
Furthermore, the size of the pupil is also controlled by 
other factors. For example, a drowsy person or a 
person who has been affected by certain drugs will 
have a different pupil size [3]. Another way to address 
the problem is to study and model the physiology 
behaviour of iris surface deformation for various 
irises. Such a model can be integrated into iris 
recognition systems to improve their performance.  

In this paper, we introduce a method for iris surface 
deformation tracking using the Elastic Graph 
Matching (EGM) algorithm. This algorithm was 

initially proposed for translation invariant object 
recognition [4]. This algorithm has also been 
successfully applied to face and gesture recognition [4, 
5]. The robustness to varying face position and facial 
expressions (e.g. smile, cry, and laugh) of EGM 
algorithm has inspired us to use it to track a 
deformable object like the iris surface. The algorithm 
then uses the convolution coefficients of an image 
with a family of Gabor wavelets of different 
frequencies and orientations to compare the similarity 
between two objects. These convolution coefficients 
are referred as Gabor wavelets’ responses.  EGM has 
also been extended to Morphological Elastic Graph 
Matching for face tracking purposes [6], where 
instead of using the Gabor wavelets’ responses, it uses 
responses from various morphological operations.  

In brief, EGM algorithm is a basic process to compare 
graphs with images and to generate new graphs. A 
single labelled graph is matched onto an image. This 
labelled graph has sets of convolution coefficients 
extracted from the image by a family of wavelets 
where each set is centred on one image point. The sets 
are referred to as jets and are arranged in a particular 
spatial order. The image jets initially have the same 
relative spatial arrangement as the graph jets, and 
each image jet corresponds to one graph jet. The 
similarity of the graph with the image is simply the 
average jet similarity between image and graph jets. 
The graph is allowed to translate, scale and distort to 
some extent, resulting in a different selection of image 
jets to increase the similarity. The distortion and 
scaling is limited by a penalty term in the matching 
cost function [5]. Our experiments show that this 
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penalty term plays an important role for the elastic iris 
graph.  

The paper is organized as follows. In the next section, 
we provide the details of our iris surface tracking 
method. In section 3, experimental results are 
presented and discussed. The conclusions are given in 
section 4. 

2 Method for Iris Surface Movement 
Tracking 

The iris surface tracking process consists of four steps, 
as follows: 
(i) Pre-processing the iris image to determine 

the iris parameters.  
(ii)  Constructing the elastic iris graph and 

locating the graph on the iris in the image. 
(iii)  Performing image Gabor transformation. 
(iv) Tracking the iris surface deformation 

between two consecutive images in a 
sequence using elastic graph matching.   

This section describes these four steps. 

2.1 Iris Image Pre-processing 

The iris images to be processed are captured from a 
video sequence. This consists of a series of iris images 
of increasing or decreasing pupil size. In some cases, 
unwanted eye blinking may be captured in a video 
sequence. We eliminate those images by exploiting 
the fact that the total grey level value of an image 
with the blink is much higher than the one without the 
blink. By assuming the first few images are good 
quality images (i.e. consist of sufficient iris surface 
area for tracking), we calculate an average sum of the 
grey level values, A, of these images from the video 
sequence, as in equation (1). The sum of the grey 
level values of current image being processed is 
calculated using equation (2). We exclude the image 
if its average grey level value is larger than a certain 
threshold, t, given by equation (3). 
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Where ny and nx are the rows and columns in each 
image.  N is the number of images and we used N=5 
in our experiments. 
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where currentI is the current image being processed. 
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For each iris image, we determine the centre and the 
boundary of the limbus and the pupil. We use our 
previous work in [7] for this purpose. In summary, we 
first find the initial centre of the eye by exploiting the 
circular symmetry property of the pupil. Then, we 

identify the limbus sectors (which is the area of an iris 
between the upper and lower eyelid that contains the 
transition from the limbus to the sclera). Next, we 
transform the image into a polar coordinate 
representation and determine the limbus and pupil 
edges by zero crossing. We use the detected candidate 
points of the limbus and pupil to estimate the 
parameters of the pupil and limbus models. We model 
the limbus with a circle and model the pupil boundary 
with an ellipse.  

2.2 Elastic Iris Graph 

An elastic graph is a set of nodes connected by edges. 
The edges are used to code the topography (i.e. where 
the features of interest are located) and are labeled 
with distances. Each node is labeled with a jet. Such a 
local description of, for example, a specific iris 
feature can be used to search for the same or a similar 
feature in the subsequet image (we give more about 
this in section 2.3). Thus, the geometry of an object is 
encoded by the edges while the grey value distribution 
is patchwise encoded by the nodes. 

An elastic graph can take various geometry structures. 
A rectangular grid graph or a face graph is generally 
used in face recognition. The nodes of a face graph 
are located at points of interest such as face contour, 
eyes, nose and lips. Since the iris has a circular shape 
and its movements are in the radial and circular 
directions, to track these two movements effectively, 
we introduce an iris graph, which is a non-regular 
grid graph as shown in Figure 1.  

 
Figure 1. Example of an 18x5 nodes iris graph.  

The graph nodes are the intersection points between 
radial lines (seperated by a fix angle oθ ), and piece-
wise linear concentric circles (seperated by equal 
intervals, r, in pixles). The origin of the system is 
places at the centre of the iris. Each meridian has the 
same number of nodes. We determine the number of 
nodes by dividing the smallest radial iris length with a 
fixed radial spacing (in pixel). Then, we equally space 
the node radially for each meridian from the limbus to 
the pupil edge. Figure 1 shows an example of such a 
grapgh consisting of 18x5 nodes, with o20=θ and r = 
20 pixels. 

2.3 Gabor Transformation of Images 

As mentioned in the previous section, each node of 
the elastic graph is a jet and EGM uses jets between 
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two images to determine their similarity.  We extract 
the jet from the Gabor wavelet tranformation of an 
image. Since Gabor tranformation is computationally 
expensive, we reduce the processing time by limiting 
to the area containing the iris. We use the limbus 
centre to register and align the position of the eye. 

A Gabor wavelet is a complex sinusoid multiplied by 
a two dimensional Gaussian. When a function is 
convolved with a Gabor wavelet, the frequency 
information near the centre of the wavelet is captured, 
and frequency information far away from the centre of 
the Gaussian is filtered out. In order to describe the 
frequency information of a local feature in an image 
accurately, it is necessary to convolve the pixel values 
of that location of an image with a variety of Gabor 
wavelets. Gabor wavelets can take a variety of forms. 
We employ the Gabor formulation of Petkov and 
Kruizinga [8] and this may be written as: 
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whereχ  =(x,y) specify the position of a light impulse 
in the visual field. The parameters γσϕθλ ,,,, of 
equation (4) are the wavelengths, orientations, 
frequency offsets, standard deviation of the Gaussian 
factor and the spatial aspect ratio of the Gabor 
wavelet respectively. For simplicity, let us 
denote ( ) ( )χχ γσϕθλ ,,,,gg j = , with the subscript, j, refers 
to the combination of these parameters. 

Let I( χ ) be the grey level distribution of the input 

image. Convolving a Gabor function, ( )χ
j

g , with the 

image at location χ  gives a jet ( )χjJ  that describes a 
small patch of grey values around that pixel location: 
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The integral here produces complex coefficients 
( )χjJ  of a jet that consists of real( ) r

ja  and imaginery 

( ) i

ja parts. This complex coefficient can be 
represented in polar coordinates having a total 
magnitude of ( )χja  and phase angle of ( )χφ j  and 
using equations (7) and (8).  
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2.4 Tracking Using Elastic Graph 
Matching (EGM) 

The idea behind of the EGM algorithm is the concept 
of Dynamic Link Architecture. It exploits the 
correlations in the fine-scale temporal structure of 
cellular signals, in order to group neurons 
dynamically into higher order entities, where these 
entities represent a very rich structure [4, 5]. The 
graph matching algorithm tries to find a position for 
each node of the graph which maximizes the feature 
similarity and minimizes the topography costs at the 
same time. The rigidity or flexibility of the graph can 
be determined by weighting the topography costs in 
the overall cost function.  

The EGM algorithm consists of two phases. The first 
phase is called a Global Move, where we try to 
approximate the best matching position by not 
allowing distortion of the graph. This means that each 
time we move the graph on the image we are moving 
all nodes uniformly. The second phase is called Local 
Move, where we allow each node to move 
individually to a new position around its search 
neighbourhood that has the maximum feature 
similarity. 

Before we go into the mathematical details of the 
EGM algorithm, let us define the first iris image 
frame  presented to the algorithm to be I  and the next 
frame with slightly deformed iris to be I’ . With the 
assumption that the iris surface deformation is small 
(e.g. 4ms interval between two frames), EGM 
algorithm is able to identify the most matching 
position of each of the nodes of the iris graph in the 
new image. We use the distorted iris graph from the 
previous tracking as the initial iris graph for the 
tracking of subsequent frames. The direction and 
magnitude of displacement information of each node 
is used to decide certain parameters (describe below) 
of EGM tracking algorithm. 

In matching a landmark in image I to I’, we use two 
similarity functions: a similarity based on Gabor 
wavelet response (vS ) and a similarity based on the 
geometry topography (eS ) and a cost function totalC  
introduced in Martin et. al. works [3]: 

vetotal CCC += κ              (9) 
where       

( )∑ ∆∆= ∈Eji ijijee SC )( , '         (10) 

( )∑−= ∈vj jjvv JJSC ',               (11) 

vC  is the cost relating to the Gabor jet similarity and 

eC is the cost relating to the connecting edges at the 
nodes of the iris graph. The κ in equation (9) controls 
the topography of the elastic graph. Small κ  values 
allow the graph to distort while large κ values make 
the elastic graph more rigid. The choice of κ  depends 
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on the amount of movement or deformation. If the 
movement between frames is large, then a smaller 
κ value should be used. We discuss the choice of κ in 
section 3. 

During the matching, we try to preserve the 
topography between the iris graph in I and iris graph 
in I’ . This is imposed by allowing minimum change to 
the edge distance of the connecting nodes. The 
connection between nodes iχ  and jχ in iris graph is 
labelled as Euclidean distance vector: 

                       ji -  χχ=∆ ∈Eij                 (12) 

where E is the set of edges in the iris graph. The 
labels of the iris graph in I are compared to those in I’  
by a quadratic comparison function, eS : 

                   ( ) ( )2, '' ijijijijeS ∆−∆=∆∆      (13) 

The square term ensures that the Euclidean distance is 
positive value and helps to differentiate the nodes 
with small Euclidean distance from those nodes with 
large Euclidean distance from their connecting nodes. 
The similarity based on Gabor wavelet response,vS  
can be devided into two measures: magnitude 
similarity ( aS ) and phase similarity (φS ). The first 
measure’s results is a similarity measure based on the 
covariance of the magnitudes: 
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where M is the number of Gabor wavelets, 
while ja and ja' are the magnitude of Gabor wavelet 
response in polar coordinate (see equation 7) for 
image I and I’ respectively. 

This method is tolerant of small displacement. It 
measures the energy of the frequency responses and is 
unaffected if the frequencies are out of phase. Hence, 
we use this similarity for global move to position the 
iris graph in image I’  more accurately. In global move, 
we let the topography of the graph to be unchanged. 
Thus, eC is zero in this case. Since the phase 
information is excluded, the measure can be easily 
confused and may respond to an incorrect spatial 
feature. Hence, we use the second similarity measure 
( φS ) for local move, to improve the localisation of the 
nodes of the iris graph in image I’ .  

A Gabor wavelet responds strongly to edges if the 
direction is perpendicular to its wave vector, but when 
hitting an edge, the real and the imaginary parts 
oscillate with the characteristic frequency instead of 
providing a smooth peak. Since phase varies rapidly 
with displacement, jets taken from an image a few 
pixels apart from each other have very different 
coefficients, although they represent almost the same 
local feature. This allows us to discriminate between 

patterns with similar magnitudes. Indeed, the phase 
similarity measure also based on the magnitude 
response, but these values are weighted by the 
similarity of phase angles. Thus high scores are 
achieved only when both the magnitude and phase 
angle are similar. This measure effectively computes a 
similarity between -1.0 and 1.0. 
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During the local move graph distortion, with the 
assumption that the displacement is not too big, we 
define a search area of ( yx ∆±∆± , ) around each node 
for iris graph in I’ . For simplicity of explanation, let 
us consider matching a node atχ  in I to I’  only. We 
compute the φS  and eS  around the defined 

neighbourhood of χ  in I’ , and the cost totalC  for each 
pixel in the defined search neighbourhood area. We 
identify the pixel position that constitutes a local 
minimum of totalC  as the most matching pixel 

location to node χ  in I. Each node in the elastic 
graph is visited sequentially and in random order until 
all the vertices in the graph have found their new 
position. The label (i.e. the edge’s Euclidean distance) 
vector is updated dynamically.  

The distorted iris graph is then used as the initial 
graph for I’  and I’ +1. The direction and amount of 
displacement of each node in previous tracking is 
used to estimate the displacement of the node in next 
frame. The amount of displacement is also used to 
determine the size of the search neighbourhood and 
the parameter κ of a node in the next frame tracking.  

3 Experimental Results 
We tested the proposed method on a sequence of 
synthetic iris images with dilating pupil size. The 
circular band with darker grey colour is the pupillary 
region and the circular band with lighter grey colour 
is the ciliary iris region. The size of the synthetic iris 
image is 256x256. The iris graph consists of 4x5 
nodes, which has a radial spacing of 20 pixels apart 
starting from the limbus edge and o20 spacing starting 
from  o150 to o210  as measured from the positive x-
axis with the origin at the centre of the iris,  as shown 
in Figure 2a. In first test, we dilated the pupil by five 
pixels for each frame and moved the features in a 
radial direction linearly. All the features have been 
moved about three to ten pixels in their radial 
direction, with features closer to the pupil edge moved 
more than features closer to the limbus edge. The 
radius of the neighbourhood search size should be at 
least twice the size of the expected object's 
displacement. In this case, we also tried using a 
denser iris graph of 4x10 nodes (as shown in Figure 
3a) with a radial spacing of 10 pixels and circular 
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spacing of o20  starting from  o150 to o210  to 
determine the sensitivity of the algorithm to the grid 
size.  

In the second test, we introduced nonlinear circular 
movement of the middle two synthetic iris features by 
additional ooo 12,6,4 apart. We used an iris graph of 
4x10 nodes for this test. In third test, we evaluated the 
sensitivity of the algorithm by tracking the features in 
every other frame and compared this result with the 
result of frame-by-frame tracking. Finally, we tested 
our algorithm with a series of real iris images. 

The parameters of the Gabor wavelets used in this 
algorithm are:- { }16,88,8,24,4∈λ , 

8/µπθ = where 7,...,0=µ , 1=γ  and 
{ }4/,4/ ππϕ −=  where 4/πϕ −=  is thought to be 

the real part of the wavelet and 4/πϕ = is thought to 
be the imaginary part of the wavelet. This created two 
wavelet masks that are mirror image of each other. 
We used a circular wavelet support ( 1=γ ) to ensure 
the wavelet responses of a node has an equal effect of 
surrounding movement of the node. The size of the 
wavelength λ  depends on the resolution of the image 
and how much surrounding features we want taken 
into account. Reducing the λ value helps the local 
features to stand out during image localisation, while 
increasing this value help in tracking the movement of 
homogeneous regions. This yields eight orientations, 
five frequencies, and two phases for a total of 80 
different wavelets (40 complex convolution values). 

As mentioned in section 2.4, the value of κ  depends 
on the amount of movement of the node and the value 
of eS  as given by equation (13). Since φS  is a value 
between -1 to 1, then κ should be a factor that brings 

eS   to a value between 0 and 1. This depends on the 
amount of distortion allowed for a node. For the 
synthetic images, we used 310−=κ  for nodes that 
have distortion less than 10 pixels and 510−=κ  for 
nodes that have distortion of 10 pixels or more.  

Test one tracking results are shown in Figure 2. Most 
of the nodes of the iris graph are located on the edge 
of the synthetic iris features. We can notice from the 
results that most of the nodes are remained at the 
same edge location of the synthetic iris features after 
tracking. The tracking result is compared with their 
known displacement, and we found errors of less than 
1.5 pixels for most of the nodes. The result of the 
second test is shown in Figure 3. The algorithm is 
able to track non-linear circular object’s movement. 
However, as we can notice, the algorithm fails to 
track the middle iris feature at o210 of Figure 3d. This 
is because the algorithm tracks the middle iris feature 
at o150 first then updates its new location. This new 
position has increased the edge distance between the 
node of the feature at o210 and the feature at o150 , 

and this large change has caused the algorithm to fail 
to track that feature. In order to address this problem, 
the phase similarity should be given more weight than 
togograpghy similarity by setting a smaller κ  value 
for that node. We did not find any significant 
difference for the third test between the results of 
frame-by-frame tracking and every other frame 
tracking. The two tracking results are identical for 
these synthetic images. Therefore, the algorithm is not 
sensitive to its initial graph for small displacements.  

  
(a)  (b) 

  
(c)  (d) 

Figure 2. Results of the 1st test. Iris features are 
moved linearly in the radial direction from (a) to 
(c). Figure (d) shows the final deformed graph. 

 
Figure 3. Results of the 2nd test. The two middle 
iris features are moved non-linearly in circular 
direction from (a) to (d). 

Figure 4 gives the tracking results of a series of real 
iris images. We only performed the tracking on the 
lower right quadrant of the iris surface. The full image 
resolution is 1024x1024 and the image size after pre-
processing and cropping is 400x400. We used 

310−=κ for nodes within the ciliary iris region (i.e. 
radial nodes one to five from the limbus edge) 
and 510−=κ for nodes within the pupillary region (i.e. 
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radial nodes six to eight from the limbus edge). We 
used an iris graph of 8x8 nodes with a radial spacing 
of 30 pixels apart and o10  spacing starting from 

o280 to  o350 . We can see that the graph’s nodes 
located at the iris features remained attached to the 
nodes during the tracking. We found that there is no 
significant cyclo-rotation of iris surface movement. 
We also found that the iris surface area increases 
during constriction are mainly from the middle and 
the peripheral parts of the iris. This gain seems to be 
linear until the pupil loses it ellipticity, as we can 
notice the surface gain of peripheral iris area between 

oo 300~280  is greater than the surface gain of 
peripheral iris area between oo 350~310 .   

4 Conclusions 
In this paper, a method for tracking 2D iris surface 
movement using Elastic Graph Matching is presented.  
The algorithm uses an iris graph that allows us to 
track radial and circular movements of iris features. 
The initialization of the iris graph is based on the 
results of the pre-processing stage. We tested the 
algorithm on a series of synthetic iris images with 
known movements and the algorithm gives an overall 
tracking error of less than 1.5 pixels compares to their 
known displacements. We also tested the algorithm 
with a series of real iris images. We found that the iris 
extends its surface area from the middle part of the 
iris during pupillary constriction. The obtained 
tracking results show that this method is able to track 
the iris surface deformation during pupillary activities. 

This is an on going research and for future work, a 
method to determine an appropriate value for κ based 
on  the values of radial edge distance and elliptical 
edge distance (i.e. the edge distance between two 
nodes separated by a large angle) to encounter the 
problem of significant change in edge distance of 
circular connecting nodes. 
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Abstract 

Soft shadows generated from area or line light sources create an added sense of realism to a scene while also 

providing spatial hints about the scene.  In this paper we present a new real-time algorithm that generates soft 

shadows by blurring in image space while reducing the artefacts currently associated with an image space blur.  

The penumbra region is estimated and only the estimated region is blurred, thus reducing the time taken for the 

blur stage.  This algorithm creates perceptually correct soft shadows in real time on modern graphics hardware. 

Keywords: Soft shadows, shadow algorithm, real-time shadows, shadow mapping 

1 Introduction 

Shadows play a very important role when producing 

images using computer graphics applications [1].  

Recent advances in computer graphics (CG) and CG 

hardware have made real-time 3D graphics a reality 

[2].  However, computing high-quality, realistic 

shadowing for dynamic scenes in real time is a 

difficult task and has generated considerable research 

interest [2].  

This paper describes a new real-time algorithm that 

creates perceptually realistic soft shadows.  Our 

algorithm utilises depth maps and blur maps and 

creates soft shadow maps from blur maps.  The result 

is a perceptually correct blur as shown in Figure 1. 

Figure 1: Left to right: hard shadows, uniform blur, 

restricted blur, perceptually correct blur. 

Shadow mapping and shadow volumes create hard-

edged shadows which are only made by infinitely 

small point light sources.  Line and area light sources 

create soft-edge shadows which depend on the size of 

the light and the distance between the light source, 

blocker and receiver.   

Soft shadow algorithms have been developed, in 

which the soft edges are created by sampling in world 

space.  An image space blur was proposed by [8] in 

which hard shadows were cast and the resulting image 

was blurred in image space and then sent on to 

lighting calculations.  This created uniform soft 

shadows in which the penumbra region did not vary. 

There are also two predominant artefacts associated 

with blurring in image space.  

This paper is organised as follows: section 2 discusses 

related research and section 3 describes the problem 

in detail.  In section 4, we introduce our algorithm for 

creating soft shadows.  Section 5 details our 

implementation and the results are discussed in 

section 6.  We present our results in several example 

scenes rendered by our algorithm and they are 

illustrated in the Appendix that follows our 

conclusion.  

2 Related Research 

Shadow mapping was introduced by Williams in 1978 

[3]. In his process the scene was first rendered from 

the lights point of view and the depth of the scene 

stored as a depth map.  The resulting depth map was 

then projected onto the scene and used to determine 

whether the result was in light or shadow.  However, 

this technique created only hard-edge shadows. Since 

this time, there have been many proposals to create 

soft-edge shadows by expanding on this method.   

Flavien Brebion [8] proposed in 2003 a technique to 

blur hard shadows in an image using shadow volumes 

[4].  This technique was prone to certain artefacts 

which will be described in detail later.  Anirudh 

Shastry [9] later demonstrated that the same results 

could be achieved using shadow mapping.  These two 

techniques take into account the shadows cast and 

blur the result in image space before being used in the 

final lighting calculations.   

Eric Shan and Frédo Durand proposed the Smoothies 

algorithm [10] in which additional geometry was 
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created in image space to identify penumbra regions 

and create soft-edged shadow.  Wyman and Hansen’s 

Penumbra Map algorithm [11] was similar; however 

the additional geometry was created in world space 

not image space. 

Péter Tamás Kovács and György Antal proposed a 

method [19] of image space blurring in which the 

most prominent artefact, the halo, was removed from 

the scene.  This was done through testing surrounding 

depth values in image space to find edges so that the 

blurring would not sample incorrect regions.  

However, the method was still affected by the other 

artefacts associated with the image space blur.   

Our algorithm is based on shadow mapping and 

progresses on from the work of Flavien Brebion [8] in 

which the blur is done in image space without 

requiring any additional geometry to be added to the 

scene. 

3 Our Research Problem 

The most prominent visual artefact created by the 

uniform image space blur is the halo or bleeding 

effect.  This occurs when an area of shadow or light 

incorrectly affects a neighbouring region of opposite 

value.  The radius of the blur directly affects how 

noticeable this artefact is.  When only a small blur is 

used the artefact is mostly hidden; however this 

means that large penumbra regions cannot be created.  

When a large blur radius is used to simulate a large 

area light source the effect becomes too large to be 

ignored.  This artefact is most prominent in areas 

where there is a high concentration of alterations 

between areas of shadow and light. 

The uniform image space blur produces only shadows 

with a fixed penumbra region.  This does not show the 

effects when the distance between the light, blocker 

and receiver changes.  This is an important aspect to 

include when creating soft shadows, as varying 

penumbra regions provide useful spatial information 

hints. 

Another artefact of the uniform image space blur is 

that when viewing a plane on a sharp angle the blur 

radius is effectively increased.  Due to the image 

space sampling translating into a larger sample area in 

world space, shadows viewed at sharp angles become 

faded out. 

The last artefact is only noticeable when the viewer is 

moving around a scene.  As the uniform image space 

blur does not factor in the depth of the scene during 

the blurring stage, objects further away from the 

viewer will appear to have a larger penumbra region.  

As the viewer moves closer to a penumbra region it 

will decrease in size.  This is mostly noticeable in 

very large scenes spanning great distances.  

In this research, these problems were solved by the 

projection of extra depth maps, to create an estimated 

penumbra region along with an umbra region.  By 

blurring only within the penumbra region, the halo 

artefact was removed.  The extra projected shadows 

also created a perceptually correct variation in 

penumbra.  The umbra region, which is not blurred, 

prevented the entire shadow becoming washed out 

when viewed at low viewing angles.  Finally a depth 

value was used to modify the blur radius to prevent 

distant shadows becoming too blurred. 

The following figures demonstrate some of the 

problems discussed here and a solved output from our 

algorithm.  Figure 2 shows the effect of blur radius 

from a lower angle.  The image on the right shows the 

result from our algorithm. 

Figure 2:  Problem related to viewing angle 

Figure 3 shows the halo effect as discussed in the 

initial part of this section.  The image on the right 

shows the result of our solution. 

Figure 3: The halo effect problem 

4 The Algorithm 

Our algorithm has the following passes:   

Pass 1: As with traditional shadow mapping, the first 

step is to render the depth map from the lights 

viewpoint.  Our algorithm creates four depth maps, 

one from each corner of the area light source, all in 

parallel.   

Pass 2: The four depth maps are then projected onto 

the scene at the same time from the corners of the 

light source.  It is important to note here that at this 

stage no lighting calculations are performed.  The 

result is a greyscale image where each projection casts 

a light value of 0.25 and a dark value of 0.  This is 

encoded into a blur map utilising 3 colour channels.   

506



The first channel stores the penumbra region estimate 

and is given a value of 1 when the greyscale map has 

values 0.25-0.75.  The second channel is used to store 

the data which is to be blurred.  The fully lit value is 

assigned when the greyscale image is 0-0.5 and a 

fully occluded value is given when the greyscale 

image is 0.75-1.  The final channel is used to store a 

depth value for the camera.  The depth value needs to 

be normalised to be stored correctly in the resulting 

image. 

Pass 3: The next stage is to blur the blur map.  The 

blur is only run inside the estimated penumbra region.  

The radius of the blur is then divided by the value 

stored in the third channel of the blur map, the depth 

function value.  The result of this blur is saved as the 

soft shadow map, which shows the regions of shadow 

in image space.   

Pass 4: The resulting image is then used in the final 

lighting pass where the scene is rendered for the final 

time.  The screen coordinates of the final rendering 

are used to find the value stored in the soft shadow 

map.  The value found is multiplied against the 

diffuse and specular terms while the ambient and 

emissive terms remain unchanged. 

The restricted image space blur is very similar to the 

perceptually correct image space blur.  The difference 

occurs in the first stage where only one depth map is 

rendered from the centre of the light source.  The 

single depth map is then projected from the corners of 

the light source.  The rest of the restricted blur 

algorithm is exactly the same as the perceptually 

correct blur. 

Figure 4 shows the pictorial representation of our 

algorithm.  A more detailed pictorial depiction after 

each pass of our algorithm is shown in figure 5. 

Figure 4: The four passes of our algorithm. 

Figure 5: Results of the four passes. 

5 Implementation 

The implementation of our algorithm was done in 

openGL with CG shaders.  The machine used was an 

Athlon 64 3200+ with 1 GB RAM.  The graphics card 

was a NVIDIA 7900GT 256MB, which supports 

dynamic branching in shaders.  The algorithm 

benefits most when run using dynamic branching.  

However, it is still able to perform in real time on 

lower end hardware. 

The implementation used only traditional shadow 

mapping so it was not omnidirectional; however, this 

could easily be extended through the use of cube 

mapping or dual parabolic shadow mapping [12]. 

Our results show that the halo artefact is now reduced 

to within the penumbra region.  The estimated umbra 

region is always fully shadowed.  The bleeding of 

darkness into lit areas has also been completely 

removed.  With the perceptually correct blur the 

penumbra region is seen to change based on the 

distance between the light source, blocker and 

receiver.  The restricted blur does not do this due to 

the projection of the same depth map from different 

points.  The result is visually less believable but there 

is a significant performance gain in using only one 

depth map, not four as in the perceptually correct blur.  

The size of the light is not the only factor required by 

this algorithm.  A uniform base value is required for 

the radius of the blur.  This value is relative to the size 

of the light source and can be altered in real time to 

find the optimal value for variable sized light and

resolution of the image space blur texture.  

Our implementation was built to work on a wide 

range of graphics hardware.  The openGL command 

glCopyTexSubImage2D was used to store the result 

of the different render passes and shadow maps.  

Rendering directly to texture through the use of pixel 

buffers would be a more optimal solution and increase 

the speed of our implementation.

6 Results 

Three different factors were taken into account during 

benchmarking: resolution, polygon count and number 

of blur samples.  Resolutions of 512x512 and 

1024x1024 were used to see the effects of the blur 

code, which are dependent on the size of the texture to 

blur.  Scenes with low (656) and high (211298) 

polygon counts were used to find the effect of the 

increased number of render passes required for the 

perceptually correct blur. 

Render four depth maps  
from corners of light 

Project four depth maps, 
encode blur map 

Create soft shadow map 
from blur map 

Use soft shadow maps 
in lighting calculations 
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We experimented with different sample sizes for the 

blurring pass and found that a 7x7 box blur provided a 

good balance of speed vs. quality.  The number of 

samples used in the blur has a significant impact on 

the speed of the algorithm.   

Table 1 shows the achieved results of our tests.  The 

blur samples in the table were 3x3 (small), 7x7 

(medium) and 11x11 (high) box blurs.  The frame 

rates for hard shadows were the same for the rest of 

the tests and hence are not listed.  Our results 

demonstrate that when there are a high number of blur 

samples, the restricted and perceptually correct blurs 

show significant performance gains over the uniform 

blur through dynamic branching.  The shadows 

created by each method are depicted in figures 6 and 

7.  These figures, along with figure 1, demonstrate 

that our algorithm out-performs the other methods. 

Figure 6:  Left to right: hard shadows, uniform blur, 

restricted blur, perceptually correct blur

Figure 7: Left to right: hard shadows, uniform blur, 

restricted blur, perceptually correct blur

Figure 8 shows close-up shots of soft shadows to 

demonstrate the effects of different blur samples.  

There is a considerable difference between 3x3 and 

11x11 samples. 

Figure 8: Soft shadows: 3x3 blur sample (left) and 

11x11 blur sample (right). 

   

The restricted blur was found to create a large number 

of artefacts when the size of the light was increased.  

This is due to the use of only one depth map for the 

projection.  The restricted blur is therefore 

recommended for small light sources only.   

The perceptually correct method can handle larger 

lights without difficulty; however, when the size of 

the light is very large or the blocker is very small, 

both techniques fail.  When the umbra region is very 

small or nonexistent there are no dark values to blur, 

resulting in the shadow disappearing. 

7 Conclusion 

We have described a new algorithm to create soft 

shadows in real time using existing graphics 

hardware.  Our algorithm creates perceptually correct 

soft shadows as an image space technique.  We have 

identified the most prominent problems in creation 

and depiction of soft shadows and either removed or 

substantially reduced these effects in our algorithm.  

We demonstrated that our algorithm performs better 

and faster than other common algorithms and 

achieves real-time performance. 

Subsequently, using the programmable features of 

graphics hardware, we will be improving our 

algorithm towards more realistic and real-time results.  

Table 1: Experimental results. 

Resolution

Polygon 

Count 

Blur 

Samples 

Hard Shadows

(frames/sec) Uniform Blur Restricted Blur

Perceptually 

Correct Blur 

1024 High Low 126 110 96 58  

1024 Low Low 324 235 187 154 

512 High Low 161 154 145 78 

512 Low Low >999 844 676 552 

1024 High Medium  84 80 53 

1024 Low Medium  116 156 135 

512 High Medium  136 132 74 

512 Low Medium  424 553 467 

1024 High High  51 56 42 

1024 Low High  48 109 99 

512 High High  106 109 67 

512 Low High  179 400 369 
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Creating an omnidirectional solution that better 

utilises modern graphics hardware is planned for the 

future. 
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Abstract
This paper discusses a hardware implementation of the maximum sum subarray algorithm and an
extension for centroid estimation suitable for Shack-Hartmann wavefront sensors. Maximum efficiency
is achieved by utilising a systolic architecture for the estimation of centroids. The maximum subarray
algorithm is offered as an alternative to conventional centroid estimation using a VLSI hardware
implementation. Our approach offers an efficient method for the calculation of centroids over multiple
regions, directly in hardware. Other possible applications of a hardware implementation of the maximum
sum algorithm include medical imaging and machine vision. To meet the high computational demands
of such applications a highly efficient hardware implementation, optimised for a parallel algorithm, is
described.

Keywords: FPGA, image processing, maximum subarray centroid estimation, wavefront sensor

1 Introduction

To meet the high computational demands required
for the compensation of atmospheric turbulence
in real-time, hardware implementation of image
processing algorithms is required. For example,
the estimation of several thousand centroids over
an image frame, typically updated at a frequency
of 1 kHz, is required for specialised image sensors
used in adaptive optics [1].

Hardware solutions employing mixed-signal tech-
nology have been developed for the estimation of
centroids in real-time [2]. Our approach is to de-
velop a centroid estimator using the maximum sub-
array algorithm in hardware and aims to improve
computational efficiency on current methods.

Our hardware implementation of the maximum
subarray algorithm has allowed us to attempt
problems that require efficient centroid estimation.
An example is the embedded hardware required
to process images obtained from wavefront sensors
used in adaptive optics.

Section 2 provides a background discussion on top-
ics covered in this paper. Section 3 outlines a
hardware implementation of the maximum sub-
array algorithm. This is followed by a summary
of our simulations in Section 4. Our results are
presented in Section 5. A suggested application
is given as future work in Section 6 and this is
followed by our conclusion in Section 7.

2 Background

In this section an overview on astronomical wave-
front sensors is provided. This is followed in Sec-
tion 2.2 by a brief explanation of a commonly used
algorithm for centroid estimation. An overview of
the maximum sum algorithm is given in Section
2.3

2.1 Astronomical Wavefront Sensors

Adaptive optics (AO) is a technology used to
counter the adverse effects of a distorting medium,
such as a turbulent atmosphere in astronomy [1].

A typical AO system will use one or more wave-
front sensors, in conjunction with a closed-loop
control system, to enable actuators that drive de-
formable mirrors. Such mirrors are used to alter
the optical path of a telescope imaging an object.
The conjugate of the distorting wavefront can be
used to correct optical aberrations within an im-
age, in real-time.

A critical component of any AO system is the
wavefront sensor. Due to their simplicity of
operation, the Shack-Hartmann wavefront sensor
is typically used to estimate the centroids of
spatially segmented reference objects, through the
provision of multiple, sub-apertures [3]. Wavefront
slopes measured as centroid data are taken from
each sub-aperture. This resulting centroid data set
is used by a reconstruction algorithm to estimate
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the wavefront for corrections to the optical path
[4].

2.2 Centroid Estimation

Given a region of interest (ROI), Λ, the centroid
of Λ is a point within the region that is equally
balanced. Hence, this is also referred to as the first
moment or centre of gravity. A common method
for determining centroids in the x−direction, x,
and in the y−direction, y, over a 2-D array is given
as:

x =

∑U

k=1mkxk
∑U

k=1mk

, (1)

y =

∑U

k=1mkyk
∑U

k=1mk

, (2)

where U is the row and column length of the region
of interest Λ, mk are the pixel intensities within Λ,
and xk and yk are the displacements of each pixel
with respect to a fixed reference within Λ.

2.3 Maximum Subarray Algorithm

Grenander originally posed the maximum sum
problem [5]. Grenander suggested the maximum
subarray of a 2-D bitmap image can be used
as a maximum likelihood estimator for certain
types of patterns. For example, the brightest
area or areas containing pixel values that closely
matched the colour of a user’s choice could be
determined. However, further development had
to be abandoned due to slow performance of the
algorithm and the limited processing capabilities
available for that period.

Optimisation, in terms of performance, has been
possible due to the adaptation of Kadane’s algo-
rithm [5] that finds the maximum sub-sequence of
a 1-D array, in 2-D. Bae and Takaoka [6] adapted
Kadane’s algorithm to a mesh-type parallel struc-
ture, compatible with very large scale integration
(VLSI), and suitable for implementation within a
Field Programmable Gate Array (FPGA).

Given an N × M array, the maximum sum sub-
array problem is to identify the portion having
the largest sum. Recent work has shown that the
brightest area within an image can be found in
O(n) time with O(n2) processors [6]. The following
is a brief outline the operation of this algorithm.
A detailed discussion of the maximum subarray
algorithm is provided by Bae [6].

A fundamental requirement for the correct opera-
tion of the algorithm is that all elements contained

within the 2-D array are signed integers. In ad-
dition, the array must contain both positive and
negative values [5] . For example, if the array con-
tained only unsigned integers, the maximum sum
would be the entire array. Similarly, if all elements
have negative values, the solution is an empty sub-
sequence. Since pixel values are typically unsigned,
each pixel must first be converted to a signed in-
teger. Complementing the most-significant bit of
each unsigned pixel value is an effective method to
achieve a signed offset by −2N−1, where N is the
pixel word size.

Our architecture is based on a systolic array com-
posed of cells as shown in Figure 1.

v i , jr l k t
s( r 1 , c 1 ) | ( r 2 , c 2 )

I n i t i a l i s e

Figure 1: The Cell Entity [6]

Each cell has an identity, (i, j), and supports nine
input and nine output signals, in addition to a
clock input. The value of each cell is represented
by v; for an image processing application this value
would represent a signed pixel value. The prop-
agated partial sum, s, comprising the maximum
sum of subarray values, is bound by co-ordinates,
r1, c1, and r2, c2. Registers k and l in Figure 1 are
the row and column pointer addresses for each sub-
region; registers r, and t are the row-wise partial
sum, and summation of the row-wise partial sum,
respectively.

Replication of the cell entity shown in Figure 1
results in an N ×M systolic array.

3 VLSI Implementations

In this section an overview of FPGA architecture
is firstly given and this is followed by a discus-
sion of an FPGA implementation of the centroid
algorithm outlined in Section 2.2. Our work com-
prising the development of the maximum subarray
algorithm in hardware, and outlined in Section 2.3,
is given in Section 3.3.

512



3.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs)
comprise a fabric of combinational and sequential
logic, Configurable Logic Blocks (CLB), and block
RAM modules. Input Output Blocks (IOBs)
provide an interface to external devices. FPGAs,
as distinct from Complex Programmable Logic
Devices (CPLDs), are generally more suited to
the implementation of arithmetic functions due to
the provision of carry chain logic and additional
support for sequential logic configurations.

Our initial development used the XC2VP2 device
from the Virtex-II Pro series of Xilinx FPGAs to
implement the maximum subarray algorithm. This
device provided a total of 1,408 slices (352 CLBs),
216Kb of block RAM and 204 IO pads.

3.2 Centroid Estimations

Current hardware implementations of centroid al-
gorithms for wavefront estimation [2], are com-
prised of arithmetic modules such as adders, multi-
pliers and dividers, arranged in a structure similar
to Figure 2.

D i s p l a c e m e n tC o u n t e rC l o c kP i x e l V a l u e s f r o m R e g i o n o f I n t e r e s t ( R O I )
C e n t r o i dO u t p u t

M u l t i p l i e r
D i v i d e r∑∑

Figure 2: Centroid Hardware Implementation [2]

For FPGA implementation, Equations 1 and 2 in
Section 2.2 are implemented in hardware using the
arithmetic modules supplied by the HDL compo-
nent libraries. Efficient methods exist for imple-
menting modules that require multiplication and
division, however, accumulation is an iterative pro-
cess. For example, Figure 2 shows two accumulator
modules, accumulating one pixel every clock cycle.

As outlined in Section 2.3, the maximum subarray
algorithm efficiently finds the rectangular subarray
of the maximum sum within a given 2-D array. In
addition, the location of the subarray, using two
co-ordinates to define the region of the subarray, is
provided.

Given an imaging application where each cell
shown in Figure 1 represents a pixel value, v,

the algorithm is well suited for the estimation of
centroids for two reasons.

Firstly, given a point source object at infinity, δ,
projected through a medium comprising several
perturbing layers of atmosphere, and diffracted by
telescope optics, the resulting distorted image ψ,
when formed on an image plane and captured by an
high frame-rate camera, defines an ROI, Λ. Mul-
tiple sub-regions, ζ are created within Λ when a
Shack-Hartmann wavefront sensor is used. To ac-
quire wavefront data, a continuous series of cen-
troid estimates are required from each sub-region,
ζ. The resulting image is similar to that shown in
Figure 4, where each sub-region requires concur-
rent, centroid estimation.

Within each sub-region, if the midpoint is found
between the co-ordinates produced by the maxi-
mum subarray algorithm, shown as L in Figure 3,
then x and y centroids within ζ can be easily deter-
mined. Thus, the x−centroid, x and y−centroid y
are given as,

x =
r2 − r1

2
, (3)

y =
c2 − c1

2
, (4)

where r1, c1 is the first co-ordinate, and r2, c2 is the
second co-ordinate of the maximum sum subarray
shown as an output at cell, Pk×j in Figure 2.

Secondly, the time complexity of the maximum
sum algorithm, over an N×M array, is O(n) time,
based on O(n2) processors. In terms of actual
performance, this is equivalent to, T(N+M−1) clock
cycles. This performance metric, however, is only
possible once the systolic array is fully loaded. A
detailed discussion on concurrent processing and
loading of systolic arrays for k-maximum sum val-
ues is given by Bae [7].

3.3 Maximum subarray Algorithm

Our work comprised of defining a cell structure
using the Very High Speed Integrated Circuit
(VHSIC), Hardware Description Language
(VHDL), and generating a lattice structure that
propagates the maximum sum v, and the location
of the maximum subarray, (r1, c1), (r2, c2), from
one of the four apex cells located around the
perimeter of the structure, to an adjacent apex
cell on the opposite side of the structure. For
example, this is shown in Figure 3 as P1(1, 1) to
Pk×j(N,M).

The cell entity outlined in Section 2.3 and shown
in Figure 1, was implemented using separate con-
trol and datapath modules and was modelled using
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P 1 ( 1 , 1 )
P k × j ( N , M )

P k + 1 ( 1 , 2 ) =( r 1 , c 1 ) P k ( N , 1 )P k + 2 ( 2 , 2 ) =( r 2 , c 2 )
P j ( 1 , M )

. . .. . .
. . .... ... S u m ,sL o c a t i o n , L = ( r 1 , c 1 ) | ( r 2 , c 2 )...L

Figure 3: The Cell Array

both behavioural and structural VHDL. To ensure
optimum performance, a highly concurrent imple-
mentation of the control unit was required.

Initially, a 2 × 2 cell matrix was configured and
tested to demonstrate the efficiency of a hardware
implementation of the maximum sum algorithm.
This initial cell configuration was increased incre-
mentally by 2n cell entities to a maximum size,
where n=8. For each increment, the utilisation
of FPGA resources was assessed. Details of these
results are provided in Section 5. Test-bench wave-
forms were written to verify correct operation and
these are provided in Section 4.

For simplification during testing, cell entity data
was defined using 4-bit signed values. These were
used to test the propagation of the maximum
subarray from cell P1 shown in Figure 3, to cell
Pk×j . The implementation was tested using
a Xilinx, XC2VP2-5FG456 Virtex-II FPGA
and DS-KIT-2VP4LC development system that
incorporated an LCD interface to verify our
results.

4 Test-bench Simulations

Several test benches were written in VHDL to sim-
ulate the implementation of the maximum sum
algorithm. Cell values v, and identities (i, j), were
defined as constants, the former comprised 4-bit,
signed integers, the latter, as 4-bit unsigned in-
tegers. Propagation of the partial sum throughout
anN×N array for various values ofN , were tested.
The results of these tests showed correct operation
of the cell entity and update of the partial sum, s,
within the matrix structure shown in Figure 3.

5 Results

The utilisation of FPGA resources, in addition to
actual performance tests, given for various array
sizes, is shown in Table 1. These results show a
significant increase in on-chip resource in propor-
tion to array size.

Table 1: FPGA resource utilisation and perfor-
mance measures for various cell sizes.

No. of Cells 4 16 36 64

Adders 4-bit 4 16 36 64

Registers 1-bit 51 183 403 711

Registers 4-bit 24 96 216 384

Comparators 4-bit 8 32 72 128

Clock cycles (Actual) 7 11 15 19

However, the performance of the maximum sub-
array algorithm, in terms of the number of clock
cycles required to estimate a centroid, was signifi-
cantly lower compared to the serial processing con-
figuration shown in Figure 2. For each configura-
tion tested, the actual number of clock cycles given
in Table 1 shows an addition four cycles on theo-
retical estimates. This was due to the initialisation
required for loading the data values into each cell
entity. Optimal processing time was achieved in
T(N+M−1)+4 clock periods.

An estimate of the minimum number clock cycles
required for centroid calculations using the method
shown in Figure 2 is given as, T(N×N) clock periods
for a square array. For example, an 8 × 8 array
would require a minimum of 64 clock cycles to
calculate a centroid estimate.

6 Future Work

The Shack-Hartmann wavefront sensor produces
an image similar to that shown in Figure 4. Here,
the estimation of centroid pairs is required, each
pair over an ROI, or sub-aperture, of size N ×M .
Extending the number sub-apertures to an R ×
S array, where each sub-aperture corresponds to
a ROI ζ, is ideally suited to the array structure
shown in Figure 3, i.e., application of the maximum
sum algorithm.

Independent centroid estimates, shown for example
as A and B in Figure 4, combine to form wavefront
measurements that can be corrected as discussed in
Section 2.1. As the number of sub-apertures, and
corresponding pixel density (or CCD array area)
increases, the ability of the Shack-Hartmann sensor
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to determine higher order wavefront aberrations [4]
is increased. NM

Figure 4: A Telescope Aperture showing Sub-
aperture arrays for Centroiding using a Shack-
Hartmann Image Sensor

However, given a fixed CCD size, if the number
of sub-apertures increase, the number of pixels per
sub-aperature will decrease. For example, Figure
4 shows an array of 6 × 6 sub-aperatures over an
active CCD array of dimensions, R × S. Each
sub-aperture is shown as an N × M pixel array.
For optimal resolution, each sub-array should con-
tain 4-pixels i.e., N = M = 2. This is known as
a quadcell. If the number of sub-apertures were
increased, as would be the case for example if a
new configuration of CCD sensor and lenslets were
fitted, reconfigurable hardware could be used to
adjust the number of cell entities, incorporating
the efficiency of the maximum sum algorithm.

Future work is required to extend this research
for an application such as the Shack-Hartmann
wavefront sensor.

7 Conclusion

In this paper we have given a brief outline of the
maximum sum algorithm and shown how this al-
gorithm can be implemented and tested using the
hardware description language, VHDL.

Application of the maximum subarray algorithm
for centroid estimation was proposed and a pos-
sible hardware application was outlined. Future
work in the application of this research to a Shack-
Hartmann wavefront sensor for use in adaptive op-
tics is proposed.
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Abstract
In this study, March’s regularization method was implemented on GPUs for the investigation of fast
and dense displacement computation. In the simulations, a sequential set of computer graphics images
was employed. The GPU implementation provided more than 13 times the execution speed of the
traditional CPU implementation. The coarse-to-fine strategy further increased the speed, making it
6 times faster. Compared with Horn and Schunck’s method, which is one of the most representative
approaches, March’s method could compute the displacement more accurately and be accelerated more
drastically by implementing it on GPUs. The GPU implementation of March’s method realized the
processing time of several frames per second, possibly making it useful for practical applications such as
motion analysis and security systems.

Keywords: optical flow, GPU, regularization, March’s method, Horn and Schunck’s method

1 Introduction

The computation of two-dimensional displacement
on sequential images, opticalflow, is one of
the main issues in image processing and
have been employed in broad applications.
Barron et al. surveyed several techniques in
1994 [1], and McCane et al. reported further
benchmarking results in 2001 [2]. Among the
many previously-proposed methods, Horn and
Schunck’s regularization method is one of the
most representative approaches [3] and was deeply
discussed in these survey studies.

March proposed a regularization method for
binocular stereopsis in 1988 [4], which is applicable
to the computation of optical flow [5] or the pattern
recognition problem [6, 7]. March’s method has
a strong relationship with Horn and Schunck’s
method in that these two methods are based
on the regularization theory [8] and consist of
parallel computation. The same constraint of
the departure from smoothness in computed
displacement was used as a regularization
term in these two methods, while the different
corresponding term were used for measuring
the error between intensity images. Horn and
Schunck linearized the corresponding error by
eliminating the second and higher order factors
after applying Tayor expansion. On the other
hand, March proposed a non-linear model, keeping
the higher order factors. A comparison study
in 2001 [9] conducted several simulations mainly
based on simple synthesized sequential images and

revealed that March’s method gave more accurate
displacement with a lower number of iterations,
but the computational cost per iteration was
more expensive than that of Horn and Schunck’s
method.

For practical applications such as motion analysis
and security systems, the computational time
for computing displacement is essential. Until
now, many researchers have attempted to develop
specific hardware for computing displacement
between images. Conventional studies employed
analog VLSIs or FPGAs [10, 11]. In recent years
the performance of Graphics Processing Unit
(GPU) have been dramatically improved and have
attracted much attention as a general-purpose
parallel computing architecture [12]. For instance,
in the field of computer vision and pattern
recognition, Yang et al. proposed a real-time
GPU implementation for computing the depth
in binocular stereopsis [13], and Fung et al. [14]
proposed a usage of multiple graphics cards.
Deformable pattern recognition has also been
implemented on GPUs [15]. In 2004, Strzodka [16]
discussed the GPU implementation of an image
registration method proposed by Clarenz et al.
in 2002 [17], which has similarities with March’s
regularization method. Several remarks relating to
the GPU implementation of Horn and Schunck’s
method have been made (e.g. [18, 19]).

The coarse-to-fine search strategy also should be
very effective for reducing the computational time.
Actually Yokoya [5] applied a coarse-to-fine strat-
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egy to a method similar to March’s method on
the traditional CPU implementation. However his
study did not clarify how much the coarse-to-fine
strategy can reduce the computational time.

This study has three main purposes. The first
purpose is to implement March’s method on the
GPU architecture and clarify its performance. The
second purpose is to compare March’s method with
Horn and Schunck’s method from the viewpoint of
the GPU implementation. The third purpose is to
investigate how much the coarse-to-fine strategy
can reduce the computational time of March’s
method. Several simulations are conducted based
on sequential computer graphics images, and the
obtained results will be discussed in terms of
the accuracy and computational time. Horn and
Schunck’s method is also studied for comparison.

Hereinafter, Section 2 briefly explains March’s
method, Horn and Schunck’s method, the coarse-
to-fine strategy and the GPU implementation.
Section 3 shows the computational simulation
and discusses the results. Section 4 describes the
conclusions.

2 Techniques

Let us give a brief explanation of Horn and
Schunck’s method and March’s method [3, 4].
Figure 1 illustrates two images, f(x, y) and
g(x, y), and displacement function (u, v) at the
coordinate (x, y) on g. In the framework of the
regularization theory, the displacement function
(u(x, y), v(x, y)) can be given by minimizing the
following functional E(u, v),

E(u, v) = P (u, v) + λS(u, v) (1)

P (u, v) =
∫∫

(fxu+ fyv + ft)2dxdy, (2)

S(u, v) =
∫∫

((u2
x + u2

y) + (v2
x + v2

y))dxdy,(3)

where functional P is the corresponding error be-
tween two images, f and g, and functional S is a
constraint for the departure from the smoothness
on the computed displacement. The subscript de-
notes the partial differential operator.

On the other hand, March introduced the following
formulation instead of Eq. (2).

P (u, v)=
∫∫

(f(x+ u, y + v) − g(x, y))2dxdy, (4)

where it should be noted that the corresponding er-
ror is treated with non-linear representation, while
Horn and Schunck linearized it in Eq.(2).

On the basis of calculus of variations, the following
iterative equations for Horn and Schunck’s method
are derived,

Figure 1: displacement function (u(x,y), v(x,y))

u[t+1] = ū[t] − fx(fxū
[t] + fy v̄

[t] + ft)
λ+ f2

x + f2
y

, (5)

v[t+1] = v̄[t] − fy(fxū
[t] + fy v̄

[t] + ft)
λ+ f2

x + f2
y

, (6)

where (ū, v̄) denotes the four-neighborhood aver-
age of (u, v). On the other hand, March’s method
has the following iterative equations,

u[t+1] = ū[t] − 1
4λ
fx(x+ u[t], y + v[t])

(f(x+ u[t], y + v[t]) − g(x, y)), (7)

v[t+1] = v̄[t] − 1
4λ
fy(x+ u[t], y + v[t])

(f(x+ u[t], y + v[t]) − g(x, y)), (8)

where it should be noted that the iterative equa-
tions require the subpixel value of f , fx and fy

in the second terms of the right side, which are
calculated by using the linear interpolation with
the four surrounding pixel values. Instead of Eq.(7)
and (8), this study employs the following equa-
tions, where (u, v) was substituted for (ū, v̄) in the
second term of the right side in order to improve
the stability of the iterative computation [6, 7],

u[t+1] = ū[t] − 1
4λ
fx(x+ ū[t], y + v̄[t])

(f(x+ ū[t], y + v̄[t]) − g(x, y)), (9)

v[t+1] = v̄[t] − 1
4λ
fy(x+ ū[t], y + v̄[t])

(f(x+ ū[t], y + v̄[t]) − g(x, y)). (10)

Let us explain the GPU implementation of Horn
and Schunck’s method and March’s method. The
above-mentioned iterative equations have the style
of locally-parallel computation, so they seem to
be very suited to the implementation on GPUs.
Ordinary GPUs have two types of processors, that
is, the vertex processor and the fragment processor.
Since the fragment processor has multiple pipeline
processing units and can store the computed re-
sults on the framebuffer in addition to retrieve data
from the framebuffer [12], we decided to implement
the iterative computation on the fragment proces-
sor. Since the 32-bit floating-point arithmetic on
GPUs is provided through a set of OpenGL exten-
sions, GL ARB texture float, the degree of accuracy
on GPUs compares favorably with CPUs.
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Finally, let us outline the coarse-to-fine strategy.
Before computing displacement between two im-
ages, the several pairs with lower resolution are
generated from the original two images. The com-
putation of displacement starts with the lowest res-
olutional pair, and the obtained low-resolutional
displacement is utilized as the initial value for the
finer pair. Eventually the finest resolutional dis-
placement is computed with the original pair.

3 Simulations

Three types of simulations were conducted. In
the first simulation, March’s method and Horn
and Schunck’s method were implemented on
CPUs, then the effects of the regularization
parameter and the number of iterations on the
computational accuracy were studied. In the
second simulation, their iterative equations were
implemented on GPUs, then their computational
time and accuracy were investigated. In the
third simulation, the coarse-to-fine strategy
was adopted to the GPU implementation of
displacement computation.

Our simulations employed a sequential set of com-
puter graphics images, Yosemite Fly-Through [1].
There were 15 images and each image had 256
gray-scaled 315× 252 pixels. The middle and next
frames of the sequence were used as image f and
g. As a preprocessing, these images are averaged
with the equally-weighted filter of 3 × 3 pixels.
The main specs of our computational environment
are CPU Pentium 4 (3.2GHz), 2GB main memory,
and the graphics card (NVIDIA GeForce 7800GT).
Microsoft Visual Studio .NET 2003 and Cg Toolkit
1.4.1 were utilized for the programming environ-
ment. In this study, the root-mean-square was em-
ployed as the computational error ε for evaluating
the computed displacement,

ε =

X−Xb,Y −Yb
∑

x=Xb,y=Yb

√

(u− u′)2 + (v − v′)2

(X − 2Xb)(Y − 2Yb)
, (11)

where X and Y are the width and height of the
images, respectively, and (u′(x, y), v′(x, y)) is the
correct value of horizontal and vertical displace-
ment at the coordinate (x, y) on g. This equation
takes no account of the region less Xb and Yb-pixels
apart from the border in horizontal and vertical
direction, respectively. In this simulation, both Xb

and Yb were set to 10.

3.1 CPU implementation

Figure 2(a) and (b) show image f(x, y) and g(x, y),
Fig.2(c) illustrates the correct displacement field,

(a) image f(x,y) (b) image g(x,y)

(c) correct displacement

Figure 2: Yosemite-Fly and its correct displace-
ment.
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Figure 3:The influence of λ on computational error.

where the length of the subsampled displacement
is quadrupled for visibility. Figure 3 shows the
relationship between the regularization parameter
λ and the computational error ε, where the number
of iterations was set to 6,000. The figure shows
that March’s method gives smaller error in the
broad range of the regularization parameter. The
smallest error of March’s method was 0.35 pixels
at λ = 1, 000, while that of Horn and Schunck’s
method was 0.85 pixels at λ = 5, 000. The initial
error was 1.742 pixels.

Next, let us discuss the number of iterations. Fig-
ure 4(a) and (b) illustrate the influence of the iter-
ation number on the computational error and time,
respectively, where the values of λ were set to 1,000
and 5,000 which gave the lowest error with each
method in the above-mentioned simulation. The
first figure shows that the errors of both methods
decreased rapidly until around t = 3, 000, when the
computational error of March’s method and Horn
and Schunck’s method are 0.40 and 0.88 pixels, re-
spectively. Please note that March’s method gave
smaller error less than half of Horn and Schunck’s
method.

Figure 5(a) and (b) show the displacement fields
computed with each method. In order to make
clearly understandable, the error vector fields con-
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Figure 4: results on CPU implementation.

tained in each result are illustrated in Fig. 5(c) and
(d). Figure 5(c) indicates that March’s method
gave adequate displacement in mostly the regions
of mountain surface and valley, but the wrong ver-
tical displacement in the background sky region
due to the changes in shape and intensity of clouds.
Please note that the correct displacement of clouds
is horizontal and constant as shown in Fig. 2(c).
On the other hand, Fig. 5(d) indicates that Horn
and Schunck’s method gave inadequate displace-
ment field in the broad region of mountain surface
and valley. In the background sky region, Horn and
Schunck’s method gave the same or worse result
than March’s method.

Let us discuss the computational time based on
Fig. 4(b). The computational times required for
the iteration of 3,000 steps were 29.71 and 9.06
sec in March’s method and Horn and Schunck’s
method, respectively. It should be noted that
March’s method needed the computational time
longer than 3.3 times of Horn and Schunck’s
method per iteration. The reason is that March’s
method requires the intensity and derivative at
the subpixel coordinate in the iterative equations.
In order to obtain these values, two-dimensional
linear interpolation is applied based on four values
of intensity, and derivatives at the neighboring
pixel coordinates have to be retrieved. These
drawbacks of the frequent access to the memory
and the complicate computation result in requiring
more computational time than Horn and Schunck’s
method.

As a consequence, it was indicated that March’s
method could give more accurate displacement

(a) result (March’s) (b) result (Horn et al.’s)

(c) error (March’s) (d) error (Horn et al.’s)
Figure 5: computed displacement and error

than Horn and Schunck’s method, that March’s
method required longer computational time than
Horn and Schunck’s method per iteration, and
that the implementations of these methods on
CPU are too slow for practical applications which
need fast processing.

3.2 GPU implementation

Let us discuss the implementation of March’s
method and Horn and Schunck’s method on
GPUs. Figure 6(a) and (b) illustrate the influence
of the iteration number on computational error
and time, respectively. After the iteration of 3,000
steps, the computational error of these methods
became 0.40 and 0.88 pixels, respectively, resulting
in the same accuracy as the CPU implementation.
On the other hands, the computational times
were 2.15 and 1.84 sec. Please note that the GPU
implementation could reduce the computational
time of March’s method by 13.8 times compared
with the CPU implementation. The reason for
the remarkable time reduction in March’s method
seems to be that the characteristics of GPU, that
is, the multiple pipeline processing units and
fast access to the framebuffer, could relief the
above-mentioned drawbacks. Considering that
the ratio between the computational times of two
methods was 1.2, March’s method is no longer
much more expensive compared with Horn and
Schunck’s method.

The result of the GPU implementation indicated
that March’s method and Horn and Schunck’s
method were speeded up by 13.8 and 4.9 times,
respectively, and that the computational time
required for both methods was a few seconds.
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Figure 6: result on GPU implementation

3.3 Multiscale GPU implementation

Next, let us discuss the adoption of the coarse-
to-fine strategy to the GPU implementation. In
this study, three different resolutional sets were
utilized, that is, 316 × 252, 158 × 126 and 79 ×
63. The intensity on the lower image was assigned
with the averaged intensity of four corresponding
pixel intensities on the finer images. As a result
of the exploratory simulation, two sets of the regu-
larization parameter, namely, {500, 500, 100} and
{10000, 20, 1}, were utilized for March’s method
and Horn and Schunck’s method, respectively.

Figures 7(a) and (b) illustrate the influence of the
iteration number on the computational error and
time, respectively. The same iteration number
was applied to all resolutional stages. Figure 7(a)
shows that the iteration of 300 in March’s method
could provide the same computational error of
0.40 pixels as that of the iteration of 3,000 without
using the coarse-to-fine strategy. Figure 7(b)
indicates that the computational time was 0.36 sec
and that the coarse-to-fine strategy could reduce
the computational time to 1/6. On the other
hand, in the case of Horn and Schunck’s method,
the iteration of 100 could provide the almost same
computational error of 0.88 pixels as that of the
iteration of 3,000 without using the coarse-to-fine
strategy, where the computational time was only
0.15 sec. However, this small computational time
does not mean that Horn and Schunck’s method
is more suitable to the GPU implementation
with the coarse-to-fine strategy than March’s
method, since March’s method could provide a
smaller computational error of 0.68 pixels with
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Figure 7: multiscale GPU implementation

the iteration of 70 steps and it only required the
time of 0.14 sec as shown in Fig. 7(b).

The obtained results indicate that the implemen-
tation of March’s method on GPUs is very effec-
tive for reducing the computational time, and that
the adoption of the coarse-to-fine strategy to the
GPU implementation makes possible for March’s
method to compute displacement between two im-
ages only in several hundred milliseconds.

4 Conclusion

In this study, March’s regularization method was
implemented on GPUs for establishing fast and
dense displacement computation. In the simula-
tions, a sequential set of computer graphics images,
Yosemite Fly-Through, was employed. The GPU
implementation could provide an execution speed
more than 13 times greater than the traditional
CPU implementation. The coarse-to-fine strategy
could further increased the speed by 6 times. Com-
pared with Horn and Schunck’s method, which is
one of the most representative approaches, March’s
method could compute the displacement more ac-
curately and be accelerated more drastically by im-
plementing it on GPUs. The GPU implementation
of March’s method realized the processing time of
several frames per second which may make it useful
for practical applications such as motion analysis
and security systems.

There is a trade-off between computational time
and the accuracy. In the situation which requires
less accuracy, the computational time can be elim-
inated by reducing the number of iterations. Our
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future work includes the extension to color images,
further investigation with newer GPUs, the detec-
tion of the displacement discontinuities and the
comparative study between March’s method and
Clarenz et al.’s method.
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Abstract
Distortion of images due to atmospheric turbulence is one of the major problems in astronomical imaging.
To compensate for the induced aberrations in real-time it is vital to have an accurate model of the
turbulence strength, C2

n(h), and the average wind velocity, V (h).
At Mount John University Observatory a remote-sensing technique known as SCIDAR (SCIntillation
Detection and Ranging) is used to determine the C2

n(h) and V (h) profiles for the site. Preliminary
results are presented for the wind velocity of near-ground turbulence.
Keywords : atmospheric turbulence, site testing, SCIDAR, wind velocity

1 Introduction

Distortion of images due to atmospheric turbu-
lence is one of the major problems in astronomical
imaging. The atmosphere is in a constant state of
motion both spatially and temporally. This results
in variations in refractive index, a function of hu-
midity and temperature, inducing both phase and
amplitude variations. The effect of the Earth’s at-
mosphere on starlight can be visualised by thinking
of the incoming wavefront as a flat sheet of paper.
Atmospheric turbulence reduces the wavefront to
a crumpled piece of paper and as a consequence
distorts the resulting image. Initially the ampli-
tude variations are too small to detect. With large
propagation distances the strength of the ampli-
tude fluctuations increases and can be seen as the
twinkling of the stars. This effect is known as
scintillation.

The effect of the atmospheric turbulence on the
resolution of the image of a stellar object is shown
in Figure 1. Ideally a diffraction limited image
(Figure 1(a)) would be obtained. In reality the
abberations induced by the atmosphere make it
difficult to distinguish between stellar objects as
the resulting short exposure image has a speck-
led appearance (Figure 1(b)). The aim of image
processing, post or real-time, is to take the crum-
pled wavefront and flatten it to approximate the
incoming planar wavefront to obtain higher spatial
resolution in the corrected images. Adaptive optics
(AO) provides a real-time solution for the compen-
sation of aberrations present in the incident wave-
front. This is achieved by means of a closed-loop

system that utilises deformable optics. However
for any AO system to be effective it is vital to have
an understanding of the structure of atmospheric
turbulence at a given site. A large number of AO
design parameters rely on a prior knowledge of the
turbulence structure and its characteristics.
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Figure 1: The effect of atmospheric turbulence: (a)
The ideal case or diffraction limited image of a star
where no distortions are induced by the atmosphere.
(b) The real situation where a speckle pattern is seen
in the image due to the aberrations induced by the
atmosphere.

One of the key parameters in the design of any AO
system is the Greenwood frequency. The Green-
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wood frequency, fG, describes the rate at which
the turbulence structure changes with time. It is
defined as [1]

fG = 2.31λ−6/5

[
sec ζ

∫

path

C2
n(h)V (h)5/3dh

]3/5

,

(1)
where λ is the wavelength, ζ is the zenith angle,
C2

n(h) and V (h) are the refractive index structure
constant and the average wind velocity as a
function of altitude h. C2

n(h) describes the vertical
distribution of turbulence and along with V (h)
describe the properties of atmospheric turbulence.
The Greenwood frequency, fG, determines how
quickly an AO system is required to respond
to adequately compensate for the aberrations
induced by the atmospheric turbulence. As such
it is necessary to have accurate models of C2

n(h)
and V (h).

Although many techniques are available to pro-
vide measurements and estimates of C2

n(h) and
V (h), optical methods are preferred as they allow
for measurements to be taken remotely. SCIDAR
(SCIntillation Detection And Ranging) is such a
technique and has been used at many different sites
around the world [2, 3, 4, 5, 6, 7, 8].

In SCIDAR stellar scintillation patterns are
measured at the telescope aperture. Any phase
variations induced by atmospheric turbulence are
very weak and must propagate large distances
to produce measurable scintillation. As such
any scintillation resulting from near-ground
turbulence (NGT) will not be detected. A simple
change of lens can virtually shift the measurement
plane to below the telescope. This increases the
propagation distance such that scintillation from
NGT can now be measured. This version of
SCIDAR is known as generalised SCIDAR [9].

This paper describes results from a bread-board
based SCIDAR system, detailed in [10, 11].
C2

n(h) and V (h) profiles resulting from NGT are
presented. Also discussed is the effect of NGT on
fG values.

2 Theory

SCIDAR measurements are typically taken using a
binary star, as shown in Figure 2. Light from each
star passes through the same region of a turbulent
layer forming identical, but separated, scintillation
patterns. The distance the two patterns are sepa-
rated is directly proportional to the angular sepa-
ration of the binary star, φ, and the height of the
turbulent layer, h.

Estimation of C2
n(h) requires inversion of the fol-

lowing matrix equation

Figure 2: The concept of SCIDAR: Light from each
star passes through the same point in the turbulent
layer producing identical scintillation patterns sepa-
rated by a distance proportional to the binary star
separation φ and the height of the turbulent layer h.

S = TS × C2
n(h), (2)

where S is a 1D slice of the scintillation spatial co-
variance measured at the aperture of the telescope
(noise removed) and TS is a matrix of ideal co-
variances assuming Kolmogorov statistics for tur-
bulence. The process is detailed, including full
mathematical treatment, in [10, 12].

Spatial covariances, derived from the auto-
correlation, consist of a group of triplets. Figure
3 shows a theoretical generalised SCIDAR spatial
covariance with a virtual measurement plane of
2.5 km below the telescope. The central peak
contains a contribution from all triplets with the
strongest triplet resulting from NGT. The weaker
triplet pattern is formed by turbulence located at
an altitude of 10 km above the telescope. The
distance between the primary and secondary peaks
of each triplet set is proportional to the separation
of the binary star and the sum of the distance of
the telescope to the measurement plane and the
turbulent layer.

Turbulent layers at different altitudes can be
clearly identified from the spatial covariance.
From Figure 3 it is not possible to determine how
much of the NGT is associated with the dome
and telescope or how much is outside or above the
dome. As each NGT layer moves at a different
velocity the identification of contributions from
the dome and outside the dome can be seen in
temporal covariances.

Temporal covariances, derived from the cross-
correlation of two frames taken at a time dt apart,
are also comprised of a group of triplets. However,
unlike the spatial covariance, the local origin of
each triplet is shifted by an amount proportional
to the mean velocity 〈V (h)〉. Figure 4 shows the
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Figure 3: Spatial covariance of scintillation: The
distance between the central peak and the secondary
peak is proportional to the binary star separation and
the height of the turbulent layer. This shows layers
near the ground and at 10 km above the telescope.
Measurement plane is 2.5 km below the telescope.

(a) (b)

(c) (d)
Figure 4: Temporal covariances of scintillation: The
distance a triplet pattern has shifted from the image
origin is proportional to the mean velocity of a given
turbulent layer. (a) dt = 10 ms. (〈V (h)10km〉 =
20 m/s) (b) Slice view of (a). (c) dt = 90 ms.
(〈V (h)BoundaryLayer〉 = 2 m/s) (d) Slice view of (c).
Slice images are taken at positions indicated by the
lines in (a) and (c).

theoretical temporal covariances and slices taken
at positions indicated in the covariance images.
The layers seen correspond to the layers found in
Figure 3.

By measuring the displacement of the local origin
of each triplet, ds, an average velocity 〈V (h)〉 given
the known time difference between frames used, dt:

〈V (h)〉 =
ds

dt
. (3)

Practically, determination of 〈V (h)〉 is problem-
atic due to the weakened signal resulting from the
shifted triplets and the resulting diminished signal-
to-noise ratio. In addition a different value of dt is
required to capture the motion of layers at different
velocities.

If dt is sufficiently small the motion of a fast mov-
ing layer (such as a high altitude layer) can be
readily detected (Figure 4(a) and (b)). However
any movement in the NGT would not be detected
due to the slow speeds of NGT. If dt is sufficiently
large the motion of NGT layers can be seen (Figure
4(c) and (d)). In this case any motion from fast
moving layers results in a shift greater than the
sampled region. Therefore, to obtain information
of the full 〈V (h)〉 profile it is necessary to take
temporal covariances with at least two different dt
values. Typically the time difference required to
sample high altitude layer velocities, dthigh, is in
the order of 10 - 20 ms [9]. The time difference
required for NGT, dtNGT, is significantly longer.

Although it is recognised that NGT is comprised of
multiple layers [4], due to the slow moving nature
of NGT typically little attention is given to NGT
except to determine turbulence associated with the
dome.

3 UC SCIDAR System

During 2005 SCIDAR measurements were taken
at Mount John University Observatory (MJUO)
using the UC SCIDAR system (described in [10,
11]) on the 1-m McLellan telescope. The UC SCI-
DAR system (shown in Figure 5) collects mea-
surements from two different measurement planes
simultaneously. SCIDAR data from a measure-
ment plane at the telescope pupil is obtained us-
ing a f12.7mm achromat lens (L2). Generalised
SCIDAR data from a measurement plane approxi-
mately 3.6km below the telescope is obtained using
a f10mm achromat lens (L1). Both channels utilise
a 640 x 480 CCD with 7.4 µm square pixels. SCI-
DAR data from a six minute period was collected
in 20 blocks, each containing 250 frames from each
channel.1 Dark and sky frames were also captured.

Due to the combination of optics used, when the
telescope is operating at a focal ratio of f/13.5, the
sampled aperture has a radius of 63.5 pixels. To
detect a moving layer the shifted triplet pattern in
the temporal covariance should have a radial shift
of no more than 50 pixels from the origin. A layer
at 10-11 km above the observatory can be expected

1Although the frame rate of the cameras were 30 Hz
there is a period of time associated with writing the data
block to disk. Hence to collect 5000 frames per camera (20
blocks) it takes approximately six minutes.
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(a)

(b)
Figure 5: UC SCIDAR System: (a) physical layout;
(b) optical layout.

to be moving at 15-35 m/s [1] depending on the
wind model used. For a 50 pixel shift in the sam-
pled aperture, where each pixel represents 0.79 cm,
to detect a layer moving at 20 m/s the maximum
time difference between two frames used in cross-
correlations, dt, would be 19.7 ms. The cameras
used in the UC SCIDAR system have a maximum
frame rate of 30 Hz (dt = 33.3ms). Hence the
fastest velocity that can be detected within a 50
pixel shift is 11.8m/s. Velocities of NGT are slow
and hence will be easily detected.

NGT is typically not seen in data taken at the
telescope aperture. As such only results from the
generalised SCIDAR channel will be discussed.

4 Results and Discussion

A sample spatial covariance from the generalised
channel, calculated from a six minute run (corre-
sponding to 5000 frames), is shown in Figure 6.
As expected NGT produces a strong triple pattern
in the centre. Also present is a triplet pattern
produced by a high altitude layer at approximately
10 km above the telescope. The data from Figure
6 was taken using the binary star α Centaurus (α
Cen) with an exposure time of 1 ms. At the time
the data was collected (June 13 2005) the binary
star separation of α Cen was 10.4 arcseconds. The

magnitude difference between the two stars of α
Cen is 1.36. The estimated C2

n(h) profile is shown
in Figure 7.

Figure 6: Spatial covariance from generalised SCIDAR
data taken in June 2005.
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Figure 7: C2
n(h) profile from generalised SCIDAR data

taken in June 2005.

Looking at the NGT the question becomes what
is the required dtNGT for movement of NGT layers
to be detected. For the purpose of this discussion
an analysis on four selected sequential blocks (1000
frames) is used. Figure 8 indicates the position and
size of slices taken for analysis.

Figure 8: Position of slices taken.

Figure 9 shows temporal covariances and corre-
sponding slice views calculated for various values
of dt. Regardless of the dt value used it is clear
that a significant portion of the NGT is associated
with the dome. Any turbulence within the dome
will not be moving and results in a triplet pattern
that is located at the image origin (slice indicated
by the black line). When dt is 33.3 ms (Figure 9(a)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 9: Temporal covariances and slice views from
generalised SCIDAR data taken in June 2005. To bring
peaks above the noise floor slices of |

√
data| is shown.

(a, b) dt = 33.3 ms (c, d) dt = 99.9 ms (e, f) dt = 166.6
ms (g, h) dt = 333.3 ms

and (b)) it is difficult to isolate any movement in
layers. However when dt is 99.9 ms or 166.6 ms
(Figures 9(c, d) and (e, f) respectively) a layer that
is moving at approximately 0.5 m/s in an upward
direction can been seen. This layer accounts for ap-
proximately 10% of the strength of the turbulence

associated with NGT. Increasing dt to 333.3 ms
does not improve the ability to detect a layer just
outside of the dome, but results in a de-correlation
and increased noise levels. This suggests that to
detect movement in NGT at MJUO dtNGT should
be limited to 100 - 160 ms.

It should be noted that the velocity direction in
relation to magnetic north can not be identified
as the orientation of the CCD sensor changes with
respect to north as the telescope tracks the ob-
served object. This will also result in a blurring of
measured temporal covariance triplets.

In general for MJUO, NGT is comprised of at least
two components: turbulence associated with the
dome and turbulence associated with the boundary
layer. As the turbulence resulting from the dome
is not moving it would have no contribution to
fG (see equation 1). However the boundary layer
turbulence, no matter how slowly it is moving, will
contribute to fG.

During the determination of 〈V (h)〉 each layer is
treated as an infinitesimally thin layer. However
from Figure 7 it can be seen that the strength
of a turbulent layer is not fully represented by a
single point. In calculating fG the entire width of
the estimated turbulent layer should be considered.
The contribution of a turbulent layer to fG can be
found using

fG(i) = 2.31λ−6/5

[
sec ζ〈V (i)〉5/3

∫ i1

i0

C2
n(h)dh

]3/5

(4)
where 〈V (i)〉 is constant for a given layer and i0
and i1 define the thickness of the layer.

Figure 10 shows how fG for the boundary layer
changes with wavelength given that imaging is at
the zenith, the average wind velocity is 0.5 m/s
and the integrated turbulence strength is 1.8 ×
10−13m−2/3 for the boundary layer. When look-
ing at the violet end of the visual light spectrum,
fG for the boundary layer is 1.24 Hz. Hence to
fully compensate for aberrations induced by the
boundary layer an AO system should be operating
at a minimum of 5 Hz (four times fG [1]).

In reality a bandwidth of 5 Hz is far from adequate
to fully compensate for aberrations induced by
NGT. The model of turbulence used in the above
analysis assumes well-formed turbulent structure
for a given layer. NGT is not well formed and
hence the models used start to break-down for
NGT. In addition the above calculation assumed
a constant velocity throughout the thickness of
the layer which is only known within the altitude
resolution of the SCIDAR technique, which is
dependent on the binary star separation (in
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Figure 10: Variations in Greenwood frequency with
respect to wavelength. This plot assumes that all
turbulence is located in the boundary layer with a
constant velocity of 0.5 m/s and an integrated C2

n(h)
of 1.8× 10−13m−2/3.

this case α Cen). All these factors introduce
uncertainties in the determination of C2

n(h) and
V (h).

Another uncertainty will arise due to the fact that
the wind velocity of NGT is not constant for long
durations of time. Wind speeds can increase and
decrease suddenly. The wind speeds determined
above are an average over a very short period of
time (approximately 60 s). The analysis should be
extended for longer periods.

Although the above analysis provides a limitation
to the values of dtNGT, correlated patterns can
also be seen in other regions of the data presented.
These patterns may be the result of residual noise
or telescope motion and warrant further investiga-
tion.

5 Conclusions

Due to the speed of turbulence at various altitudes
the frame rate to capture movement of high alti-
tude layers compared with that of the NGT varies
considerably. To adequately detect velocities of
NGT at MJUO one should limit values of dtNGT

to 100 - 160 ms. Values less than this may result
in the lack of ability to detect movement in the
NGT, whereas values greater than this can lead to
a de-correlation.

For accurate determination of the effects of NGT
on fG, one should take an average wind speed
over a long period, say 30 minutes. In addition
the measurements should be correlated with the
surface wind speeds measured at the site.

Further investigation into camera noise and tele-
scope motion on temporal results should also be
conducted.
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